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PAPER

Hybrid Markov Location Prediction Algorithm Based on Dynamic
Social Ties

Wen LI†a), Shi-xiong XIA†, Feng LIU††, Nonmembers, and Lei ZHANG†, Member

SUMMARY Much research which has shown the usage of social ties
could improve the location predictive performance, but as the strength of
social ties is varying constantly with time, using the movement data of
user’s close friends at different times could obtain a better predictive per-
formance. A hybrid Markov location prediction algorithm based on dy-
namic social ties is presented. The time is divided by the absolute time
(week) to mine the long-term changing trend of users’ social ties, and then
the movements of each week are projected to the workdays and weekends
to find the changes of the social circle in different time slices. The seg-
mented friends’ movements are compared to the history of the user with
our modified cross-sample entropy to discover the individuals who have the
relatively high similarity with the user in different time intervals. Finally,
the user’s historical movement data and his friends’ movements at different
times which are assigned with the similarity weights are combined to build
the hybrid Markov model. The experiments based on a real location-based
social network dataset show the hybrid Markov location prediction algo-
rithm could improve 15% predictive accuracy compared with the location
prediction algorithms that consider the global strength of social ties.
key words: location prediction, dynamic social ties, hybrid Markov model,
cross-sample entropy

1. Introduction

The last few years have witnessed a considerable increase
in the number of mobile devices along with the use of wire-
less communication and a rapid development of location-
based social networks, which makes a large amount of in-
dividuals’ movement data be collected. For example, high-
resolution GPS mobility data, coarse-grained mobile phone
data, social and geographical context obtained from online
location-based social networks, etc. However, an increas-
ing number of people are dissatisfied with the application
correlated with their current locations. In order to be more
proactive, applications must not just sense the user’s current
context, but also be able to predict the user’s future context,
which can make preparations for users’ future activities and
provide more natural and customized services for location-
based applications [1]. In location prediction problem, given
an object’s recent movements, the location of this object at
the future time is estimated. Clearly, location prediction is
useful in inferring the crowd of a region, estimating the traf-
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fic status and so on.
Recently, various predicting technology are used for

the location prediction, for example, Decision Tree [2],
Bayesian network [3], [4], Markov Model [5], Neural Net-
work [4], State predictor and Blending predictors [4], [5].
Most existing prediction techniques only take the user’s
own movement history as input to the location predictors.
However, inspired by the social phenomenon that the social
friends tend to have the similar behaviors, the researchers
have started to consider the movements of friends or people
with correlated mobility patterns for improving the predic-
tion accuracy [6]–[13]. People may be more likely to visit
the places that their friends or similar people visited in the
past and human movements are usually affected by their so-
cial context, so the interdependence of human movement
and social ties could help us to know an individual’s poten-
tial interests and hints about when and where a particular
user would like to go.

Although the studies on the correlations between in-
dividuals’ historical movement and social behaviors have
made great success, there are still several issues with ex-
isting location prediction approaches.

(1) In the real world, social network structure changes
over time. Like the edges of the social network, the strength
of social ties also dynamically changes, for example leveling
up, increasing, decreasing, adding a new friend or friendship
broken up. Eagle et al. [15] used mobile similarity to in-
fer the social structures of users. The observations showed
that spatial and temporal context is likely to be an important
indicator of particular types of relationship and there is an
evolution of relationships over time. Therefore, if we could
find the most similar people or intimate friends at different
times, then the interdependence of human mobility and so-
cial ties could be reflected more realistic, which reduces the
deviation caused by the variation of social ties.

(2) Individuals’ historical movement analysis is in-
evitable, so we integrate social ties into the Order-k Markov
model to consider the movement patterns of the individual
and his/her friends. Previous studies applied the cosine sim-
ilarity [8] or the mutual information [7] of two users’ loca-
tion vectors to measure the mobile similarity, which only
considers the distribution of different individuals’ history
of visited locations and neglects the transition information
between the location pairs. Hence, this paper proposes a
modified cross-sample entropy to quantify the correlation
between the movements of different users. In this paper, we
combine the user’s own historical movements and his/her
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friends’ movement data which have the most similar mo-
bility patterns at different time intervals. Specifically, our
contributions in this study include:

- we present how to measure the similarity of the be-
havior sequences of two social friends by a modified cross-
sample entropy and we demonstrate it is possible to im-
prove the prediction accuracy by the movement history of
his friends.

