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PAPER

Comparison of Backward Slicing Techniques for Java

Yu KASHIMA†a), Nonmember, Takashi ISHIO†b), Member, and Katsuro INOUE†c), Fellow

SUMMARY Program slicing is an important approach for debugging,
program comprehension, impact analysis, etc. There are various program
slicing techniques ranging from the lightweight to the more accurate but
heavyweight. Comparative analyses are important for selecting the most
appropriate technique. This paper presents a comparative study of four
backward program slicing techniques for Java. The results show the scal-
ability and precision of these techniques. We develop guidelines that indi-
cate which slicing techniques are appropriate for different situations, based
on the results.
key words: Program slicing, Static execution before, Improved slicing

1. Introduction

Program Slicing [1] is an analysis technique developers use
to extract statements related to a specific behavior of inter-
est. In particular, program slicing extracts a set of state-
ments that may affect the value of a variable in a developer-
specified statement. The set of statements extracted from
a program is called a program slice. Kusumoto et al. [2]
report that program slicing is effective for debugging tasks.
If a variable has an incorrect value, developers can use the
respective program slice to investigate program statements
that are likely to have output the incorrect value. In addition
to debugging, program slicing has been adopted by several
advanced analysis techniques, e.g., information-flow analy-
sis [3] and change impact analysis [4].

Program slices should be accurate, to ensure that de-
velopers can concentrate on the smallest number of state-
ments during their tasks. The System Dependence Graph
(SDG) [5] has been proposed to represent how statements
interact with one another in a program to compute a pro-
gram slice. A program slice is obtained by backward traver-
sal on an SDG from a vertex corresponding to a variable
in a specified statement. Although SDG cannot determine
the minimal program slice [6], several techniques have been
proposed to approach it. For example, Allen et al. pro-
pose representing exception handling in SDG [7]. SDG has
also been extended to represent Java language constructs [8]
and data-flow via fields of objects [9]–[11]. The accuracy
of SDG data-flow information depends on the underlying
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points-to analysis accuracy, e.g., set-based [12], [13], object
sensitive [14], and hybrid context sensitive analysis [15].

Today, not only accuracy, but also scalability is im-
portant. Acharya et al. [4] combine a lightweight pro-
gram slicing technique with an accurate one for change im-
pact analysis, because the accurate technique is very time
consuming. Studies [16], [17] propose Static Execute Be-
fore/After analysis to alternate program slicing. The analy-
sis depends on only a control-flow graph, instead of a tra-
ditional SDG. Consequently, Static Execute Before/After
analysis is lightweight and scalable, though less accurate
than a SDG-based technique. Beszedes et al. [17] report
that the technique is useful for impact analysis.

Tailoring program slicing for developers’ and re-
searchers’ needs is an important issue. Java is the most
popular programming language, in both open source [18]
and industrial software development [19]; however, accu-
racy and scalability of Java program slicing techniques have
not yet been investigated. Binkley et al. [20] evaluate pro-
gram slicing for C/C++. They compare slices obtained with
various configurations of CodeSurfer [21]. Jasz et al. [16]
compare static execute before analysis and program slicing
for C/C++. Beszedes et al. [17] compare static execute
after analysis with forward program slicing in C/C++ and
Java. They did not include a simple backward program slic-
ing technique and static execute before analysis for Java,
in the comparison. Moreover, improved slicing [11], an ad-
vanced slicing technique for Java, has not been evaluated
with practical applications.

One of the key differences of Java and C/C++ is
method parameters. Java only supports call-by-value pa-
rameter, while C/C++ has both call-by-value and call-by-
reference parameter. As a result, a parameter cannot be
used as output directly in Java. Instead of call-by-reference
parameters, fields of objects in a parameter are often used.
Therefore, in Java analysis, treatment of a field is more im-
portant than that in C/C++. The other key difference is a
treatment of virtual method call. A method call in Java is
implicitly treated as a virtual method call, while a virtual
method call in C/C++ is used only if the called method is de-
clared as virtual method. Consequently, conservative analy-
sis to resolve frequent virtual method calls may increase the
size of program slices. Furthermore, Java includes several
dynamic features such as reflection. These language differ-
ences may cause the difference between the slicing results
of Java and C/C++.

We compared slicing techniques through Java program
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analysis, to answer the following research questions.

RQ1. How accurate and scalable are slicing techniques
compared to each other?

RQ2. Which slicing technique is most appropriate in spe-
cific situations?

Our analysis compared four slicing techniques as fol-
lows.

Static Execute Before (SEB) (See Sect. 2.1 for details): A
lightweight technique based on control-flow analysis.
Given a program statement, SEB extracts statements
that may be executed before an execution of the state-
ment which is completed. This approach is proposed
as a replacement of program slicing [16]. Although
SEB is context sensitive and never lost dependences,
this technique has potential incorrectness caused by ig-
noring data dependences.

Context-insensitive Slicing (CIS) (Sect. 2.2): A simple pro-
gram slicing technique [20], based on control-dependence
and data-dependence analysis with a SDG which data
dependence edges directly connects vertices represent-
ing field read/write statements instead of making trees
of fields. CIS extracts statements that may affect the
execution of a given statement. CIS covers all possible
data-flow paths, and therefore may include infeasible
control-flow paths.

Intersection of SEB and CIS (HYB) (Sect. 2.3): An im-
provement of the two aforementioned techniques by
combining these techniques. HYB extracts an intersec-
tion of the statements extracted by both SEB and CIS,
and excludes infeasible paths from CIS. This is natu-
ral improvement but is not evaluated. Therefore, we
introduced this technique for comparison.

