
1286
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.7 JULY 2015

PAPER

Effect Analysis of Coding Convention Violations on Readability of
Post-Delivered Code

Taek LEE†a), Student Member, Jung-Been LEE†b), and Hoh Peter IN†c), Nonmembers

SUMMARY Adherence to coding conventions during the code produc-
tion stage of software development is essential. Benefits include enabling
programmers to quickly understand the context of shared code, commu-
nicate with one another in a consistent manner, and easily maintain the
source code at low costs. In reality, however, programmers tend to doubt
or ignore the degree to which the quality of their code is affected by adher-
ence to these guidelines. This paper addresses research questions such as
“Do violations of coding conventions affect the readability of the produced
code?”, “What kinds of coding violations reduce code readability?”, and
“How much do variable factors such as developer experience, project size,
team size, and project maturity influence coding violations?” To respond to
these research questions, we explored 210 open-source Java projects with
117 coding conventions from the Sun standard checklist. We believe our
findings and the analysis approach used in the paper will encourage pro-
grammers and QA managers to develop their own customized and effective
coding style guidelines.
key words: coding conventions, coding style standard, code readability,
software quality, empirical study

1. Introduction

In software development, producing code with high read-
ability is essential. There are several reasons why this is an
important concern.

Understanding the context of existing code is a neces-
sity, not only to remind programmers of the context of what
other programmers have written but also to understand their
intention. Less readable code prevents programmers from
understanding one another; highly readable code enables de-
velopers to easily communicate with each other.

Maintainability is another reason why code readabil-
ity is important [1], [2]. To reduce maintenance costs, sup-
porting code with high readability is a necessity. In a sur-
vey, a majority of developers (66%) agreed that the most
serious problem affecting software development is under-
standing the code [3] and the most time-consuming activity
during software maintenance is code reading [4]–[6]. In the
maintenance process, it is typical that the programmer who
initially developed the company’s proprietary software is no
longer available and thus a different developer must assume
responsibility for these legacy systems. Reading and under-
standing the legacy code of existing software systems that

Manuscript received October 3, 2014.
Manuscript revised February 4, 2015.
Manuscript publicized April 10, 2015.
†The authors are with Korea University, South Korea.

a) E-mail: comtaek@korea.ac.kr
b) E-mail: jungbini@korea.ac.kr
c) E-mail: hoh in@korea.ac.kr (Corresponding author)

DOI: 10.1587/transinf.2014EDP7327

others have developed is therefore an everyday maintenance
issue. Therefore, less readable code can increase the cost of
software maintenance.

Coding style conventions [7]–[9] aim at enhancing
code readability. The primary purpose of coding style com-
pliance is to develop more readable code and facilitate com-
munication and collaboration between developers by main-
taining a uniform coding style. For example, coding conven-
tions usually cover file organization, indentation, comments,
declarations, statements, white space, naming conventions,
and programming practices.

The majority of programmers agree that coding con-
ventions are necessary and that adherence to such conven-
tions improves the final code quality. In reality, however,
programmers rarely adhere to the conventions for various
reasons. For example, Li and Prasad [10] found that al-
though developers understood the importance of using code
conventions, they did not follow them, especially when ur-
gent code development was required. Even those program-
mers who wish to establish or adopt certain coding style
guidelines in their company may have difficulty determin-
ing what to do first when subjected to limited time and re-
sources.

Therefore, searching for an effective set of coding
conventions to enhance code readability at low cost is a
valuable endeavor. In this paper, to assess the degree to
which intensive adherence to coding conventions improves
code readability, we investigated 117 Sun Java coding con-
ventions [11] for 210 open-source projects collected from
sourceforge.net. For each of these 210 projects, we eval-
uated the conventions that were complied with or violated
and then identified the rule violations degrading the code
readability. We believe the findings and analysis approach
utilized in this paper will assist programmers (or QA man-
agers) to develop a customized, effective coding style guide-
line. In this paper, we are particularly interested in answer-
ing the following research questions (RQ):

• RQ1: “Do developer violations in coding conventions
affect readability of the code that they produce?”
• RQ2: “What kinds of violation are particularly associ-

ated with declining code readability?”
• RQ3: “How much do factors such as level of developer

experience, development team size, project size, and
project maturity influence coding violations?”

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers



LEE et al.: EFFECT ANALYSIS OF CODING CONVENTION VIOLATIONS ON READABILITY OF POST-DELIVERED CODE
1287

2. Related Work

Our study is primarily related to two aspects of the existing
studies: one is measuring code readability; the other one is
coding conventions. Many existing studies are founded on
experience and feedback from educating students (or pro-
grammers) on coding conventions. Few have analyzed the
correlation between programmer violations of coding con-
ventions and the quality of the produced code.

2.1 Measuring Code Readability

Other than studies by Buse et al. [12] and Posnett et al. [13],
papers attempting to objectively estimate code readability
are limited.

A major contribution of Buse et al. [12] was that their
estimation result for code readability was compared and ver-
ified with actual perception scores voted by humans. Buse
et al. emphasized the importance of code readability [12].
To estimate readability of source code, they used such fea-
tures as the line length, identifiers, identifier length, inden-
tation, keywords, punctuation, operators, assignments, if-
statements, loops, and blank lines. Furthermore, they em-
ployed machine-learning techniques to develop a prediction
model using their feature set and verified the model validity
and high-prediction performance with human reviewers.

Posnett et al. was based on the study of Buse et al.
However, Posnett et al. significantly improved the perfor-
mance of readability estimation by adopting three simple
metrics, Halstead’s volume metric, lines of code, and en-
tropy of code tokens or characters. The readability estima-
tion formula proposed in [13] was verified using 120 people
and 100 samples of code as performed by Buse et al. The
estimation accuracy was determined to be more than 80%,
better than the performance result (approximately 75% on
average) of the Buse formula [12].