- we propose a hybrid prediction model to combine the
individual’s visited history and his friends’ movement his-
tory with different weights at different time slices, which
could reflect the variation of the strength of the social ties
with the changes of time.

- we evaluate our algorithm using a online location-
based social network (LBSN) dataset. The results show that
our hybrid Markov location prediction model based on dy-
namic social ties (HM-DST) could provide a better predic-
tive accuracy than the location predictors without consider-
ing the dynamic social ties.

The remainder of this paper is organized as follows.
We first give a brief review of some related work in Sect. 2,
then introduce the dataset used in this paper in Sect. 3. Sec-
tion 4 proposes the HM-DST model. The experimental re-
sults are presented in Sect. 5. Finally, we conclude the study
in Sect. 6.

2. Related Work

In recent years, the popularity of location-based and
preference-aware recommender systems provide users more
opportunities to leverage similar friends’ experiences to
extend individual knowledge and retrieve the information
matching their tastes with minimal efforts [11]. There-
fore, we could obtain a better predictive performance by
virtue of the movement data of their friends or similar users
who share similar interests, locations and travel sequences.
Moreover, some researchers incorporate geography into the
prediction model and apply movement patterns of the group
to individual location predictions. Calabrese et al. com-
bined collective movement patterns, time of day, land use
and points of interests to build a probabilistic model which
can predict an individual’s next location within an hour cor-
rectly 60% of the time [12]. Xiong introduced the collective
behavioral patterns (CBP) and then proposed CBP-based
Bayesian model to learn the correlations with time-shifting
from the mobility data of crowds [13]. De Domenico used
the concept of mutual information to quantify the correlation
between two mobility traces and considered the movement
of the people who have correlated mobility patterns to im-
prove the prediction accuracy [7]. Cho developed a model of
human mobility that combines periodic short range move-
ments with long-distance travel that is influenced by social
network ties. The experiments showed that social relation-
ships can explain about 10% to 30% of all human move-
ment, while periodic behavior explains 50% to 70% [6].
Gao proposed a social-historical model that integrates the
social and historical effects to explore user’s check-in be-

Table 1 Statistics information of the experimental dataset

Number of users 253
Number of check-ins 441182
Number of social friendships 16757
Number of unique locations 80421
Locations visited at least five times 11802
Average check-ins per user 1743
Average number of friends per user 66
Average duration per user (day) 702
Average check-ins per user per day 3.12

haviors on the location-based social networks (LBSNs) [8].
Above studies have verified that the social and historical ties
could improve the location predictive performance. Further,
for new users, the training data is typically insufficient and
unavailable, which lead to a poor predictive performance,
so Mclnerney presented a framework to enhance predic-
tion using information about the mobility habits of existing
users [14]. Hence, the movement patterns could not only
increase the prediction accuracy but also decrease the pro-
portion of prediction failures when they visit a new location.

3. Dataset Description

We consider a dataset of online location-based social net-
work -Brightkite- to capture human mobility. Brightkite al-
lows users to share their locations with their friends and the
friendship relationship is mutual. Users logged in Brightkite
could make check-ins at the geographic locations, where
users can see who is nearby and who has been there be-
fore. We study a dataset collected between Apr. 2008 and
Oct. 2010 by Gao [16], which contains a friends list and the
list of all the check-ins. Each check-in is represented as a
tuple < userId, check-in time, latitude, longitude, location
id > and the friend list records which two users have the so-
cial relationship. The whole dataset contains 58,228 users,
214,078 social ties and 4,491,143 check-ins. However, the
number of the users is very large and the check-ins fre-
quency reflect the user’s degree of the activity, so the records
of the users who just make small check-ins and spend sev-
eral days could not show the complete daily life. Therefore,
we select the more active users to do the research. In our
experiments, 253 users who have at least 1000 check-ins
and over 100 locations and spend more than 400 days on
Brightkite are selected. We obtain 80,421 unique geograph-
ical check-in locations from the whole selected dataset as
the location vocabulary and 360 average distinct locations
per user. Table 1 lists the summary statistics.