Improved Slicing (IMP) (Sect. 2.4): A sophisticated pro-
gram slicing technique for Java [11]. This is an ex-
tended version of traditional program slicing tech-
nique [5] in order to precisely analyze Java. This tech-
nique analyzes the data structure of objects and how
objects are manipulated in feasible control-flow paths.
It is expected to extract a more accurate program slice
than the other techniques. However, it is also expected
that the analysis cost is higher than the others. The ac-
tual precision and scalability of IMP in Java is unclear.

Note that our comparison focuses on strategies to rep-
resent a program as a graph, rather than the accuracy of the
underlying analysis techniques, such as points-to analysis,
because all four methods can use the same analysis tech-
niques as infrastructure.

We apply the four program slicing techniques to six
applications in DaCapo Benchmarks [22], in the compari-
son. We investigated scalability with two configurations:
Application separate from the library, and the whole sys-
tem including the library. We analyzed only an application
with the former configuration, by approximating control-
flow and data-flow information in the library. We analyzed
all the control-flow and data-flow paths in both the applica-

tion and the library with the latter configuration.
In addition, we investigated the scalability of IMP in

detail since IMP could not analyze the whole system in the
above experiment. We prepared various analysis configu-
rations using the six applications and sub packages in java
and javax packages. We measured the analysis time and the
analyzability by performing SDG construction of the con-
figurations.

The rest of the paper is organized as follows. Section 2
presents the concepts of the four program slicing techniques.
Section 3 explains the implementation details of our slic-
ing tool. Section 4 describes the experiment using the tool.
Sections 5 and 6 discuss the results and the threats to valid-
ity, respectively. Section 7 explains related work. Finally,
Sect. 8 describes conclusions and future work.

2. Slicing Techniques under Evaluation

This section introduces the basic ideas of the four slicing
techniques compared in this study. All four techniques ex-
tract a program slice in two steps: Graph Construction, and
Graph Traversal. Each technique constructs a graph repre-
sentation of a target program, in the graph construction step.
A slice for a given program element is extracted by graph
traversal, in the graph traversal step. After a graph is con-
structed once, all slices can be extracted from that graph.

Table 1 shows an example used in the following sub-
sections to explain the differences among the techniques. Its
source code column shows an example program. The main
method of the program is located on line 2. It calls four
methods init, pass, sum, and mult in sequential order.
Two of the methods, sum and mult, call the same method
foo. Note that the init method creates values for the sum
and mult methods. The pass method does nothing for the
other methods.

The right columns of Table 1 shows the slicing results
by each slicing technique for comparison in the following
subsections. The top row of the columns shows the slic-
ing technique. The second row shows the criteria: y and z
are variables in line 5 and 6, respectively. Each cell shows
whether the slice includes the corresponding line or not. If
a cell includes a check mark, the slice includes the corre-
sponding line. For example, the slice of SEB with respect to
the slicing criterion y includes lines 3, 4, and 5 in main, and
all lines in init, pass, sum, and foo.

2.1 SEB: Static Execute Before

SEB [16] extracts statements that may be executed before
the statement of interest execution is completed. SEB uses
a control-flow graph for each method and a call graph for a
target application. Given a program statement in a method,
SEB identifies call sites that may directly or transitively in-
voke the method that includes the statement. Then, SEB
identifies other statements, using graph traversal on control-
flow graphs. SEB also identifies statements in methods that
may be invoked before the given method. SEB extracts
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Table 1 Example of source code and its slicing results.

SEB CIS HYB IMP SEB CIS HYB IMP
Line Source code Criteria : y at line 5 Criteria : z at line 6

1 class Main {
2 public static void main(String[] args) {
3 A a = init(); � � � � � � � �
4 pass(); � �
5 int y = sum(a); � � � � � � �
6 int z = mult(a); } � � � � �
7 static A init() {
8 A a = new A(); � � � � � � � �
9 a.x = 1; � � � � � � � �

10 return a; } � � � � � � � �
11 static void sum(A a) {
12 l = a.foo() � � � � � � �
13 return 1 + l; } � � � � � � �
14 static int mult(A a) {
15 l = a.foo() � � � � �
16 return 10 * l; } � � � � �
17 static void pass() { return ; } � �
18 }
19 class A {
20 int x;

21 int foo() { return this.x } } � � � � � � � �

statements that may affect a given statement. Hence, it can
be seen as the most lightweight variant of program slicing.

For example, if y in the line 5 is selected to compute a
slice, the result includes lines 3, 4, 5 and also lines with the
methods init, pass, sum, and foo, as shown in Table 1.
The methods sum and foo are included because the variable
y on line 5 is returned from sum, and the method calls foo.
While foo is called from both sum and mult, mult is not
included in the result, because the call site is not executed
before line 5.

2.2 CIS: Context-Insensitive Slicing

CIS extracts statements that may affect the execution of a
given statement. CIS is based on the context insensitive
slicing technique implemented in CodeSurfer [21] which is
evaluated in the study of Binkely et.al.[20]. Similar to tradi-
tional program slicing, CIS makes SDG. The vertices repre-
sent statements in the program, and edges represent control
dependence and data dependence in the program. CIS ex-
tracts a program slice with backward traversal from vertices
that correspond to a selected statement.