There are other specific studies addressing indirect top-
ics related to code readability. Aggarwal et al. [14] used the
ratio of comments to lines of code for a code readability
measurement. Flesch [15] and Börstler et al. [16] proposed a
method to measure readability of natural language (English
sentences) and compared it with Halstead & Cyclomatic
complexity metrics.

Butler et al. [17] investigated eight open-source Java
projects to analyze the impact of coding conventions (partic-
ularly, identifier naming) on code quality. They used eleven
typographical and natural language-naming guidelines for
Java to measure the quality of the identifier naming and
FindBugs to measure the code quality. The authors found
significant associations between a flawed identifier name
and FindBugs warnings. Butler et al. [18] used three quality
measurements: cyclomatic complexity, maintainability in-
dex, and readability metric to measure code quality. They
found conclusively that poor-quality identifier names are
strongly associated with more complex, less readable, and
less maintainable source code.

2.2 Coding Conventions

Basic coding conventions of popular languages such as Java,
C, and C++ are public and are widely available [7]–[9].
They are intended primarily to facilitate collaboration and
maintenance of uniformity in code written by different de-
velopers.

Reed [19] introduced guidelines based on experience
from teaching students Java programming. Reed claims that
programming style is more than simple aesthetics and that
compliance with coding conventions can assist early-stage
programmers to avoid errors and better understand the un-
derlying concepts.

Smit et al. [1] extracted 71 coding conventions from
seven experts and prioritized them into three levels of im-
portance. Five open-source projects were analyzed in terms
of adherence to the coding conventions. Further, Smit et
al. investigated the evolution of adherence to coding con-
ventions by analyzing the revision history in a version con-
trol system over a software lifecycle. However, the authors
focused more on maintainability than on readability. They
did not study the impact of coding convention violations on
code readability.

Mohan and Gold [2] conducted an investigation into
how the programming style (typographical style) changes
over the lifetime of a program and suggested a method to
measure the typographical style. Interestingly, Mohan and
Gold found that programmers have a tendency to distinguish
code blocks using blank lines, reporting that the blank line
metric is a good indicator of the application of the typo-
graphical style rule.

Elish and Offutt [20] analyzed 100 classes of open-
source Java projects using sixteen standard coding practices
by involving open-source developers. They found that only
4% of the subject classes had no violations. Moreover, there
were positive correlations between the number of violations
found in a class and the number of lines of code, number of
methods, and number of attributes.

3. Experiment Process

This section presents the process overview (Fig. 1) of our
proposed analysis approach to explore the three research
questions identified in Sect. 1. Each step in Fig. 1 will be
explained one by one in the following subsections.

3.1 Data Collection (STEP 1)

For the experiment, we collected sample data of open-source
Java projects from the website sourceforge.net. We col-
lected not only source code files but also necessary meta-
data about developer experience, team size, project size, and
project maturity. For developer experience, we collected
data such as a period of developers’ project involvement and
the number of projects that they involved. For team size of
a project, we collected a list of involved developers. For



1288
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.7 JULY 2015

Fig. 1 Overview of the proposed experiment process.

project size, we investigated total lines of all the source code
files consisting of a project. For project maturity, we used
the definition of seven discrete stages originally provided by
the website, such as Planning, Pre-alpha, Alpha, Beta, Pro-
duction/stable, Mature, and Inactive.

3.2 Readability Estimation (STEP 2)

Each of the files collected in STEP1 was quantitatively mea-
sured in terms of code readability. For this measurement,
we utilized the readability estimation formula proposed by
Posnett et al. [13] that generates a readability score. The
higher the score, the more readable the source code. All
the source code files were rated using this readability esti-
mation formula. In order of readability score, files ranked at
top 25% and bottom 25% were considered sample groups of
“more readable files” and “less readable files”, respectively.
To avoid using files with ambiguous boundary measures in
code readability, we did not include files of the middle scor-
ing range in sampling.

3.2.1 Readability Estimation Formula

Based on the study of Buse et al. [12], Posnett et al. de-
signed a simple yet more accurate formula from the estima-
tion performance viewpoint. This estimates the readability
of a given code block as follows [13]:

Readability = 8.87 − 0.033 × Halstead volume

+ 0.4 × total lines of code − 1.5 × code entropy (1)

Halstead’s metrics are source code complexity metrics
introduced in 1977 by Maurice Howard Halstead [21]. The
Halstead volume metric is defined as Halstead volume =
N × logn

2, where N is called the program length, the sum of
the total number of operators (N1) and operands (N2) in the
code, N = N1 + N2, and n is called the program vocabulary,
the sum of the number of unique operators (n1) and unique
operands (n2), n = n1 + n2. The term total lines of code is
the number of lines of the given code block. The term code
entropy is an entropy measurement for the given code block.
Entropy is considered the degree of disorder, or the amount

of information in a signal or dataset. Entropy is calculated
from the count of terms (tokens or characters) comprising
the given code block. Assume that X is a document and xi

is a term in X. Count(xi) is the number of occurrences of xi

in the document X and p(xi) =
count(xi)∑n

j=1 count(x j)
. Entropy H(X)

is defined as H(X) = −∑n
i=1 p(xi) logp(xi)

2 . The terms were
considered as tokens or characters such that both character-
based entropy and token-based entropy were compared in
[13]. In our study, we replicated a formula version adopting
the character-based instead of token-based entropy (i.e., xi is
one of the characters comprising the code in H(X)) because
it was verified in [13] that readability estimation computed
with character-based entropy was more accurate than token-
based entropy in performance evaluation.

3.2.2 Readability Estimation at the File Level

The sample unit in our experiments is files (Fig. 1). There-
fore, we needed to estimate the readability score of a file,
so we utilized the readability estimation formula of Eq. (1)
introduced in Sect. 3.2.1.

First, we divided the file into multiple code blocks each
having 46 lines of code (LOC), which is the maximum block
size used in [13]. If the file was smaller than 46 LOC, we did
not divide it but treated the whole file as a single code block;
however, a file whose size was smaller than four LOC was
not included as a sample. We then computed the readability
score of each of the divided code blocks using the estimation
formula given by Eq. (1). Then, we averaged the readability
scores of the code blocks to obtain the readability score for
the given file.

