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PAPER

Optimization Methods for Nop-Shadows Typestate Analysis

Chengsong WANG†a), Xiaoguang MAO†,††b), Nonmembers, Yan LEI†c), Student Member,
and Peng ZHANG†d), Nonmember

SUMMARY In recent years, hybrid typestate analysis has been pro-
posed to eliminate unnecessary monitoring instrumentations for runtime
monitors at compile-time. Nop-shadows Analysis (NSA) is one of these
hybrid typestate analyses. Before generating residual monitors, NSA per-
forms the data-flow analysis which is intra-procedural flow-sensitive and
partially context-sensitive to improve runtime performance. Although NSA
is precise, there are some cases on which it has little effects. In this pa-
per, we propose three optimizations to further improve the precision of
NSA. The first two optimizations try to filter interferential states of objects
when determining whether a monitoring instrumentation is necessary. The
third optimization refines the inter-procedural data-flow analysis induced
by method invocations. We have integrated our optimizations into Clara
and conducted extensive experiments on the DaCapo benchmark. The ex-
perimental results demonstrate that our first two optimizations can further
remove unnecessary instrumentations after the original NSA in more than
half of the cases, without a significant overhead. In addition, all the in-
strumentations can be removed for two cases, which implies the program
satisfy the typestate property and is free of runtime monitoring. It comes
as a surprise to us that the third optimization can only be effective on 8.7%
cases. Finally, we analyze the experimental results and discuss the reasons
why our optimizations fail to further eliminate unnecessary instrumenta-
tions in some special situations.
key words: typestate analysis, runtime monitoring, static analysis, Nop-
shadows Analysis, data-flow analysis

1. Introduction

Programmers usually have to conform to some constraints
when using the third-party or system libraries. For exam-
ple, programmers cannot call the method “write” until the
method “open” is called on the same File object. These con-
straints are also known as the typestate properties, and can
be expressed by temporal specifications with free variables.
A typestate property [1] describes the acceptable operations
on a single object or a group of inter-related objects, accord-
ing to the current state (i.e., the typestate) of the object or
the group [2], [3]. Lots of large-scale software system errors
are caused by the violations of typestate properties. What is
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worse, it is very difficult and time-consuming to find and fix
these errors [4], [5]. The static analysis of a program with
respect to a typestate property is generally undecidable. Ex-
isting static typestate property checking tools [6], [7] suffer
from scalability and false-alarm problems. Dynamic type-
state property checking approaches complement static ap-
proaches with runtime monitoring to improve the scalability
and the precision of analyses, but sacrifice the completeness.

Usually, dynamic typestate analysis approaches, such
as runtime verification [8]–[11], automatically convert type-
state properties into runtime monitors that can detect the
property violations at runtime. Implementing runtime mon-
itoring needs to instrument the monitored programs. The
instrumentation can be done manually or automatically
based on existing techniques, such as AOP [12]. How-
ever, the programs monitored by runtime monitors usually
contain many redundant instrumentations, which result in
a significant monitoring overhead. Therefore, some ap-
proaches [4], [13]–[17] exploit static analysis information to
remove provable unnecessary instrumentations at compile
time to reduce the overhead of runtime monitoring. These
approaches are often called hybrid typestate analyses.