Control dependence represents the effect of control
statements (e.g., if statements), while control-flow repre-
sents only the order of execution sequence. Data depen-
dence represents the def-use relationship of variable. SDG
represents data flow relationships with vertices that repre-
sent formal parameters of the method and actual arguments
of the method call. Parameter-in/out edges connect vertices
for parameters, according to method call relationships. If a
method call instruction is a virtual method call, firstly, a pos-
sibly callable methods from the call instruction are extracted
using with a points-to analysis result. Next, call edges and
parameter-in/out edges are drawn between the call instruc-
tion and all callable methods.

We extend SDG of the context insensitive slicing tech-
nique [21], to represent data dependence of object fields and
class variables, to compute a program slice for Java. An
SDG has a data dependence edge for a field access between
statements s and t, if s writes a field of an object and t may
read the field of the object. Points-to analysis is used to
check whether the two statements may have accessed the
same object or not. Similarly, a data dependence edge exists
between statements s and t if s writes a class variable and t
reads the class variable.

Note that these data dependence edges for fields and
class variables are potentially context-insensitive because
these edges ignore method call relationship. As a result,
performing context-insensitive slice rather than context-
sensitive slice is required for keeping soundness of the slic-
ing result.

Figure 1 is an excerpt of an SDG representing the pro-
gram in Table 1. A vertex with a label that is a method name
represents a method entry vertex. A vertex with a label that
is a digit represents a statement. A rectangle vertex, with a
label that is a parameter name, represents a formal parame-
ter. A data dependence edge, from line 9 to line 21, shows
data dependence through field x. If a developer selects vari-
able y on line 5, CIS would extract lines 3, 5, and 6 in the
main method, and lines in the sum, foo, init, and mult
methods. This is because vertices corresponding to those
lines are reachable from the vertex corresponding to line 5.
As shown in Table 1, compared to the SEB of y, CIS ex-
cludes the line 4 and pass which are executed before line 5
but do not have data/control dependence on line 5.

One of the shortcomings of CIS is that it may include
infeasible control-flow paths. An inter-procedural path is
feasible if a method call in the path corresponds to a method
return in the path. A control-flow path through lines 12, 21,
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Fig. 1 SDG for CIS.

and 12 is feasible, because it starts from a method call and
correctly returns to the call site. On the other hand, a path
through lines 15, 21, and 12 is infeasible, because it goes to
another call site. Including mult in the slice of CIS for y
would be caused by traversing this infeasible path.

2.3 HYB: Context-Insensitive Slicing with Static Execu-
tion Before

HYB extracts an intersection of statements obtained by SEB
and CIS. As mentioned above, CIS for y includes mult as
a false positive, even though mult is never called before
line 5. HYB combines SEB and CIS to remove such in-
feasible statements from the result of CIS, by computing an
intersection of the SEB and CIS results.

As shown in Table 1, a slice for y in line 5 includes
lines of sum, foo, and init, while it excludes pass and
mult. The result is just an intersection of the result of SEB
for y and that of CIS. As a result, the result of HYB is im-
proved by either of the two techniques.

2.4 IMP: Improved Slicing

IMP [11] extracts statements that may affect the execution of
a given statement, similar to CIS. For C/C++, Liang et al.[9]
extended traditional program slicing [5] to handle fields of
objects. IMP is a further extension of field handling for
precise analysis of Java. IMP regards all fields accessed
by a method as arguments of the method, instead of edges
directly connecting field access between methods. This
representation reflects how fields are manipulated through
control-flow paths. Similar to CIS, if a method call instruc-
tion is a virtual method call, call edges and parameter-in/out
edges are drawn between call instruction and all callable
methods.

IMP represents fields of a parameter as a tree. Let r.f
is a receiver object r and a field f, p(r) is points-to set of r.
A vertex representing field f is added as a child of a vertex
representing r if a vertex representing r’ which points-to
set p(r’) is equal to p(r) does not exist in the pass from
root to r. As a result, a tree made by IMP’s approach has
at least one vertex representing accessed field. Additionally,
IMP’s approach can handle recursive structure distinguish-
ing their points-to sets. Whereas the existing technique [9]

stops expansion of a field tree at a specific level given by
a parameter in order to avoid infinite expansion of a recur-
sive data structure, IMP uses points-to information to stop
infinite expansion.

A program slice is extracted by backward two-phase
slicing [5], which avoids inter-procedural infeasible paths.
For two-phase slicing, summary edges are prepared. A
summary edge connects an actual-in vertex to an actual-
out vertex if the actual-out vertex depends on the actual-
in vertex. After building summary edges, two-phase slic-
ing is performed. The first phase of two-phase slicing per-
form backward traversal from a given criteria along data
dependence edges, control dependence edges, call edges,
summary edges, and parameter-in edges, but not along
parameter-out edges. The second phase slicing perform
backward traversal from all actual-out vertices visited in
first phase along data dependence edges, control depen-
dence edges, summary edges, and parameter-out edges, but
not along call edges and parameter-in edges.

Figure 2 shows SDG for IMP, for the source code in Ta-
ble 1, with omitted vertices that represent actual arguments
and summary edges [23]. Vertices that represent parame-
ters not only have argument/parameter variable vertices, but
also have field vertices. For example, vertex 10, which is
the statement vertex and also formal-out vertex of init, has
field vertex x, because the variable a returned in line 10 has
a field x. Similarly, formal-in vertices of sum, mult, and
foo have x as field vertices.

Figure 3 shows the subgraph of SDG for line 5 and
sum including omitted vertices in Fig. 2. Line 5 has the
call instruction of sum which has argument a and returned
value assigning to y. SDG in Fig. 3 has vertices of a and
$Actual-out which correspond to the argument and the
returned value respectively. Additionally, the SDG has a
vertex x which represents a field x of the argument a.