We used the mean of the code-block readability scores
as a representative measure of file-level readability. How-
ever, it might also be possible to consider the minimum of
the code-block readability scores as the representative one.
A reader can have an impression that a file is hard to review
because just one particular code block of the file is regarded
as seriously illegible (i.e., file-level readability depends on
the lowest readability score for the code blocks). Another
possible candidate is the mode of the code-block readabil-
ity scores. It seems reasonable that file-level readability can
be determined by the most frequently observed value among
the readability scores of the code blocks comprising the file.
These three methods of determining a representative statis-
tic (mean, minimum, and mode) are discussed in Sect. 4.1.

3.3 Checking Coding Violations (STEP 3)

To determine if a file violated any coding conventions, we
used Checkstyle, a popular static analysis tool [22], to auto-
matically analyze well-known coding conventions. Check-
style supports checking 117 standard coding conventions
of Sun Java [11] in 12 categories. The categories are “an-
notations”, “block checks”, “class design”, “coding”, “im-
port”, “Javadoc comments”, “metrics”, “miscellaneous”,
“modifiers”, “naming conventions”, “size violations”, and



LEE et al.: EFFECT ANALYSIS OF CODING CONVENTION VIOLATIONS ON READABILITY OF POST-DELIVERED CODE
1289

“whitespace”. Checkstyle generates four severity levels of
alarm when a checked coding convention is violated; these
are “ignore”, “info”, “warning”, and “error”. In our exper-
iment, only the levels “warning” and “error” were consid-
ered.

Results of coding violation checks were structured in
a tabular format for the subsequent analysis process. Each
row in the table is a file sample and each column represents
a violation check. A cell in the table is the number of vi-
olations per line of code in the file sample, as reported by
Checkstyle. Because a large file generates a higher number
of violation messages than a small file does, we normalized
the number of observed coding violations with the number
of lines of code of the given file.

3.4 Machine Learning-Based Analysis (STEP 4)

This step aims to explore RQ1 and RQ2. We interpreted and
modeled the problem domain of RQ1 into a classification
problem (i.e., supervised machine learning). In the classifier
modeling, the features for model construction were checks
themselves, and the classes to predict were binary quality
labels of code readability (i.e., “more readable” or “less
readable”). If the constructed classification model demon-
strates high accuracy and outstanding performance, it im-
plies that the features (i.e., coding violations) used in the
model construction are useful factors for classifying files
into the two sample groups, “more readable files” and “less
readable files”. That is, the distributions of coding viola-
tions observed in the two sample groups are sufficiently dif-
ferent, and can therefore be of significant use in predicting
code readability. In the classification experiment, we used
four of the most well-known algorithms: C4.5 (decision
tree), k-NN, SVM, and Naı̈ve Bayesian, which are popu-
lar classifiers among the top ten algorithms in the field of
data mining [23]. To perform the experiments, we used the
data-mining tool Weka [24] and its built-in default parame-
ters.

For an evaluation measure of classification perfor-
mance, we used area under the curve (AUC) [25], which
is interchangeably called area under the receiver operating
characteristic (ROC) curve [25]. The curve is defined by
plotting the true positive rate against the false positive rate
at various threshold settings. A binary classifier having an
AUC measure close to 1 (the perfect classification) is con-
sidered good, while a classifier having an AUC measure
close to 0.5 (the worst classification) is considered poor.

To avoid getting a biased result of a performance evalu-
ation by chance, we used 10-fold cross validation [25] to get
an answer for RQ1. In the validation process, the dataset
from STEP 3 is divided into ten folds. Nine folds are used
for model training, and one fold is used for model testing. In
this method, each fold is rotated ten times for training and
testing purposes.

Answering RQ2 is an exercise of searching for valid
contributors of features for improving classification perfor-
mance. If any coding violation is strongly associated with

higher or lower code readability, the distribution of the cod-
ing violation feature will be observably different for the two
sample groups of “more readable files” and “less readable
files”, meaning that the feature is a factor significantly influ-
encing code readability.

To determine these contributing features (address-
ing RQ2), we used a feature selection algorithm called
correlation-based feature selection (CFS). CFS is an algo-
rithm that is used to identify a subset of features of reduced
size without irrelevancy or redundancy between features
in classification problems [26]. In our experiment process,
CFS selects a subset of coding violations that are highly
correlated with code readability while having a low inter-
correlation between coding violations.

In addition, we performed sensitivity analysis to un-
derstand the correlation between the CFS-nominated coding
violations and code readability. For the sensitivity analysis,
the response of the code readability to incremental changes
in the number of coding violations was simulated. While
controlling the number of coding violations in the sample
groups of files from the minimum to the maximum by 10%
stepwise increments, we observed the number (portion) of
“more readable” code files out of the total number of files at
the controlled time. The results are presented in Sect. 4.2.

3.5 Chi-Squared Test-Based Analysis (STEP 5)

To address RQ3, we analyzed developer and project factors
that can influence the extent of coding violations observed
in the sample files. The chi-squared test method aims to
explore the dependency between four paired variables: de-
veloper experience vs. coding violations, team size vs. cod-
ing violations, project size vs. coding violations, and project
maturity vs. coding violations. The details will be addressed
one by one in the subsections of Sect. 4.3.

Pearson’s chi-squared test was specifically used in our
experiments to assess whether paired observations on the
two interesting variables expressed in a contingency table
are independent of each other. In the chi-squared tests of
Sect. 4.3, the null hypothesis (H0) is “there is no correla-
tion between the two variables (no dependency exists)” and
the alternative hypothesis (Ha) is “there is a correlation be-
tween the two variables (a dependency exists)”. We will
confirm rejecting H0 and accepting Ha with the Pearson’s
chi-squared test.