The location-based social networks provide location-
based specific data, as one can distinguish between a check-
in to the office on the 2nd floor and a check-in to a cof-
fee shop on the 1st floor of the same building [6]. These
fine-grained and precise locations make individuals’ activ-
ity intentions and macro mobility regularity get less atten-
tion than the specific movement places. For instance, when
a user went into a business district, he was likely to visit sev-
eral separate places. However, these places did not form a
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fixed pattern and might be varied at different times. There-
fore, the clustering of check-in locations at different spatial
scales could help us learn more about individuals’ move-
ment regularity.

In this paper a grid-based clustering method is used to
generate the grid-based locations, which contains two pa-
rameters, namely the origin = (longo, lato) and spatial scale
s [17]. The origin is a given reference point to divide the grid
map and we set as (0, 0). The parameter s is a numeric value
used to specify the size of the grid cell. Suppose the grid cell
of a given map has a scale s, then the increment of adjacent
grid points differs by 0.001◦s in longitude or latitude. Every
check-in location corresponds to a grid cell. When the scale
is 0, the location of each check-in is the latitude and longi-
tude recorded in the original dataset. With the increase of
s, more and more original check-in locations are clustered
into a single grid cell. The location with larger scales is the
central point of the corresponding grid cell. When the scale
is 10, the size of each grid cell is approximately 0.9km2, or
that of a large commercial district.

Let U = {u1, u2, . . . , uN} be the set of users and L =
{l1, l2, . . . , lM} be the set of locations where N and M are the
numbers of users and locations respectively. Each check-
in action is represented as a tuple <ui, l j, tk> ∈ C, indicat-
ing user ui ∈ U checks in at location l j ∈ L at time tk,
where C is the observed check-in set. Let F (u) denote u’s
social friends. Let xu(t) ∈ L denote the geographic location
of user u at time t, Hu(t1, tn) = <xu(t1), xu(t2), . . . , xu(tn)>,
where xu(ti) ∈ L and t1 ≤ ti ≤ tn be the observed historical
location sequence of u between time t1 and tn, Su(t1, tn) =
{Hu f (t1, tn)|u f ∈ F (u)} be the observed location sequences
of u’s friends or potential similar users between time t1 and
tn.

4. Hybrid Markov Location Prediction Model Based
on Dynamic Social Ties

4.1 The Modified Cross-Sample Entropy

Due to individual’s sociality, his/her mobility patterns could
be inferred from the movement data of his/her friends. If
two individuals usually visit the same places or follow
the similar paths, they may have the similar life patterns
and each person’s movements could have a positive effect
on his friends’ behaviors. Existing methods for measur-
ing the similarity only consider the individuals who visit
the same places or have a meeting at the same places and
the similar time, which neglects the similar mobility pat-
terns among the visit histories of the user and his friends.
If two friends usually go through the similar location se-
quence, their future movements may produce more inter-
section. Hence, we define two users’ mobility similarity
using a modified cross-sample entropy (MCS) which do
not consider the difference between the different embed-
ding dimensions. The modified cross-sample entropy is an
effective technique for analyzing the degree of synchrony
between two related time series [18], [19]. Greater value

of MCS means the existence of some similar patterns in
the two time series. For the individuals who have sim-
ilar life style and preference, the modified cross-sample
entropy between their location sequences should be rela-
tively high. We present algorithm 1 to describe our modi-
fied cross-sample entropy’s detailed calculation steps, where
user u1’s location sequence between time t1 and tn1 isW =

Hu1 (t1, tn1 ) = <xu1 (t1), xu1 (t2), . . . , xu1 (tn1 )>, u2’s location
sequence between time t1 and tn2 is V = Hu2 (t1, tn2 ) =
<xu2 (t1), xu2 (t2), . . . , xu2 (tn2 )>, the embedding dimension is
m (the length of vectors to be compared) and the similarity
tolerance is r (the tolerance for accepting matches, which
limits the maximum distance between the corresponding lo-
cations).