A red dashed line in Fig. 3 shows a summary edge. In
an execution of sum, parameter a is used as receiver object
of call foo in line 12, and then a field x of a is used for
return value of foo. The returned value of foo in line 12 is
used for return value of sum in line 13. As a result, argument
a and x has transitive dependences for return value of sum.
Therefore, summary edges connect a vertex a and a vertex x
to a $Actual-out vertex. Similar to the subgraph for line 5,
subgraphs for lines 3, 12, and 15 have actual-in/out vertices
and summary edges.

If the variable y on line 5 is selected, IMP performs
two-phase slicing as follows: Firstly, first phase visits
actual-out vertex of call sum via data dependence edge, and
then actual-in vertices of call sum via summary edges, and
more. As a result, first phase visits vertices of line 5 and line
3 including actual-in/out vertices. Second phase starts from
actual-out vertices of line 5 and 3, and visits sum, foo, init
via any edges except call and parameter-in edges. As a re-
sult, IMP extracts line 3, line 5, sum, foo, and init. Note
that this result is the same as the result of HYB as shown in
Table 1. HYB is effective in the case that SEB can remove
infeasible path from the result of CIS.
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Fig. 2 SDG for IMP.

Fig. 3 Subgraph of SDG for line 5.

On the contrary, if the variable z on line 6 is selected,
IMP extracts line 3, line 6, and mult, foo, and init. Ta-
ble 1 shows that this is more precise than HYB, because
HYB extracts sum in addition to the three other methods,
because sum is executed before mult, and sum is reachable
from mult, via an infeasible path in SDG.

2.5 Comparison of Graph Construction Process

Those four slicing techniques call both graph construction
and control-flow analysis. SEB computation requires only
the results of these analyses. CIS, HYB, and IMP all re-
quire additional processes, which include points-to and con-
trol/data dependence analyses. After that, SDG for CIS and
HYB is constructed by making a traditional SDG and the
connecting field/class variable. On the other hand, SDG for
IMP is constructed by building a field tree of each argument
and parameter, making the vertices and edges like in tradi-
tional SDG, and then computing the summary edges [23].

3. Implementation

We implemented four slicing techniques that target Java
bytecode, because the bytecode is easier to analyze than the
source code. Moreover, there are tools for points-to anal-
ysis and handling reflection targeting bytecode. We use the
same points-to analysis and reflection handling process with
all four slicing techniques. Therefore, all of the techniques
under comparison use the same call graph and points-to in-
formation.

3.1 Points-to Analysis and Call Graph Construction

We used the Spark pointer analysis toolkit [24] with the
Soot framework [25] for points-to analysis and call graph
construction. Spark is implemented based on Andersen’s
points-to analysis algorithm [13], which is flow-insensitive,
context-insensitive analysis. This context insensitive algo-
rithm is good enough [26], because the slicing techniques
under comparison do not require explicit context sensitiv-
ity, such as object sensitivity [14]. We used the default
Spark configuration, the so called “on-fly-cg” and “field-
sensitive”, though Spark has many other options.

3.2 Handling Reflection

Reflection, which is a dynamic feature of Java, is the cause
of imprecision in static program analysis. We used Tam-
iFlex [27] to get the reflection result from a program exe-
cution. This tool can replace reflection method invocation
with concrete method invocation, observed during a target
program execution.

3.3 Approximation of Library

A slicing tool should analyze all methods reachable from
the main method of the program, including the library used
by the program, when computing a program slice. On the
other hand, libraries may consume time and memory space
for analysis, because class libraries, such as the JDK Plat-
form API, include a large number of classes, even though
most of them are not used by target programs. Additionally,
some library methods are unanalyzable, e.g., native meth-
ods and methods protected by software license. We used
the following approximations, to handle such unanalyzable
code.

First, we assumed that for each library the method
calls, the return value depends on the arguments. We con-
nected edges from vertices representing arguments to their
corresponding vertex representing the return value.

Secondly, we assumed that for collection classes (e.g.,
List and Map), method calls that modify a collection af-
fect method calls that refer to the collection content. We
manually listed methods such as add and put to modify a
collection. We regarded other methods as those that refer to
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content. We translated the former method calls into state-
ments, writing an artificial field representing collection, and
the latter method calls into statements reading the field.

Finally, we excluded the hashCode and equals meth-
ods of all classes from analysis, if collection classes were
not included in the analysis. This is because those methods
are usually called back from collection classes.

4. Experiment

4.1 Design and Analysis Target

The goal of this experiment was to evaluate and compare
scalability and accuracy of four slicing techniques. We mea-
sured the time required to construct an SDG and the size of
the SDG, to analyze scalability. We measured the ratio of
instructions included in a slice against the instructions in a
target program, to analyze accuracy.

We analyzed six applications in DaCapo Benchmarks
(version 9.12) [22]. DaCapo Benchmarks is a collection of
real Java applications, with their execution scenarios. The
six applications we used are avrora, batik, h2, luindex, pmd,
and sunflow. Table 2 shows the size of the applications
based on the number of methods that are reachable from
their main methods. The table shows the number of classes,
which includes reachable methods, the number of reach-
able methods, and the number of bytecode instructions in
reachable methods. The columns “APP” and “LIB” show
the numbers of classes/methods/instructions for application
classes and library classes, respectively. We regard classes
in the following packages as library classes: java.*, javax.*,
sun.*, com.sun.*, com.ibm.*, org.xml.*, apple.awt.*, and
com.apple.*. We obtained this list of packages from a Tam-
iFlex document†.