One variable in the contingency table was the number
of coding violations. We assigned the extent of coding vi-
olations to the sample files using the binary quality labels
“more violation” and “less violation”. As a criterion for de-
termining the binary quality labels, we used the median of
the number of coding violations (per lines of code) for the
sample files. If the violation frequency of a file was greater
than the median, the file was labeled “more violation”; oth-
erwise, the file was labeled “less violation”.

The other variable in the contingency table represented
one of the four factors developer experience, team size,
project size, or project maturity, each of which had nomi-



1290
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.7 JULY 2015

nal values of five levels except project maturity, which had
seven levels (Sect. 4.3.4). For example, in the case of level
of experience (LOE) of a developer, the five levels were
LOE1, LOE2, LOE3, LOE4, and LOE5 (Sect. 4.3.1). These
five levels were determined in the following manner. First,
LOEs of developers were measured by a formula, details
of which are explained in Sect. 4.3.1. Second, the LOEs
were sorted in ascending order. Finally, the sorted LOEs
were divided into five 20-percentile intervals: [0%, 20%),
[20%, 40%), [40%, 60%), [60%, 80%), and [80%, 100%].
The symbol “[x” means that the value x is included, and the
symbol “x)” means that the value x is not included within
the interval. Each of the boundary LOEs that divide the five
intervals was determined in this way. Similarly, the vari-
ables of team size and project size were divided into five in-
tervals represented by the 20-percentile discretization. With
the discretization, each of the five intervals receives the same
number of allocated samples, thereby avoiding the trouble
of unbalanced sample sizes when computing and interpret-
ing expected frequencies of a nominal value of the variable
in a contingency table.

As discussed above, the degrees of freedom (df) about
the variables used in the chi-squared tests of Sects. 4.3.1,
4.3.2, and 4.3.3 was four (i.e., one variable having binary
values and the other variable having five nominal values).
However, df in Sect. 4.3.4 was six (i.e., one variable having
binary values and the other variable having seven nominal
values). For the statistical tests, a 95% confidence interval
was assumed in our study.

As the classification modeling approach was proper
and sufficient for answering RQ1 and RQ2, we did not find
it necessary to apply a chi-squared test method for these two
research questions. The success of accurate classification
served to substantiate the claim that a dependency exists be-
tween the variables of interest (i.e., features and class), obvi-
ating the need to apply a chi-squared test for RQ1 and RQ2.

4. Experiment Results

This section presents results from our experiment to answer
the three research questions identified in Sect. 1. In the ex-
periment, for the project data, we identified ten different
domains: “audio and video”, “business enterprise”, “com-
munication”, “development”, “games”, “graphics”, “home
and education”, “science engineering”, “security utilities”,
and “system administration”. For each domain, we selected
the three most popular projects in seven different levels of
project maturity. As a result, we analyzed 129,147 source
code files (∗.java) from the 210 projects (210 = 3 ∗ 7 ∗ 10,
i.e., the three most popular projects for each of seven matu-
rity status levels in ten different domains). Table 1 briefs the
statistics of the data experimented.

The following subsections introduce the experiment re-
sults in detail for each individual research question.

4.1 RQ1: “Do Developer-Coding Violations Affect the
Readability of the Produced Code?”

To determine if RQ1 is true, as mentioned in STEP 4 of
Sect. 3.4, we constructed classification models with several
popular machine-learning algorithms. We wished to con-
firm that the results of the performance evaluation of the
constructed models were consistently valid regardless of the
algorithm used.

We evaluated the classification models in terms of the
AUC measure. The classification experiment was performed
for each of the three different class-labeling strategies (i.e.,
mean, minimum, and mode, as mentioned in Sect. 3.2.2).

As shown in Fig. 2, the AUCs of all the classifica-
tion models were greater than 0.5, regardless of the algo-
rithm and the class-labeling strategy used in the model con-
struction. For example, the C4.5 algorithm yielded approx-
imately 84% better performance than a random classifier
(i.e., 0.92 compared with 0.5) in terms of AUC. In our exper-
iment setup, the random classifier has AUC = 0.5 because
the two sample groups, those of “more readable” and “less
readable” files, were the same size.

Conclusively, we could infer that RQ1 is true based
on the experiment results in Fig. 2. The fact that the per-
formance of classification models is better than the random
classifier indicates that coding violations are observed dif-
ferently in each of the two sample groups of “more read-
able” and “less readable” files. This automatically supports
our inference that coding violations during development af-
fect the readability of the produced code.

Table 1 Summary of project data analyzed in the experiment.

Fig. 2 Performance evaluation of classification models for predicting
code readability.



LEE et al.: EFFECT ANALYSIS OF CODING CONVENTION VIOLATIONS ON READABILITY OF POST-DELIVERED CODE
1291

4.2 RQ2: “What Kind of Coding Violations Are Particu-
larly Associated with Declining Code Readability?”

As described in Sect. 3.4, we performed a CFS analysis us-
ing as input data the 117 checks for coding violations and
the readability scores of the files; here, the mean-based es-
timation (Sect. 3.2.2) was used to obtain the file-level read-
ability scores. Table 2 is the result generated by CFS with
10-fold cross validation. The whole sample data were di-
vided into ten folds and then iterated such that CFS was ap-
plied to each of the 10 folds. The results of Table 2 include
features of coding violations that were nominated more than
90% by CFS in the ten iterative selection rounds. Some of
coding violations found in Table 2 concurred with findings
by a study of Elish and Offutt [20].