Algorithm 1: The calculation steps of the modified
cross-sample entropy

(1) n1 − m + 1 vectors Wm
i = <xu1 (ti), xu1 (ti+1), . . . ,

xu1 (ti+m−1)> and n2 −m+ 1 vectorsVm
j = <xu2 (t j), xu2 (t j+1),

. . . , xu2 (t j+m−1)> are extracted from location sequence W
andV respectively.

(2) The distance between vectorWm
i and its neighbors

Vm
j is defined as d[Wm

i ,Vm
j ] = max{gd[xu1 (ti+k), xu2 (t j+k)] |

0 ≤ k ≤ m − 1, 1 ≤ j ≤ n2 − m + 1, i � j, |i − j| ≥ m}, where
gd[xu1 (ti+k), xu2 (t j+k)] is the ground distance between their
corresponding representative point of locations xu1 (ti+k) and
xu2 (t j+k).

Suppose that x1 = (Lon1, Lat1) and x2 = (Lon2, Lat2)
are two GPS locations and Lon and Lat are the longitude
and latitude in degrees. The ground distance between the
locations x1 and x2 is defined as [20]:

A = sin(Lat1)∗sin(Lat2)∗cos(Lon1−Lon2)+cos(Lat1)∗
cos(lat2)
gd[x1, x2] = R ∗ Arccos(A)
Where R is the average radius of the earth and the value

of R is 6371.004 km.
(3) Let MCS i(m, r) = (number of 1 ≤ j ≤ n2 − m + 1

such that d[Wm
i ,Vm

j ] ≤ r, i � j, |i− j| ≥ m)/(n2−m+1) be the
ratio of the number of d[Wm

i ,Vm
j ] ≤ r to the whole number

of vectors n2 −m+ 1, in which |i− j| ≥ m is the Theiler win-
dow [21] and removes the contribution of the close location
vectors as a result of temporal correlation.

(4) Then define MCS <W,V>(m, r) =
∑n1−m+1

i=1 MCS i(m,r)
n1−m+1 .

4.2 The Dynamic Changes of Social Ties

Due to the fact that users are more likely to visit places that
their friends visited in the past, we could obtain a better pre-
dictive performance by virtue of the movement data of their
friends or similar users who share similar interests, locations
and travel sequences. The strength of social ties between the
user and his friends changes with time and the changes usu-
ally reflect in two aspects:

(1) The relationships vary with the absolute time. The
social interactions between two friends usually experience
several stages, for example building, enhancing, weakening
or disappearing. The relationships between two individu-
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als are in different stages at different times. For example,
when the user u meets an individual u1 a few days, their re-
lationship is relatively close, but as more new friends join
in u’s social circle, u might reduce or strengthen the inter-
actions between u1. Therefore, using the movement data of
the user’s social friends who has closest interactions during
different time periods could obtain better predictive perfor-
mance. This paper uses week as the division scale of the
absolute time.

(2) The relationships vary with different time slices.
Individuals’ social interactions not only contain different
stages but also vary in different mappings of the relative
time, for example the time could be projected down to each
day of the week, each hour of the day, the workdays and
weekends, etc. Nathan presented the social connections are
concentrated on colleagues’ traditional behaviors at work.
While on weekends the individuals may do activities with
their family or the friends who have similar interests [11].
Hence, the mapping of the relative time could distinguish
the similarities between the user and his friends according
to the user’s movement features and preferences. This paper
will project the time to workdays and weekends.

As the influences of social ties on user’s movement do
not always show up as the simultaneously visiting at the
same location, the user may pay attention to the locations
that their friends recommended and visited in the past. The
similar behaviors between the user and his friends not only
occur at the same time period, when calculating the strength
of the social ties between user u and his friend u1 at a cer-
tain time period between t1 and tn, we compare the move-
ment data of u1 at that time interval with the movements of
u before time tn.