First, we executed the default application execution
scenarios with TamiFlex, to record invoked methods by re-
flection. Next, Soot performed points-to analysis and call
graph construction, with the output of TamiFlex. We con-
structed an SDG based on this information. A slicing crite-
rion is a vertex in the SDG that corresponds to a bytecode in-
struction in APP. We performed backward slicing with each
slicing criteria, and then measured the size of each slice.

We compared the relative slice sizes against an applica-
tion, because the four techniques define graphs differently.

Table 2 Size of analysis targets.

#Classes #Methods #Instructions
APP LIB APP LIB APP LIB

avrora 49 1,701 290 10,697 9,690 321,666
batik 146 4,133 674 26,459 26,336 769,825
h2 130 1,741 670 11,118 18,875 331,844

luindex 74 1,705 380 10,710 11,678 322,652
pmd 139 1,712 480 10,762 13,838 322,857

sunflow 58 3,751 331 24,144 11,786 684,263

†https://code.google.com/p/tamiflex/
wiki/DaCapoAndSoot

We computed slice size, as the ratio of the number of ap-
plication method instructions in the slice to the number of
application method instructions in the program.

We used two different configurations. The first was
Application separated from library, which analyzes appli-
cation classes with library approximation. The second was
the whole system including library that analyzes the whole
application and its libraries without approximation.

We used a machine with Windows 7 64bit, Intel Xeon
E5-2620 2.00GHz 2 processor CPU, and 64GB of RAM.

4.2 Result

4.2.1 Configuration 1: Application Separated from Li-
brary

Figure 4 shows the bar charts of the time required to con-
struct an SDG for each application. Note that HYB used
the same SDG as CIS, so that those time are the same. Ta-
ble 3 shows the time of each steps. The columns “Points-to
Analysis (all)” and “Control-flow Analysis (all)” show the
time required for points-to analysis and control-flow anal-
ysis. These analyses are common for all techniques. The
column “Dependence Analysis (CIS/HYB)” shows the time
required to analyze dependences for CIS and HYB, using
the information obtained by the points-to and control-flow
analyses. The column “Dependence Analysis (IMP)” shows
the time required to analyze dependences for IMP, using the
same information.

The time required for SDG construction was dependent

Fig. 4 Time to construct SDG in configuration 1.

Table 3 Detail of time to construct SDG in configuration 1.

Points-to
Analysis

(all)

Control-Flow
Analysis

(all)

Dependence
Analysis

(CIS/HYB)

Dependence
Analysis

(IMP)
avrora 49.16 sec. 0.18 sec. 0.82 sec. 7.84 sec.
batik 193.49 sec. 0.25 sec. 2.75 sec. 63.59 sec.
h2 59.76 sec. 0.23 sec. 1.97 sec. 28.25 sec.
luindex 51.82 sec. 0.22 sec. 0.91 sec. 9.66 sec.
pmd 62.81 sec. 0.22 sec. 1.07 sec. 8.48 sec.
sunflow 130.83 sec. 0.13 sec. 0.94 sec. 12.40 sec.
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Fig. 5 Scatter plots of relative slice size (percentage) on configuration 1 of avrora.

Table 4 SDG size in configuration 1.

CIS IMP
#Vertices #Edges #Vertices #Edges

avrora 14,948 32,916 43,767 178,110
batik 38,439 86,394 84,052 276,873
h2 30,291 64,538 151,738 1,054,257
luindex 18,388 39,701 47,957 181,496
pmd 22,782 48,096 50,322 175,634
sunflow 17,887 38,755 44,047 185,103

on the time required for points-to and control-flow analy-
ses, in this configuration. CIS took only a few additional
seconds, while dependence analysis of IMP took ten times
longer than that of CIS. The time required was still shorter
than that required for the underlying analyses. After SDG
construction, all four slicing techniques under comparison
were able to compute a program slice in less than one sec-
ond (a few milliseconds in most cases).

Table 4 shows the number of vertices and the number of
edges for each SDG. IMP usually constructs a larger graph
than CIS, to more precisely represent data-flow. CIS had
44 percent of the number of vertices that IMP had and 29
percent of the number of edges that IMP had.

Figure 5 shows the distribution of slice sizes of avrora.
Since the plot of the other applications show similar trends,
we have picked up the one. The plots of the other applica-
tions are shown in our website†. The X-axis in Fig. 5 shows
the index of slice criteria. It means that slices correspond-
ing to the points in the same X-axis had the same criteria.
The Y-axis shows the relative size of a program slice. The
slices are sorted in ascending order of the relative IMP slice.
The legend in Fig. 5 shows that CIS, SEB, HYB, and IMP
are represented by blue, green, red, and light blue points,

†http://sel.ist.osaka-u.ac.jp/∼y-kasima/compare
slice experiment/

respectively.
IMP extracted smaller slices than the other three slicing

techniques. For example, with avrora, IMP extracted less
than 40 percent of the program instructions in 99 percent of
the cases. IMP extracted 9.6 percent of the instructions on
average. On the contrary, SEB extracted more than 80 per-
cent of the instructions in all cases except for batik. One half
of the instructions SEB extracted were likely false positives,
according to IMP slice. An HYB slice was smaller than both
SEB and CIS slices.