In Table 2, TrailingCommentCheck is the check to en-
sure that comments are on a separate line. IndentationCheck
is the validation that ensures that a proper number of
spaces are used for indentation of new levels of code lines.
IllegalTokenCheck checks for illegal tokens. Certain lan-
guage features often lead to hard-to-maintain code or are
not obvious to novice developers. RedundantModifierCheck
is to identify redundant modifiers in interface and anno-
tation definitions, the final modifier on methods of fi-
nal classes, and inner interface declarations with static.
HiddenFieldCheck verifies that a local variable or a pa-
rameter does not shadow a field that is defined in the
same class. WriteTagCheck verifies that source code out-
puts a JavaDoc tag as information. LeftCurlyCheck is to
verify the placement of left curly braces (“{“) for begin-
ning code blocks such as if-else, try, and catch tokens.
UnnecessaryParenthesesCheck checks for the use of unnec-
essary parentheses. TypecastParenPadCheck is to check the
policy on the padding of parentheses for typecasts. That
is, whether a space is required after a left parenthesis and
before a right parenthesis or such spaces are forbidden.
JavadocStyleCheck is the check that validates Javadoc com-
ments to ensure they are well formed. JavadocMethodCheck
checks if a method or constructor has Javadoc comments,
and likewise JavadocVariableCheck checks if variables have
Javadoc comments. More detailed explanation of the coding
violations listed in Table 2 is on the reference web page [11].

The information regarding the correlation between the
coding violations listed in Table 2 and the affected code
readability is an excellent source for understanding the vi-
olations that should be considered to be refactored or cor-
rected to enhance the readability of code. Figure 3 is the
sensitivity analysis results for presenting the correlation.

Table 2 Coding violations most likely to affect code readability.

As indicated in Fig. 3, the coding violations listed in
Table 2 showed different degrees and directions of sen-
sitivity. In Fig. 3, lines above 0.5 on the Y-axis are
coding violations that reduce code readability if they are
frequently observed in source code files. In particular,
TrailingCommentCheck was found to be the most sensitive
one, indicating that a trailing comment attached on the same
line as code is actually not a good practice in terms of code
readability.

Lines below 0.5 on the Y-axis, on the other hand,
are coding violations that increase code readability if they
are frequently observed. The checks of JavadocMethod,
JavadocVariable, and Indentation were the most sensitive vi-
olations.

The sensitivity result of checks for JavadocMethod and
JavadocVariable indicates that the more highly readable files
had fewer Javadoc comments, in terms of both methods and
variables.

The number of blank spaces required for Indentation in
the checking tool Checkstyle was four for a new indentation
level, case label in switch statements, and throw statements
on a new line. However, more than four spaces could be
inserted for improved code readability. Files that were more
readable actually did not have limitation of four spaces in
the indentation size.

To achieve a higher level of categorical understanding
than the coding violations identified in Fig. 3, we performed
the sensitivity analysis in terms of the 12 categories listed in
Sect. 3.3. Figure 4 is the result for the 12 categories. The
categories included all of the 117 coding violations.

Code readability was relatively insensitive to increases

Fig. 3 Sensitivity analysis between coding violations and code
readability (major violations reported in Table 2).



1292
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.7 JULY 2015

Fig. 4 Sensitivity analysis between coding violations and code
readability (in terms of 12 categories).

and decreases in the coding violations, especially in the cat-
egories of Annotations, Block Checks, Class Design, Im-
ports, Metrics, and Modifiers.

Conversely, categories of Size Violations, Naming
Conventions, Coding, and Javadoc Comments were quite
sensitive ones. For example, code readability decreased
(i.e., 21% drop from 0.63 to 0.5 in the Y-axis) as the number
of coding violations increased in the category of Size Viola-
tions. In addition, the most sensitive category was Javadoc
Comments (i.e., 3.85 times gap from 0.13 to 0.5 in the Y-
axis). Comments related to Javadoc are negative at least in
terms of improving code readability even though comments
are usually considered helpful in understanding code con-
text. As shown in Fig. 4, the files that had many violations in
the category Javadoc Comments were relatively more read-
able than the files that had fewer in the category. The cat-
egory Javadoc Comments includes, for example, coding vi-
olations of JavadocStyle, JavadocVariable, JavadocMethod,
and WriteTag mentioned in Table 2.

4.3 RQ3: “How Much Do the Factors of Developer Ex-
perience, Team Size, Project Size, and Maturity Influ-
ence Coding Violations?”

Through the analysis of RQ1 and RQ2, we could confirm
that violations of coding conventions affect the readability
of post-delivered code. Perhaps the next resulting question
could be “What kind of developer and project factors are re-
lated to committing violations?” By analyzing project meta-
data as mentioned in Sect. 3.1, we respond to this question
(RQ3).

4.3.1 Developer Experience vs. Coding Violations

In this section, we are interested in two variables and their
dependency. One variable is level of experience (LOE) of

Table 3 Brief statistics on each LOE of developers in terms of years and
number of projects that they experienced (figures are averages).

Fig. 5 Correlation between LOE of developers and their coding
violations.

the developers; the other variable is extent of coding viola-
tions that the developers commit.

To measure the LOE of a developer, we considered
the number of projects and the total years related to the
projects during which the developer had an involvement
with sourceforge.net. Thus, in this study, we defined LOE
as follows:

LOE = the number of involved projects

∗ total years of the project involvements (2)

We surveyed the LOE range with five discrete stages:
LOE1 through LOE5 as explained in Sect. 3.5. Table 3
presents brief statistics on the LOE stages in our study; the
figures of years and number of project involvements are av-
erages from the analyzed samples for each LOE stage.

We conducted a Pearson’s chi-squared test for the two
variables: LOE of developers and the extent of coding vi-
olations reported from the files that they developed. In
the chi-squared test, observed frequencies of samples in
the contingency table were ((7491, 5818, 8138, 6027, 4740),
(4928, 6046, 6123, 6957, 8184)). x2-value was 547.67 and
p-value was less than 2.2e-16. Conclusively, we could sta-
tistically confirm that the LOE of the developers affects the
developer-coding violations.

Figure 5 illustrates the results of the correlation be-
tween LOE and coding violations. From Fig. 5, we see a
trend that as LOE increased, fewer violations in the sam-
ple files were observed. The coding violation gap between
LOE1 and LOE5 was about 1.64 times (60% vs. 37%). That
is, developers with approximately 13 years and 14 projects
(LOE5, Table 3) tended to commit 38% (= (60 − 37)/60)
fewer violations than those with approximately 3 years and
one project (LOE1, Table 3).