4.3 Hybrid Markov Model Based on Dynamic Social Ties

Order-k Markov model is a very popular model to pre-
dict the individual’s next location. Among those, Markov
model is easy-implemented and effective method. In this
paper, Markov model is used to be a base model and We
will discuss the performance of Order-k Markov in the fu-
ture. Markov model could be used to describe dynamic
changes in user’s movement behaviors, which considers that
the current motion state depends only on the previous mo-
tion state. Markov model is a probabilistic automation in
which states represent individual’s historical locations and
the transition matrix describes the probabilities of partic-
ular transitions between states. Given a series of histori-
cal visits, the locations L = {l1, l2, . . . , lM} correspond to
the states EL = {E1, E2, . . . , EM} of Markov model and the
movements between locations could be used to calculate the
transition matrix between states.

We propose a hybrid Markov location prediction model
based on dynamic social ties (HM-DST) to integrate user’s
personal and social movement data. Let Hu(t1, tn) =
<xu(t1), xu(t2), . . . , xu(tn)> be user u’s observed historical
location sequence between time t1 and tn and Su(t1, tn) =
{Hu f (t1, tn)|u f ∈ F (u)} be the observed location sequences

of u’s friends between time t1 and tn. We present algorithm
2 to describe the processes of building the model HM-DST.

Algorithm 2: hybrid Markov location prediction model
based on dynamic social ties

(1) In order to reflect the dynamic changes of the so-
cial ties between the user u and his/her friends F (u), the
historical location sequences of u and F (u) are segmented
into several location subsequences based on the time divi-
sion. For the time interval [t1, tn], it could be described as
a concatenation of a series of time slices. That is, [t1, tn] =⋃T

k=1(ts
k,workdays, t

e
k,workdays)∪(ts

k,weekends, t
e
k,weekends), where T =

	(tn − t1)/7
 is the total week number between t1 and tn,
ts
k,workdays and te

k,workdays are the start time and end time of the
working days on the k-th week respectively, ts

k,weekends and
te
k,weekends have the similar definitions. Therefore, user u’s lo-

cation sequence Hu(t1, tn) could be expressed asHu(t1, tn) =⋃T
k=1Hu(ts

k,workdays, t
e
k,workdays) ∪Hu(ts

k,weekends, t
e
k,weekends).

(2) For evaluating the influence of friends’ movements
on user u’s mobility behaviors in different time intervals,
we apply the modified cross-sample entropy to quantify
the similarities between friends’ movements during differ-
ent time periods and u’s historical movements. The modified
cross-sample entropy between the location subsequences of
the user and his/her friends is larger and the mobility sim-
ilarities between the user and his/her friends is higher, and
the effect on the user’s movements is stronger. Suppose that
friend uf ’s location subsequence on the workdays of the
k-th week is W f (k, workdays) = Hu f (t

s
k,workdays, t

e
k,workdays)

and the historical location subsequence of user u on
the workdays before k-th week is V(k, workdays) =⋃k

j=1Hu(ts
j,workdays, t

e
j,workdays), the standardized movement

similarity between u f and u during time ts
k,workdays

and te
k,workdays is defined as S im<u f ,u>(k, workdays) =

MCS <W f (k,workdays),V(k,workdays)>(m,r)
∑|F (u)|

j=1 MCS <W j(k,workdays),V(k,workdays)>(m,r)
.

Because we assume the current motion state depends
only on the previous motion state, the embedding dimension
m is set as 2 and the value of r is determined according to
the selection of spatial scale s.

(3) In order to reflect the different importance of per-
sonal motion and friends’ movements for building the lo-
cation prediction model, we use an parameter η ∈ [0, 1] to
control the weights between historical and social ties. A
location sequences cluster composed by user u’s personal
historical location sequence Hu(t1, tn) and friends’ location
subsequences set {Hu f (t

s
k,w, t

e
k,w)|u f ∈ F (u), 1 ≤ k ≤ T, w ∈

{workdays, weekends}} are used as input to build a hybrid
Markov location prediction model based on dynamic so-
cial ties (HM-DST). In order to distinguish the contribu-
tions of different location subsequences of u’s friends to u’s
potential mobility behaviors, we assign a weight (1 − η) ×
S im<u f ,u>(k, w) to the location subsequence Hu f (t

s
k,w, t

e
k,w).