Figure 5 shows that several clusters of slices that had
similar slice sizes are visible. A similar trend is reported
in [28]. The phenomenon was caused by a dependence
cluster [29], which is a strongly connected component in a
graph. If traversal of program slicing reached an element in
a dependence cluster, the traversal reached all elements in
the dependence cluster.

4.2.2 Configuration 2: The Whole System Including Li-
brary

Figure 6 shows the bar charts of the time required to con-
struct an SDG for each application. Table 5 shows the time
required to construct an SDG for an application including
the library. The table does not include IMP, because 64GB
of memory was insufficient for IMP to construct an SDG.
Points-to analysis took several minutes, and SDG construc-
tion for CIS also took several minutes. SEB was much
faster than CIS for a large-scale program, because the time
for SDG construction increased significantly compared with
points-to analysis. Table 6 shows the number of SDG ver-
tices and edges for CIS. The numbers of vertices and edges
were, on average, 28 and 40 times larger than SDG without
the library, respectively.

The maximum time to compute a slice with SEB, CIS,
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and HYB was 4.27, 5.13, and 8.55 seconds, respectively.
The results show that a program slice can be computed for a
large program, within a practical time period. HYB compu-
tation took only a few seconds longer than CIS computation,
because CIS had to construct a control-flow graph.

Figure 7 shows the slice size distributions. The X-axis
is the index of slices sorted by the ascending order of HYB
slice size. The Y-axis shows the relative slice size. The rel-
ative slice size does not include instructions in library, be-
cause library instructions are not visible to developers. Sim-
ilar to Fig. 5, we have picked up the result of avrora. The
others are shown in our website.

The resultant distributions are similar to Fig. 5. Al-
though SEB extracted a small slice in some cases, it often
extracted more than 80 percent of the instructions. Slices
extracted by CIS were all almost the same size due to SDG
dependence clusters, while the maximum CIS slice size
was lower than that of SEB. HYB extracted a significantly

Fig. 6 Time to construct SDG in configuration 2.

Fig. 7 Scatter plots of relative slice size (percentage) on configuration 2 of avrora.

smaller slice in some cases, and a slightly smaller slice than
CIS for most cases, because HYB was an intersection of
SEB and CIS.

4.3 Scalability Analysis of Improved Slicer

4.3.1 Design and Analysis Targets

While IMP cannot analyze an entire system as mentioned
previously, it is important to know the scalability for prac-
tical use. To measure the scalability of IMP, we measured
required time to construct SDG for various configurations.
If the construction takes longer than a predetermined thresh-
old (3,600 seconds), the configuration is classified as unan-
alyzable. The threshold is determined by the length of de-

Table 5 Detail of time to construct SDG in configuration 2.

Points-to
Analysis

(all)

Control-Flow
Analysis

(all)

Dependence
Analysis

(CIS/HYB)
avrora 117.75 sec. 1.40 sec. 67.97 sec.
batik 349.31 sec. 3.10 sec. 298.52 sec.
h2 132.21 sec. 2.24 sec. 86.96 sec.
luindex 125.85 sec. 1.24 sec. 78.94 sec.
pmd 128.67 sec. 1.40 sec. 81.19 sec.
sunflow 264.57 sec. 2.89 sec. 193.19 sec.

Table 6 Size of SDG for CIS in configuration 2.

#Vertices #Edges
avrora 449,186 1,335,862
batik 1,124,286 3,927,998
h2 477,478 1,423,244
luindex 494,814 1,480,095
pmd 499,047 1,490,075
sunflow 1,033,777 3,207,852
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velopers’ typical daily sessions [30].
We have used the same six applications as the first ex-

periment. We selected 14 major sub-packages in LIB which
are shown in Table 7. Table 7 shows the numbers of classes,
methods, and instructions reachable from a main method of
an application. Note that the numbers in Table 7 are taken
from the result in the configuration: the whole system in-
cluding library.

We constructed configurations for each application (A)
with the set of sub-packages in Table 7 (S ) by the following
steps.

1. For each s ∈ S , one sub-package configuration includ-
ing A and s is created.

2. Select sub-packages S ′ ⊆ S whose one-package con-
figurations are analyzable within the time limit.

3. For each k ∈ {2, 3, . . . , |S ′|}, a configuration is created
by randomly selecting k sub-packages from S ′.

4.3.2 Result

Table 8 shows the distribution of analyzable programs and
required time to prepare SDG. In order to show the differ-
ence of analyzability by the program size, we aggregate the
result by the number of instructions. The interval is 10,000.
The first column of Table 8 shows the range of the number
of instructions. The column “#Config.” shows the number
of configurations whose size is included in the correspond-
ing range. The column “#Analyzable (Percentage)” shows
the number and ratio of the configurations which were an-
alyzed within the limit time. The right most column shows
the mean of required time to prepare SDG for the analyzable
configuration programs. Note that all programs includes
over 100,000 instructions always failed to be analyzed, so
that their results are totaled in the last row.

As Table 8 shown, even if a program is small size,
the analysis time may be over 3,600 seconds. The min-
imum configuration which was not analyzed within 3,600
seconds is avrora with java.text package that has 26,325 in-
structions. Any configurations including java.text were not
analyzed within the time limit, partly because java.text in-
cludes a recursive data structure such as a container for text
that increases analysis cost.

The minimum unanalyzable configuration including
more than one sub-packages is the configuration which in-
cludes h2, java.io, java.lang, java.math and java.security.
The configuration includes 75,552 instructions. Since in-
dividual sub-packages are analyzable, the configuration is
classified as unanalyzable because of the scalability rather
than the complexity of one of the sub-packages. Actually,
most of configurations including more than 80,000 instruc-
tions were classified as unanalyzable.