Theoretically, hybrid typestate analysis is equivalent
to the static analysis of typestate properties. If all the in-
strumentations of runtime monitors can be removed, the
program is proved to satisfy the typestate property and re-
quires no monitoring at runtime. Nop-shadows analysis
(NSA) [2], [4], [18] is one of the existing hybrid analysis ap-
proaches. It is implemented in Clara [19] to mitigate the
overhead of runtime monitoring of large-scale Java pro-
grams. NSA uses a novel combination of forward and ad-
ditional backward data-flow analysis to remove redundant
instrumentations generated for monitors. In order to be ef-
ficient, it only performs flow-sensitive data-flow analysis on
an intra-procedural level only. Although NSA is precise,
there are more than 20% cases in which some unnecessary
instrumentations still remain after NSA. What is even worse,
NSA has little effects on some of these cases. In order to
find out the reasons, we dissected the algorithm of data-flow
analysis used in the NSA, and made an investigation on the
failed cases. One of the main reasons is that NSA does not
make full use of the program structure information to re-
fine the intra-procedural data-flow analysis. Secondly, NSA
is not inter-procedural flow-sensitive, and the overly con-
servative approximations of inter-procedural cases in NSA
reduce its accuracy.
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In this paper, we propose three optimizations to im-
prove the precision of NSA. The first two optimizations can
both filter interferential states of objects produced during the
data-flow analysis. Interferential states of objects refer to
the states that cannot be actually reached by the correspond-
ing objects at runtime, but can prevent NSA from identi-
fying some unnecessary instrumentations. Specifically, the
first optimization identifies changeless configurations pro-
duced by the backward data-flow analysis of NSA. the sec-
ond one utilizes local object information to refine the itera-
tions of data-flow analysis on the currently analysed method.
The third optimization refines the inter-procedural data-flow
analysis induced by method invocations with partial flow-
sensitive information contained in the called methods. Com-
pared to the full inter-procedural flow-sensitive static analy-
sis, the extra overhead incurred by our optimization is negli-
gible. These three optimizations can remove more unneces-
sary monitoring instrumentations separately in different sit-
uations.

To evaluate our optimizations, we have integrated our
optimizations into Clara, and applied them to the DaCapo
benchmark suite [20]. Our optimizations can further re-
move unnecessary instrumentations after the original NSA
in more than half of the cases. In two cases, we get a perfect
result, i.e., all the monitoring instrumentations are removed,
entirely obviating the need for monitoring at runtime.

To summarize, our paper has the following contribu-
tions:

(i) Propose three optimizations for NSA to improve the
precision of the analysis. The first two optimiza-
tions filter interferential states of objects by identify-
ing changeless configurations and exploiting local ob-
ject information respectively. The third optimization
refines inter-procedural data-flow analysis with par-
tial flow-sensitive information contained in the called
methods.

(ii) Propose and implement an approximate, but sound,
intra-procedural flow-sensitive algorithm to determine
whether a variable points to a local object.

(iii) Design an algorithm to determine whether two static
objects coming from a caller and the responding callee
respectively are must-alias during the execution of the
caller.

(iv) Implement the three optimizations and integrate them
into Clara.

(v) Conduct extensive experiments on the DaCapo bench-
mark suite to show the effectiveness of our optimiza-
tions.

This paper is extended from our conference paper [21]
published in RV 2013. Specifically, compared to the works
in that paper, we propose a new idea to refine the inter-
procedural data-flow analysis (i.e., the third optimization).
Additionally, we implemented the new optimization and
conducted more experiments on the DaCapo benchmark
suite [20]. This paper also analyses the experimental results
with respect to the new optimization.

The remainder of this paper is organized as follows.
We begin with an overview of NSA in Sect. 2. In Sect. 3,
we show three different motivating examples separately to
illustrate the responding optimization methods. Section 4
formulates the details of our proposed optimizations. We
describe our experiments and analyze the experimental re-
sults in Sect. 5. Section 6 describes the related work and the
paper is concluded in Sect. 7.

2. Nop-shadows Analysis

As in the literature [2], [4], [22], we also use the term
“shadow” to represent an instrumentation point created for
runtime monitoring. Usually, a shadow is a method in-
vocation on an object or a group of inter-related objects.
NSA [2], [4] is a hybrid typestate analysis method and im-
plemented in the Clara framework [4], which extends trace-
match [23] with static analysis to remove “nop shadows”.
Here a “nop shadow” means that the shadow does not in-
fluence the results of runtime monitoring, i.e., it can neither
trigger nor suppress a property violation.