Therefore, the state space of HM-DST is constitute of the
states {E1, E2, . . . , EM} which direct to the locations L =
{l1, l2, . . . , lM} and the transition probability between state
Ei and E j can be calculated by
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PHM−DS T
i j =

η×Nu(i, j)+(1−η)∑u f ∈F (u) WNu f (i, j)

η
∑M

q=1 Nu(i,q)+(1−η)∑u f ∈F (u)
∑M

q=1 WNu f (i,q)

WNuf (i, j) =
∑
w∈{workdays,weekends}

∑T
k=1 S im<u f ,u>(k, w)

× Nuf ,<k,w>(i, j)
Nu(i, j) = (number of moving from the location li to l j

in u’s location sequenceHu(t1, tn))
WNuf (i, j) = (weighted number of moving from the lo-

cation li to l j in u f ’s location subsequences set)
Nuf ,<k,w>(i, j) = (number of moving from the location li

to l j in u f ’s location subsequenceHu f (t
s
k,w, t

e
k,w))

Consequently, given the hybrid Markov location pre-
diction model based on dynamic social ties and user u’s last
location xu(tn) = li, the predictive probability of the next
check-in at location l j is defined as

PHM−DS T
u (xu(tn+1) = l j|xu(tn = li)) = PHM−DS T

i j
The next check-in location is predicted to be the lo-

cation l that has the maximum transition probability from
location li.

5. Experiments

5.1 Evaluation Metrics

Let X = <xu(t1), xu(t2), . . . , xu(tn)> denote an user u’s ob-
served location sequence, and X∗ = <x∗u(t1), x∗u(t2), . . . ,
x∗u(tn)> be the predicted location sequence by our hybrid
Markov location prediction model based on dynamic social
ties. We divide the location sequence of each user into 10
parts, and each part has approximately equal visit time. Let
the time stamp at the end of each part be {T1,T2, . . . ,T10}.
We predict the locations at each part for the user, with his
historical visits before that time as observed context. In ad-
dition, we put at least 10% of visits in the training set, so the
comparisons of prediction results start from T2.

To measure the predictive performance of different mo-
bility models, we use the prediction accuracy (PA) as the
evaluation metric. The prediction accuracy for user u at
part T (i) is defined as PA(T (i)) =

∑
T (i−1)<ti≤T (i) I(xu(ti) =

x∗u(ti))/(check-in times between T (i− 1) and T (i)), where I()
is the Boolean indicator function that returns 1 if its argu-
ment evaluate to true and returns 0 otherwise.

5.2 Baseline Model

To evaluate the effectivity of our HM-DST model and other
social prediction models, we choose four baseline mod-
els with detailed descriptions below: X = <xu(t1), xu(t2),
. . . , xu(tn)> is the set of visiting history and xu(tn) and
xu(tn+1) are individual’s last visit location and next visit lo-
cation.

1) Markov Model (Markov)
The Markov model considers the latest visited place

as context, and searches for the most frequent patterns to
predict the next location. The probability of the next visit
xu(tn+1) at location l with Markov model is defined as:

PMarkov
u = PMarkov

u (xu(tn+1) = l|xu(tn) = lk)

=
|xu(tr)|xu(tr) ∈ X, xu(tr) = l, xu(tr−1) = lk |

|xu(tr)|xu(tr) ∈ X, xu(tr−1) = lk |
2) Markov model with cosine similarity (Markov-Cos)
The Markov model with cosine similarity considers not

only the user u’s personal movement data, but also the move-
ments of friends with correlated mobility patterns (char-
acterized by high cosine similarity). The parameter η is
used to control the weight between historical and social ties.
The probability of the next visit xu(tn+1) at location l with
Markov-Cos is defined as:

PMarkov−Cos
u (xu(tn+1) = l|xu(tn) = lk)

= ηPMarkov
u + (1 − η)

∑

u f ∈F (u)

S imCos(u, u f )P
Markov
u f

where S imCos(u, u f ) is the cosine similarity between u and
u f . For each user, let v ∈ RM be his visits vector with each
element v(k) equal to the number of visits at location lk ∈ L,
where M = |L| is the vocabulary size. The cosine similarity
of two users u and uf is defined as:

S imCos(u, u f ) =
v.v f

|v|2 × |v f |2
where |.|2 is the 2-norm of a vector.