On the other hand, the maximum analyzable con-
figuration is sunflow with java.awt, javax.crypto, and
javax.security packages. The configuration includes 477
classes, 3,409 methods and 98,073 instructions.

Table 8 shows that programs including less than 70,000

Table 7 Sub packages used for scalability analysis.

Sub Package Name #Classes #Methods #Instructions
java.awt 399 3,113 97,136
java.beans 20 192 5,792
java.io 92 805 21,089
java.lang 175 1,440 35,003
java.math 8 150 9,257
java.net 83 622 17,662
java.nio 127 623 10,156
java.security 108 482 11,400
java.sql 9 33 870
java.text 52 525 19,422
java.util 494 3,340 82,178
javax.crypto 27 166 5,365
javax.security 15 75 1,549
javax.swing 835 5,568 146,716

Table 8 The distribution of the analyzable programs and time to con-
struct SDG.

Range of
#Instructions #Config.

#Analyzable
(Percentage)

Mean of Time
to Prepare SDG

[0,10k) 0 0 (0%) NA
[10k,20k) 8 8 (100%) 113.39 sec.
[20k,30k) 28 25 (89.28%) 121.35 sec.
[30k,40k) 12 10 (83.33%) 255.02 sec.
[40k,50k) 11 10 (90.90%) 416.16 sec.
[50k,60k) 2 2 (100%) 307.81 sec.
[60k,70k) 3 3 (100%) 837.48 sec.
[70k,80k) 9 5 (55.55%) 807.05 sec.
[80k,90k) 9 1 (11.11%) 1,934.65 sec.
[90k,100k) 9 3 (33.33%) 1,055.56 sec.
[100k,230k) 14 0 (0%) NA

instructions are analyzable in the highly probabilities which
is at least 83.33%. On the contrary, the success probabil-
ity of an analysis is slightly falling down if a program in-
cludes more than 70,000 instructions. The ratio of analyz-
able programs including from 70,000 to 80,000 instructions
is about 55%. In addition, in the case of more than 80,000
instructions, the percentage of analyzable programs is more
smaller. Therefore, 70,000 instructions seems to be the limit
of analyzable program size by IMP of our implementation.

5. Discussion

We review the results in terms of accuracy and scalability to
answer to RQ1.

First, we discuss accuracy. SEB in many cases ex-
tracted from 80 to 100 percent of the entire program. This
indicates that SEB may have been only slightly effective.
CIS consistently extracted 70 percent for any instructions
in a program. This was caused by large SDG dependence
clusters, as previously mentioned. HYB slices were some-
times much smaller than CIS slices, partly because SEB re-
moved instructions in dependence clusters caused by infea-
sible SDG control-flow paths. IMP extracted smaller slices
than the other techniques; however, it could not compute a
slice for the entire program.

Table 9 shows the median relative slice sizes among
the slicing techniques. IMP extracted 22 percent of the in-
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Table 9 Rates compared other techniques.

Configuration1 Configuration 2
HYB / SEB 0.42 0.75
HYB / CIS 0.99 0.99
IMP / SEB 0.22 -
IMP / HYB 0.69 -

structions that SEB extracted and 69 percent of the instruc-
tions that HYB extracted. Therefore, IMP would be the best
choice of the four slicing techniques when using the library
approximation.

Binkley et al. [20] report the average backward slice
size as 28.1 percent of the program, while IMP in this
study had an average of nine percent. IMP might have
achieved this improvement with more accurate field repre-
sentations. In [20], they used another representations pro-
posed by Liang et al. [9], the disadvantages of which are
discussed compared with IMP in [11]. Differences between
C/C++ and Java might also have affected the results. C/C++
programs can access arbitrary memory locations with point-
ers, while Java programs use only objects and fields to ac-
cess memory locations. This difference could make Java
program analysis easier than C/C++ analysis.

Second, we discuss scalability. IMP cannot analyze an
entire system, as mentioned previously. IMP may construct
a large tree of fields for an argument, because a field often
contains another object. In the worst case, the size of a tree
is estimated as O( f p), where f is the number of fields in an
object and p is the number of object allocation sites. In other
words, the number of vertices may increase exponentially
according to program size. Actually, scalability anlaysis in
Sect. 4.3 shows following two findings:

• If an analysis target program includes a container li-
brary, failure probability of the analysis will increase.
• 70,000 instructions is the indication of analyzable pro-

gram size of IMP. If a program includes more than
70,000 instructions, the success probability of analy-
sis will be falling down. Moreover, 98,073 instruc-
tions is the limit size for analysis by IMP. The limit
is large enough to analyze various programs in the Da-
Capo Benchmarks without library, while it is insuffi-
cient to analyze programs with library.

On the contrary, since SEB needs only call graph and
control-flow graph, the required memory space and analysis
time is explicitly smaller than IMP. Similarly, the memory
space of CIS/HYB depends on control/data dependences of
each method, call graph, and square of the field access in-
structions. The results showed that this cost is also practical,
because CIS/HYB can be computed even if the analysis tar-
get includes Java Platform APIs.

We answer to RQ2 based on the previous discussion.
Since IMP output the best precise result, IMP is suitable if
an analysis target program can be analyzed. However, if
the program size is larger than 70,00 instructions, the anal-
ysis is prone to fail. In addition, approximation of container
libraries may be needed. Therefore, it is suitable that de-

velopers need to analyze a middle-size application or a sub-
system of a large application. Note that development of a
suitable approximation for an application may present tech-
nical challenges.