Clara consists of three static analysis stages, in which
NSA is the most expensive and precise one. Given a types-
tate property (usually a finite-state machine (FSM)) and an
instrumented Java program, NSA checks whether a shadow
in a method of the program can be removed via data-flow
analysis. The basic idea of NSA is to compute the reach-
able states of each statement in a program according to the
semantics of the program and the monitored typestate prop-
erty. Given an FSM typestate property M and its state set
S , for each statement st, there are two types of reachable
states: source(st) and f utures(st), which are calculated re-
spectively by a forward data-flow analysis (forward analy-
sis) and a backward data-flow analysis (backward analysis).
The source set source(st) ⊆ S contains all the states that
can be reached before executing st from the beginning of
the program; f utures(st) ⊆ P(S ) is the future set, and each
element of f utures(st) contains the states from which the re-
mainder of program execution after st can reach a final state
(usually the error state) of M. Therefore, for a given shadow
s, NSA identifies s as a “nop shadow” if the execution of the
shadow has no impact on the monitoring result, which can
be formalized by the following two conditions:

• target(s) ∩ F = ∅, where target(s) = {q2 | ∃q1 ∈
sources(s) • q2 = δ(q1, s)} is the resulting state set af-
ter executing s, δ is the transition function of M, and
F is the final state set of M. This condition means the
execution of s does not directly lead to an error state.
• ∀q1 ∈ source(s),∀Q ∈ f utures(s) • q1 ∈ Q ⇔
δ(q1, s) ∈ Q. It means the execution of s does not in-
fluence whether or not a final state will be reached.

The shadow s can be removed if both conditions are satis-
fied.

Figure 1 gives an example for NSA. The left part is an
FSM for “ConnectionClosed” [2] typestate property, which
requires the “write” operation should not be called after a
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Fig. 1 An example for Nop-shadows Analysis.

Connection object is closed. The right part displays a pro-
gram segment annotated with the state information of each
statement. The elements in the source set and the futures
set of each statement are next to the downward and upward
arrows, respectively. For instance, for the shadow s3 at line
3, we have:

source(s3) = {0}
target(s3) = {1}

f utures(s3) = ∅
f utures(s3) = ∅ means that there is no state from which
the property state machine can reach the final state via the
execution after line 3. According to the preceding two con-
ditions, s3 is a “nop shadow” that can be safely removed.
That is, the runtime monitor does not need to monitor the
method call statement at line 3 in this example at runtime.

After removing a “nop shadow”, the source(st) and
f utures(st) of each statement will be calculated again, un-
til no “nop shadow” exists. If there is no shadow left after
NSA, the program is proved to satisfy the typestate property.
For example, all the shadows of the program in Fig. 1 will
be removed eventually.

2.1 Worklist Algorithm

Eric Bodden presented the Algorithm 1 to compute the
reachable states for every statement in a given method [2],
[4]. In order to distinguish the states of multiple different ob-
jects or groups of inter-related objects, the algorithm propa-
gates “configurations” instead of state sets. A configuration
specifies the state information of some specific objects. A
configuration c = (Q, b) is composed by a state set Q and a
variable binding b. Informally, the variable binding speci-
fies the static objects [24] which represent the concrete run-
time objects at compile-time. Actually, a shadow s also has
a variable binding [25] specifying the objects whose states
can be changed by s. Two variable bindings are compatible
if they can be bound to the same static object or the same
group of inter-related static objects. A configuration and a
shadow are compatible if their variable bindings are com-
patible. For a statement st associated with a configuration
(Q, b), in forward analysis, the elements in set Q represent
all the possible states which the static objects specified by
the variable binding b can reach just before executing st; in
backward analysis, they are the states from which the static
objects specified by b can reach a final state via the exe-
cution after st. For example, the configuration S 8 in Fig. 3