3) Markov model with mutual information similarity
(Markov-MI)

The Markov model with mutual information similar-
ity also considers the movements of friends and quantify
the correlation of two mobility trace by mutual information.
The probability of the next visit xu(tn+1) at location l with
Markov-MI is defined as:

PMarkov−MI
u (xu(tn+1) = l|xu(tn) = lk)

= ηPMarkov
u + (1 − η)

∑

u f ∈F(u)

S imMI(u, u f )P
Markov
u f

where S imMI(u, u f ) is the mutual information similarity be-
tween u and u f . Suppose that X and Y are the visits his-
tory of user u and u f , random samples x drawn from X and
y drawn from Y correspond to the geographic coordinates.
The Probability Density Functions (PDF) of x PX(x) repre-
sents the fraction of the times visited by user u in a partic-
ular position x. PY (y) is the PDF of y which measures the
fraction of the times visited by the user uf in a particular
position y and PXY (x, y) is the joint probability. The mutual
information I(X,Y) is defined as:

I(X,Y) =
∑

x∈X

∑

y∈Y
PXY(x, y)log

PXY(x, y)
PX(x)PY(y)

4) Markov model with the modified cross-sample en-
tropy similarity (Markov-MCS)

The Markov model with our modified cross-sample en-
tropy similarity also consider the movements of friends and
quantify the correlation of two mobility trace by the modi-
fied cross-sample entropy. The probability of the next visit
xu(tn+1) at location l with Markov-MCS is defined as:
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PMarkov−MCS
u (xu(tn+1) = l|xu(tn) = lk)

= ηPMarkov
u + (1 − η)

∑

u f ∈F (u)

S imMCS (u, u f )P
Markov
u f

where S imMCS (u, u f ) =
MCS <Hu(t1 ,tn),Hu f (t1 ,tn )>(m,r)

∑
uq∈F (u) MCS <Hu(t1 ,tn),Huq (t1 ,tn )>(m,r)

5.3 Performance Evaluation

5.3.1 Prediction Performance vs Spatial Scale and Simi-
larity Tolerance

We first study the effects of the prediction accuracy with dif-
ferent spatial scales s and the similarity tolerance r. When s
is large, many original GPS locations may be included in
a single grid cell. With the increase of s, the prediction
locations will become larger and a lower number of loca-
tions could be obtained. So the prediction accuracy would
be improved. Moreover, the location sequences which are
not similar on the small spatial scale may become the same
patterns on larger s. As seen in Fig. 1, when r = 0, the
prediction accuracy of s = 20 obtains a 11% and 4% im-
provements than that of s = 0 and s = 10.

We also investigate the effects of the similarity toler-
ance r. When r is large, some location sequences which
have the long distances would be treated as the similar loca-
tion sequences. So the movements of the unfamiliar friends
may produce a great impact to the user, which reduces the
predictive performance. From the Fig. 1, we can see that
the prediction accuracy increases at first and then decrease.
When s = 10 and 20, The figures reach a peak at about
100∗ s. That is because each grid cell is almost 100m. When
the spatial scale is s and the maximum distance of two loca-
tion sequences is smaller than the length of the grid cell, the
two location sequence are similar and the movement history
of his friend would make a positive effects to the user’s lo-
cation prediction. However, if the spatial scale is 0, the pre-
diction accuracy will obtain the best performance when the
r is about 100m. the location sequences of the user and his
friend will be matched when the latitudes and the longitudes
of the two location sequences are exactly the same, which
could neglect the randomness of the movements. Hence, in
the next experiments, we set r = 100 ∗ s when s > 0 and
r = 100 when s = 0.