On the other hand, when developers need to analyze a
large program or a program including a library, e.g., Java
Platform API, HYB is the most suitable technique, in terms
of scalability and accuracy. CIS analyzes control and data
dependencies in HYB, and SEB takes a few additional sec-
onds to remove infeasible control-flow paths from CIS.

6. Threats to Validity

We approximated Java library code in the comparison of
IMP and the other techniques, due to IMP’s scalability. If
a method in a Java library provided dependence via heap
fields, IMP and CIS slices will not include statements that
are actually related to the selected statement. The approxi-
mation assumes methods in the library do not call back ap-
plication methods. This assumption may also result in false
negatives. We did not directly compare the results of these
two configurations, due to this threat.

Points-to analysis affects slices. We used Spark, but
there are many other points-to analysis tools and methods
we could have used: e.g., object-sensitive points-to analy-
sis [14], hybrid context-sensitive points-to analysis [15], etc.
The resulting slices could be more precise if more accu-
rate points-to analysis is used. Improving points-to analysis
would be effective for CIS and IMP, rather than SEB, be-
cause SEB uses only a call graph created by points-to anal-
ysis, while CIS and IMP use improved field access informa-
tion, in addition to the call graph.

Reflection handling also affects analysis results. We
used TamiFlex, which collects methods that were actually
invoked during execution of a target program. Results are
affected not only by the analysis target programs, but also by
their execution. Program slices computed in the study miss
some statements that could be executed through reflection,
but are excluded from the default execution scenario in the
DaCapo Benchmarks.

We obtained the results from six applications. The
results may not be applicable to arbitrary Java programs;
however the target programs included real Java applications.
Therefore, we believe the result is indicative of a general
trend.

Our slice implementations might contain some defects
possibly affecting the results shown here. We have provided
our implementation and dataset on our website, to enable
other researchers to replicate the study and conduct further
research.

7. Related Work

Binkly et al. [20] compare various kinds of program slic-
ing. However, IMP and SEB were not included in the com-
parison. Additionally, the target applications are written in
C/C++. Our targets were programs written in Java. In ad-
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dition, CodeSurfer which is a program slicing tool and used
in [20] can analyze C++ templates in analysis target source
code, but it does not analyze templates in library and not
in analysis target source code, such Standard Template Li-
brary (STL). [20] does not clear about handling STL. On the
contrary, our Java bytecode analysis includes Java Platform
APIs corresponding to STL can be performed.

[16] also compares program slicing and SEB and ana-
lyzes programs written in C/C++. We have compared SEB
and two slicing techniques, CIS and IMP, for Java programs.
Beszedes et al. [17] compared static execute after analysis
with forward program slicing for C/C++ and Java programs.
However, they did not evaluate SEB and the backward slic-
ing techniques that we have compared in this study.

Binkley et.al. also evaluated optimization techniques
of “massive slicing” which is an application of program slic-
ing [31]. Massive slicing takes all program slice from each
possible criteria, and is used for debugging. Optimization
techniques evaluated in [31] optimize SDG or memory rep-
resentation for SDG, but it is required that building full SDG
for the first time. We evaluates approaches of building SDG
or one corresponding SDG before optimizing.

[11] evaluates the SDG size of programs. However,
most of the analyzed programs are student programs, and
the analyzed program size is at most 10 KLOC, while we
analyzed real Java applications. They also did not report the
average size of a slice compared with other techniques.

There are slicing approaches for Object-Oriented Pro-
gramming Languages (OOPL) other than IMP. Liang et al.
[9] propose an SDG for OOPL that also simulates object
trees of formal/actual in/out vertices. However, they ex-
pand field trees based on the object type (i.e., variable type)
and use k-limit to expand a tree to stop infinite expansion.
Therefore, the approach is less precise than IMP. Larsen et
al. [10] also proposes an SDG for OOPL that treats heap
field input/output as formal/actual in/out. This means that
the Larsen approach does not make an object tree, it is field-
based, not object-sensitive. IMP is an object-sensitive ap-
proach; therefore, it is more precise than Larsen’s approach.

8. Conclusion and Future Work

We evaluated the scalability, precision and tradeoffs of four
slicing techniques; SEB, CIS, HYB, and IMP. We selected
six real Java applications in DaCapo benchmarks for evalua-
tion. We computed slices of instructions in each application
and compared the slice sizes and computation times of the
slicing techniques.

The results show that HYB had good scalability, which
was achieved with a small cost increase over CIS. An HYB
slice is 25 percent smaller than the SEB slice. Moreover,
an HYB slice is sometimes significantly smaller than a CIS
slice, because HYB considers feasible control-flow paths
from SEB. When developers need to analyze a large pro-
gram or a program including a library, our results indicate
that HYB is suitable.

On the other hand, our results show that IMP is the

most accurate of the four slicing techniques. An IMP slice
contains 22 percent of SEB and 69 percent of HYB. How-
ever, IMP does not have the scalability required to analyze
a large program, such as a whole system including a JDK li-
brary. When developers need to analyze a middle-size pro-
gram or a subsystem, our results indicate that IMP is suit-
able.

We plan to analyze how the library approximation af-
fects slicing technique accuracy, in future research. When
developers can approximate arbitrary application subsystem
behavior, our results show that IMP would be applicable to
a large scale programs’ subsystem. Another direction for
our future work would be to include additional slicing tech-
niques, e.g., slicing for concurrent programs.
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