LEE et al.: EFFECT ANALYSIS OF CODING CONVENTION VIOLATIONS ON READABILITY OF POST-DELIVERED CODE
1293

Fig. 6 Correlation between LOE of developers and their coding
violations (after omission of the data that were anomalous).

It is interesting to note that developers of LOE3 com-
mitted slightly more violations than did developers having
a somewhat greater or lesser LOE (i.e., LOE2 or LOE4).
We can speculate that developers of LOE3 may become
overconfident and more careless about violations of coding
conventions compared with developers of LOE2 or LOE4.
However, we also find that developers who had higher
counts of project involvement experiences than did those of
LOE3 showed comparatively fewer coding violations. Pos-
sibly, then, developers who are beyond a certain LOE rec-
ognize the importance of coding conventions and make a
further effort to comply with them.

We observe in passing that while exploring the data for
this section, we found that some of the project meta-data
collected seemed anomalous. For example, there were de-
velopers who had had more than ten years of project activ-
ity period yet were involved in just only one project dur-
ing that long period; it is usual that developers who have
many years of project experience tend to involve in several
projects. Therefore, we reran the chi-squared test and the
analysis done in Fig. 5 after filtering out these anomalous
sample data. We found that the chi-squared test run against
these filtered data was still positive; that is, we could still
statistically confirm the fact that the LOE of developers af-
fects the number of their coding violations. However, the
trend was somewhat different from that shown in Fig. 5; Fig-
ure 6 shows the new result after filtering out the anomalous
data. In Fig. 6 the correlation trend appeared stronger than
in Fig. 5. For information, the linear trend (regression) line
of Fig. 5 was Y = −0.05 · X + 0.65 (R2 = 0.72). In contrast,
the linear trend line of Fig. 6 was Y = −0.11 ·X+0.87 (R2 =

0.78). From this exploratory comparison analysis, we found
that the number of involved projects plays a substantial role
in LOE and consequently affects coding violations.

4.3.2 Team Size vs. Coding Violations

Adherence to a guideline of coding conventions is challeng-
ing as more developers join a project. A developer working
on a single-developer project may comply more easily with
a guideline than a developer who joins a multiple-developer
project.

Fig. 7 Correlation between team size and coding violations.

We conducted a Pearson’s chi-squared test for the two
variables: team size (i.e., the number of developers involved
in a project) and the extent of coding violations reported
from the files that developers made. We surveyed team
size with five discrete intervals: 1, 2, 3–4, 5–8, and 9–
21 by using the 20-percentile discretization as explained
in Sect. 3.5. The largest team size was 21 in our survey.
In the chi-squared test, observed frequencies of samples in
the contingency table were ((8790, 4097, 8663, 5997, 4667),
(12521, 2809, 7084, 7532, 2292)). x2-value was 10422 and
p-value was less than 2.2e-16. Conclusively, we could sta-
tistically confirm that team size affects the developer-coding
violations.

Figure 7 illustrates the results of the correlation be-
tween team size and coding violations. We found a trend
that coding violations increased with team size. For ex-
ample, a team (i.e., more than two developers) often com-
mitted more violations than a single developer did. Possi-
bly, multiple developers experience greater communication
challenges, making it more difficult for them to produce a
significant amount of code that complies with rigorous cod-
ing guidelines as the number of team members increases.

Interestingly, teams with five to eight members tended
to commit relatively fewer coding violations than did teams
of nearby sizes. The extent of coding violations in teams
having five to eight members was closer to the extent of the
coding violations of a single developer. However, once a
team size became too large (e.g., having greater than nine
members), coding violations increased again. Possible rea-
sons might be that a particular protocol of coding conven-
tions did not work well or that communication between team
members was inefficient.

4.3.3 Project Size vs. Coding Violations

Adherence to coding conventions may become more chal-
lenging as the project size increases. In larger projects, com-
munication with many other developers and producing code
free from coding violations on standard conventions are dif-
ficult.

We conducted a Pearson’s chi-squared test for the
two variables: project size (i.e., total lines of source code
files) and the extent of coding violations reported from the



1294
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.7 JULY 2015

Fig. 8 Correlation between project size and coding violations.

files that developers made. We surveyed project size with
five discrete intervals: 0–64K, –180K, –361K, –590K, and
–1.8M by using the 20-percentile discretization as explained
in Sect. 3.5. The largest project size was 1.8M in our survey.
In the chi-squared test, observed frequencies of samples in
the contingency table were ((5864, 7066, 8000, 5622, 5662),
(7325, 6377, 5738, 6150, 6648)). x2-value was 791 and p-
value was less than 2.2e-16. Conclusively, we could statis-
tically confirm that project size affects the developer-coding
violations.

Figure 8 illustrates the correlation between project size
and coding violations. The number of coding violations
was lower in relatively small-sized projects, and the trend
was for coding violations to increase as the project size in-
creased, up to a certain level (e.g., 361K), thus indicating
that larger-sized projects can involve more coding violations
than relatively smaller projects do. However, this trend was
not maintained; coding violations decreased again as the
size of projects grew even larger (e.g., more than 590K).
One plausible explanation for this phenomenon is that on
small-sized projects it may be relatively easy to maintain
software quality, and very large-scale projects could be
strictly managed in terms of compliance with internal QA
guidelines (e.g., coding conventions).

4.3.4 Project Maturity vs. Coding Violations

Projects generally mature over time. Therefore, projects in
the early development stage usually do not have a well-
arranged protocol of coding conventions and hence there
is more opportunity for developers to generate coding vi-
olations. Moreover, developers prefer to implement ideas
quickly in the early stage of a project and then refine them
later.

We conducted a Pearson’s chi-squared test for the two
variables: degree of project maturity and the extent of
coding violations reported from the files that developers
made. In sourceforge.net, project maturity is represented
with seven discrete stages: planning, pre-alpha, alpha, beta,
production/stable, mature, and inactive. We adopted this
representation as it is for the chi-squared test. In the chi-
squared test, observed frequencies of samples in the con-
tingency table were ((664, 1659, 2933, 2328, 9892, 13683,

Fig. 9 Correlation between project maturity and coding violations.