Algorithm 1 worklist(initial, succc fg, succext, δ)
1: wl := initial;
2: be f ore := a f ter := λstmt.∅
3: while wl non-empty do
4: pop job(stmt, cs) from wl
5: be f ore := be f ore[stmt 
→ be f ore(stmt) ∪ cs]

6: cs′ :=

{
cs if shadows(stmt) = ∅
∅ otherwise

7: for c ∈ cs, s ∈ shadows(stmt) do
8: cs′ := cs′ ∪ transition(c, s, δ)
9: end for

10: csnew := cs′ − a f ter(stmt)
11: if csnew non-empty then
12: a f ter := a f ter[stmt 
→ a f ter(stmt) ∪ csnew]
13: for stmt′ ∈ succc fg(stmt) do
14: wl := wl ∪ {(stmt′, csnew)}
15: end for
16: for stmt′ ∈ succext(stmt) do
17: wl := wl[stmt′ 
→ wl(stmt′)
18: ∪reaching(csnew, relatedS hadows(stmt))]
19: end for
20: end if
21: end while

represents that the static object O2 can reach state 2 before
executing the statement at line 8. The configuration F12 in
Fig. 4 represents that the static object O can reach the final
state from state 0 or 1 via the execution after line 3. More-
over, Algorithm 1 introduces a notion, job(stmt, cs), to rep-
resent a configuration set cs associated to the statement stmt.

In fact, for a given shadow-bearing method m, both the
forward analysis and the backward analysis are performed
by running the general worklist algorithm, i.e., Algorithm 1.
The differences between them are the initial values of argu-
ments passed to the algorithm. For the forward analysis, the
first argument initial is a job set, which contains all the con-
figurations that may be reached at the entry statement of m
from the beginning of the program. The second and third
arguments, i.e., succc fg and succext, are successor functions
modelling all the possible intra and inter procedural control-
flow of m respectively. As shown in Fig. 2, the dashed ar-
rows represent the intra procedural control-flow of m, and
solid arrows (1, 2, 3, 4) represent four types of possible inter
procedural control-flow of m. Solid arrows (1) and (2) are
used to model the transitively recursive method calls to m.
We cannot determine whether a method call must be transi-
tively recursive at compile-time. Hence, both of the arrows
(3a) and (3b) are used to model the non-recursive method
calls within m. Additionally, method m can re-executes
again after its returning. Arrows (4) is used to model this
case. The last argument δ is the translation function ofM.
As to the backward analysis, we first 1) flip all edges and
exchange the initial states and final states in the M to get
a reversed FSM M′; 2) get reversed successor functions,
succ′c fg and succ′ext, by flipping all the edges in intra and
inter procedural control-flow graph of m. Hence, succ′c fg,
succ′ext and δ′ (the translation function of M′) are passed
separately as the second, third and forth argument to Algo-
rithm 1. Moreover, the first argument is the set of jobs which
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Fig. 2 Intra and inter procedural control-flow of the method m [2].

associate any “final” shadow†, exit or method call statement
stmt in m with any configuration that can reach a final state
via the execution after stmt.

Algorithm 1 first initializes job set wl with the first ar-
gument, and then initializes two mappings before and af-
ter which map each statement to the corresponding con-
figurations that have been calculated before and after that
statement so far (lines 1-2). Next, Algorithm 1 loops on
the job set wl until the mappings before and after reach a
fixed point (lines 3-20). After popping a job(stmt, cs) from
wl, the algorithm updates the before(stmt) with configura-
tion set cs (lines 4-5). Then, Algorithm 1 computes succes-
sor configuration set cs′ by performing transitions on con-
figurations in cs with shadows at stmt (lines 6-9). Next,
the algorithm filters out the configurations that have been
calculated in the former iterations (line 10). If the result-
ing job set csnew is non-empty, Algorithm 1 updates the af-
ter(stmt) and propagates csnew to the successor statements
of stmt in m’s intra and inter procedural control-flow graph
(lines 11-20). In line 17, if stmt is a method call state-
ment, relatedS hadows(stmt) denotes all the shadows that
can be transitively reached via stmt. Otherwise, stmt is
an exit statement of m, and relatedS hadows(stmt) denotes
all the shadows in other methods. RelatedS hadows(stmt)
does not contain the shadows in m in both cases.
Reaching(csnew, relatedS hadows(stmt)) calculates all con-
figurations that can be obtained from the configurations in
csnew by executing shadows in relatedS hadows(stmt)) in
any order.