5.3.2 Comparing with Personal Mobility Model and Other
Social Models

We compare the prediction results of hybrid Markov loca-
tion prediction model based on dynamic social ties (HM-
DST) with Markov model and some social Markov mod-
els, for example, Markov-Cos which measures the strength
of social ties by cosine similarity, Markov-MI which uses
mutual information to quantify the similarity, Markov-
MCS which applies our modified cross sample entropy but
not considers the dynamic changes. Figure 1 shows the
prediction accuracy of Markov, Markov-Cos, Markov-MI,

Fig. 1 The prediction performance changes with different spatial scales
s and similarity tolerances r

Markov-MCS and HM-DST changes with the fraction of
training set when η = 0.5 and the spatial scale s is set as
0, 10 and 20.

From Fig. 2 (a), we can see HM-DST model performs
the best with an average accuracy of 50% and Markov model
performs the worst. The social Markov model can ob-
tain more than 3% prediction accuracy than Markov model
which doesn’t consider the social ties. Markov-Cos model
and Markov-MI model get similar predictive performance.
Markov-MCS provides 2% improvement over Markov-Cos
model and Markov-MI model. That is because the modi-
fied cross-sample entropy can be more effective in measur-
ing two users’ mobility similarity. HM-DST model consid-
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Fig. 2 The prediction accuracy comparison of HM-DST, some social
models and Markov model with s = 0, s = 10 and s = 20

ers the dynamic social ties, which obtain a 15% improve-
ment than Markov-MCS model, a 17% improvement over
Markov-Cos model and Markov-MI model, and a 20% in-
crease than Markov model. The usages of dynamic social
ties and the modified cross-sample entropy could increas-
ingly improve the prediction accuracy. From Fig. 2 (b) and
(c), we can see the similar changing trend with (a), but the
improvements of predictive performance when s = 10 and
20 are smaller than s = 0. When increasing the spatial scale,
the transitions between different check-in locations might be
treated as the same mobility patterns, which could enlarge
the movement similarities between some dissimilar friends
and block the improvement of the predictive performance

Fig. 3 The performance changes with η when s = 0, s = 10 and s = 20

when considering the friends’ movements. Overall, HM-
DST model could provide considerable improvement than
Markov model and other social Markov models.

5.3.3 Adjusting the Weight between Historical and Social
ties

To investigate the contribution of social ties and historical
ties in affecting user’s behaviors, we increase the parameter
η from 0 to 1 with an increment step of 0.1 and observe the
prediction performance at each η. We only show the pre-
diction accuracy at parts T3, T5 and T8 in Fig. 3, since the
similar performance can be observed at other parts. When
η = 0, HM-DST model just considers social ties. Its perfor-
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mance is always worst, suggesting that considering social
information only is not enough to capture the individual’s
behaviors. By increasing η, the performance first increases
to the peak and then decrease, but the variation between 0.1
and 0.9 is small. The prediction accuracy remains stable
when η is between 0.5 to 0.8. When η = 1, HM-DST model
converts to the Markov model, which only considers the his-
torical movements. Its performance is not the best and have
a 20% decrease than the predictive accuracy of HM-DST
model when s = 0, which indicates the social ties are also
important and beneficial to the location prediction.

6. Conclusions

In this paper, a hybrid Markov location prediction algorithm
based on dynamic social ties is presented. Firstly, according
to the time division, the movements of the user and his/her
friends are segmented to find the changes of the social circle
in different time slices. Secondly, the movement similari-
ties between user’s historical movements and friends’ seg-
mented movements during different time periods are quanti-
fied by a modified cross-sample entropy. Finally, the user’s
historical movement data and his friends’ movements at dif-
ferent times which are assigned with the similarity weights
are combined to build an HM-DST. The experiments based
on Brightkite dataset show the HM-DST model could pro-
vide a 15% improvement over the location predictors with-
out considering the dynamic social ties when using check-in
locations.
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