1055), (1031, 865, 1318, 2664, 8156, 16468, 1736)). x2-
value was 15657.7 and p-value was less than 2.2e-16. Con-
clusively, we could statistically confirm that project maturity
affects the developer-coding violations.

As illustrated in Fig. 9, there was a trend that coding
violations steadily increased to the Alpha stage. However, it
was observed that the coding violations stabilized at a lower
level from the Beta stage onward. Although the extent of
coding violations increased slightly in the Production stage,
there was a trend that the coding violations were decreasing
as the project advanced to the Mature and Inactive stages.

5. Discussion

In this section, we discuss assumptions and debatable issues
that we recognized while performing the study.

What is the justification for using the readability esti-
mation formula for a code clock (Sect. 3.2.1) at the file level?
Suppose that there are two files, A and B for example. File A
consists of code blocks most of which have low readability.
In contrast, file B consists of code blocks having relatively
high readability. In this example, we would assume that file
B could be more easily reviewed by readers than could file
A. Thus, we assume that the readability of a file could be
represented by the readabilities of the code blocks compris-
ing the file. Of course, for example, lexical or structural
perspectives can be regarded as additional factors that deter-
mine the readability of a file. However, these are somewhat
ambiguous and not easily measurable; therefore, they were
out of scope for our study.

The readability estimation step must be consistent and
fair for all sample files compared. In particular, the pro-
cedure for dividing a file into code blocks must be defined
statically. This is why we chose to use a fixed size of code
block (i.e., 46 LOC, Sect. 3.2.2). If instead we had divided
a file into code blocks using blank lines or curly braces as
division points, for example, the sizes of code blocks might
have been dynamic, dependent on the coding styles of indi-
vidual developers. For example, some developers may ha-
bitually write source code without using blank lines to sepa-
rate paragraphs. Under such a system, readability scores of
the sample files could have been inconsistently estimated;
our intent was to avoid that pitfall.



LEE et al.: EFFECT ANALYSIS OF CODING CONVENTION VIOLATIONS ON READABILITY OF POST-DELIVERED CODE
1295

6. Research Limitations

Note that the findings in this study are subject to our exper-
iment conditions. We cannot claim that all the findings are
universally acceptable in other project cases. The limitations
or threats to validity in this study are as follows:

We only analyzed open-source projects. It is possible
that closed-source projects would present different analy-
sis results. Therefore, it is our future work to apply the
proposed analysis approach to other projects, particularly
closed-source projects.

Coding style and code readability can have diverse def-
initions depending on the individual. In this study, coding
style was defined with an observable combination of rule
violations or compliance in terms of given coding conven-
tions. Code readability was defined by the visual complexity
of code. However, programmers, for example, may wish to
include an aspect of understandability into the definition of
code readability. It is possible that programmers will have a
negative feeling when asked to read code that is difficult to
understand and thus assign a lower readability score. There-
fore, to address this threat, we may be required to perform
additional case studies in the future with extended defini-
tions.

7. Conclusion

It has generally been believed that adherence to coding con-
ventions could ensure a good quality of code readability.
However, there were no many studies exploring whether this
proposition was true or how strongly it could be accepted
with supporting data. Therefore, we conducted a study to
explore the related three research questions. In the study,
we determined that:

• The adherence or violation of coding conventions af-
fected the quality of readability of post-delivered code
(RQ1, Sect. 4.1).
• There exist particular coding violations that have a rel-

atively stronger influence on the quality of code read-
ability (RQ2, Sect. 4.2). For example, violations re-
lated to trailing comments, Javadoc, and indentation
were particularly sensitive ones, so they need to be re-
spected and controlled to enhance code readability, if
necessary.
• Developer experience, team size, project size, and

project maturity were factors that are able to influence
the extent of coding violations (RQ3, Sect. 4.3). Find-
ings in Sect. 4.3 will be helpful, for example, in recruit-
ing a developer, organizing a team, or managing project
risks.

We believe that our findings and research approach can
assist programmers or QA managers to understand where
they should focus in developing their own customized cod-
ing styles.

In terms of future applications, the classification model

designed in Sect. 4.1 can be used to predict the returned ben-
efit aspect of code readability enhancements after the cor-
rection of a coding violation. Assume that coding violations
must be corrected. An analyst should be able to determine
what violation should be tackled first within a limited time
or the given human resources. That is, the analyst should un-
derstand the cost and benefit aspects of the options to make
cost-effective decisions. The benefit aspect can be predicted
using the classification model that outputs a probability of
whether the quality of the violation-corrected code is closer
to “more readable” or “less readable”. Using the classifi-
cation model, the simulation of cost-benefit analysis can be
performed for all possible correction scenarios.

Acknowledgments

This research was supported by the Next-Generation In-
formation Computing Development and Basic Science Re-
search Program through the National Research Founda-
tion of Korea (NRF) funded by the Ministry of Sci-
ence, ICT & Future Planning (2012M3C4A7033345),
and the Ministry of Education, Science and Technology
(2012R1A1A2009021).

References

[1] M. Smit, B. Gergel, H.J. Hoover, and E. Stroulia, “Maintainability
and source code conventions: An analysis of open source projects,”
Technical report TR11-06, Department of Computing Science, Uni-
versity of Alberta libraries, 2011.

[2] A. Mohan and N. Gold, “Programming style changes in evolving
source code,” Proc. 12th IEEE International Workshop on Program
Comprehension, pp.236–240, June 2004.

[3] T.D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental mod-
els: A study of developer work habits,” 28th International Confer-
ence on Software Engineering, pp.492–501, 2006.

[4] L.E. Deimel, “The uses of program reading,” ACM SIGCSE Bul-
letin, vol.17, no.2, pp.5–14, 1985.

[5] D.R. Raymond, “Reading source code,” Proc. 1991 Conference of
the Centre for Advanced Studies on Collaborative Research, pp.3–
16, 1991.

[6] S. Rugaber, “The use of domain knowledge in program understand-
ing,” Annals of Software Engineering, vol.9, pp.143–192, 2000.

[7] S. Ambler, “Java coding standards,” Softw. Dev., vol.5, no.8, pp.67–
71, 1997.

[8] L.W. Cannon, R.A. Elliott, L.W. Kirchho, J.H. Miller, J.M. Milner,
R.W. Mitze, E.P. Schan, N.O. Whittington, H. Spencer, D. Keppel,
and M. Brader, Recommended C Style and Coding Standards, Spe-
cialized Systems Consultants, Seattle, Washington, 1990.

[9] H. Sutter and A. Alexandrescu, C++ Coding Standards: 101 Rules,
Guidelines, and Best Practices, Addison-Wesley Professional, 2004.

[10] X. Li and C. Prasad, “Effectively teaching coding standards in pro-
gramming,” 6th Conference on Information Technology Education,
pp.239–244, 2005.

[11] Coding conventions supported by Checkstyle, http://checkstyle.
sourceforge.net/availablechecks.html

[12] R.P.L. Buse and W. Weimer, “Learning a metric for code readabil-
ity,” IEEE Trans. Softw. Eng., vol.36, no.4, pp.546–558, 2010.

[13] D. Posnett, A. Hindle, and P. Devanbu, “A simpler model of soft-
ware readability,” Proc. 8th Working Conference on Mining Soft-
ware Repositories, MSR ’11, pp.73–82, 2011.

[14] K.K. Aggarwal, Y. Singh, and J.K. Chhabra, “An integrated measure

http://dx.doi.org/10.1109/wpc.2004.1311066
http://dx.doi.org/10.1145/1134285.1134355
http://dx.doi.org/10.1145/382204.382524
http://dx.doi.org/10.1023/a:1018976708691
http://dx.doi.org/10.1145/1095714.1095770
http://dx.doi.org/10.1109/tse.2009.70
http://dx.doi.org/10.1145/1985441.1985454
http://dx.doi.org/10.1109/rams.2002.981648


1296
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.7 JULY 2015

of software maintainability,” Reliability and Maintainability Sympo-
sium, pp.235–241, 2002.

[15] R. Flesch, “A new readability yardstick,” Journal of Applied Psy-
chology, vol.32, no.3, pp.221–233, 1948.

[16] J. Börstler, M. Caspersen, and M. Nordström, “Beauty and the beast:
Toward a measurement framework for example program quality,”
Umeå University, 2008.

[17] S. Butler, M. Wermelinger, Y.J. Yu, and H. Sharp, “Relating identi-
fier naming flaws and code quality: An empirical study,” 16th Work-
ing Conference on Reverse Engineering, pp.31–35, 2009.

[18] S. Butler, M. Wermelinger, Y.J. Yu, and H. Sharp, “Exploring the
influence of identifier names on code quality: An empirical study,”
14th European Conference on Software Maintenance and Reengi-
neering, pp.156–165, 2010.

[19] D. Reed, “Sometimes style really does matter,” Journal of Comput-
ing Sciences in Colleges, vol.25, no.5, pp.180–187, 2010.

[20] M.O. Elish and J. Offutt, “The adherence of open source JAVA pro-
grammers to standard coding practices,” 6th International Confer-
ence on Software Engineering and Applications, 2002.

[21] M. Halstead, Elements of software science, Elsevier, New York,
1977.

[22] P. Tomas, M.J. Escalona, and M. Mejias, “Open source tools for
measuring the internal quality of Java software products: A survey,”
Computer Standards & Interfaces, vol.36, no.1, pp.244–255, 2013.

[23] X. Wu, V. Kumar, J.R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.J.
McLachlan, A. Ng, B. Liu, P.S. Yu, Z.-H. Zhou, M. Steinbach, D.J.
Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Journal
Knowledge and Information Systems, vol.14, no.1, pp.1–37, 2007.

[24] Weka (ver 3.6.1), http://www.cs.waikato.ac.nz/ml/weka/
[25] E. Alpaydin, Introduction to Machine Learning, 2nd ed., The MIT

Press, 2010.
[26] M.A. Hall and G. Holmes, “Benchmarking attribute selection tech-

niques for discrete class data mining,” IEEE Trans. Knowl. Data
Eng., vol.15, no.6, pp.1437–1447, 2003.

Taek Lee is currently a Ph.D. candidate
in Computer Science and Engineering at Korea
University in Seoul, Korea. He received his
M.Sc. in Computer Science and Engineering at
Korea University in 2006. His research inter-
ests include man-machine interaction, user be-
havior modeling in software systems, software
defect prediction, information security, and in-
formation risk analysis.

Jung-Been Lee is a Ph.D Course in the De-
partment of Computer Science and Engineering
at Korea University in Seoul, Korea. His major
areas of study are self-adaptive software, soft-
ware architecture evaluation and potential defect
analysis. He received the M.S. degrees in Com-
puter Science and Engineering from Korea Uni-
versity in 2011.

Hoh Peter In received his Ph.D. degree in
Computer Science from the University of South-
ern California (USC). He was an Assistant Pro-
fessor at Texas A&M University. At present,
he is a professor in Department of Computer
Science and Engineering at Korea University in
Seoul, Korea. He is an editor of the EMSE and
TIIS journals. His primary research interests are
software engineering, social media platform and
services, and software security management. He
earned the most influential paper award for 10

years in ICRE 2006. He has published over 100 research papers.

http://dx.doi.org/10.1109/rams.2002.981648
http://dx.doi.org/10.1037/h0057532
http://dx.doi.org/10.1109/wcre.2009.50
http://dx.doi.org/10.1109/csmr.2010.27
http://dx.doi.org/10.1016/j.csi.2013.08.006
http://dx.doi.org/10.1007/s10115-007-0114-2
http://dx.doi.org/10.1109/tkde.2003.1245283