3. Motivating Examples

We motivate our three optimizations for NSA separately
through three separate examples. We also use the “Connec-
tionClosed” property in Fig. 1 as the typestate property. Fig-
ure 3 shows an example that invokes the “close” and “write”
methods of the Connection class. The shadows at line 7 and
10 violate the typestate property, because they can both drive

†“Final” shadow, which can drive the property FSM into a final
state [4].

Fig. 3 The example for motivating the first optimization.

the state machine into the final state. The “close” operation
at line 8 is between these two violating shadows. Hence,
from the semantics of the program and the property FSM
(c.f. Fig. 1), the runtime monitor does not need to monitor
the shadow at line 8. Whereas, the original NSA cannot
identify the shadow at line 8 as a “nop shadow” at compile-
time. The reason is explained as follows.

For the sake of brevity, Fig. 3 only shows partial crit-
ical state information calculated by the forward and back-
ward analysis. We denote C as the variable defined in
FSM and assume that the program creates static objects O1

and O2 at line 2 and line 3 at compile-time respectively.
The variable binding of the shadow at line 8 is C = {O2},
and the shadow at line 8 changes the configuration from
S 8 = ({2},C = {O2}) to T8 = ({1},C = {O2}) in the forward
analysis. F8 = ({2},C � {O1}) associated to the shadow at
line 8 is one of the resulting configurations produced by the
backward analysis starting at line 9, which means the type-
state of the object does not change if the object is not O1.
The variable bindings of S 8 and F8 are both compatible to
that of the shadow at line 8. According to the “nop shadow”
conditions, because the states of the state transition caused
by the shadow at line 8, i.e., state 2 in S 8 and state 1 in T8,
are not both contained in the state set {2} of F8, NSA fails to
identify this shadow as a “nop shadow”.

Actually, the configuration F8 is induced by the “final”
shadow at line 9, in which the variable c1 is totally unre-
lated to the variable c2 at line 8, i.e., they must not alias.
Hence, in principle, we should not consider the configura-
tion F8 when checking whether the shadow at line 8 can
be removed. Based on this insight, our optimized NSA can
successfully filter this type of interferential configurations
generated from backward analysis and identify more shad-
ows, similar to the shadow at line 8, as “nop shadows” in
some situations.

Figure 4 shows another example to motivate the sec-
ond optimization approach. Different from the former one,
the typestate property “ConnectionClosed” is not violated
by the method m. Therefore, all the shadows in method m
should be safely removed. However, all the shadows re-
main after using the original NSA. Figure 4 shows partial
forward and backward analysis results that are next to the
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Fig. 4 The example for optimization based on local object information.

Fig. 5 The example for demonstrating partial inter-procedural flow-sensitive analysis.

two downward arrows and two upward arrows, respectively.
Because there may be several consecutive method calls to a
method in a program, for ensuring the soundness, the for-
ward analysis needs to propagate the configuration at the
end of a method to the entry of the method until a fixed-
point is reached. For example, S 14 is propagated to the en-
try configuration S 22 of the next iteration (indicated by the
red dotted line). The propagation also happens in backward
analysis. After reaching the fixed-point, the shadow at line 3
can produce the configuration S 23, which contains an error
state. Thus, this shadow cannot be removed. In addition, the
shadow at line 4 changes the configuration S 13 to S 14, but
state 0 in S 13 and state 1 in S 14 are not both contained in
the state set {1, 2} of the configuration F24. Therefore, the
shadow at line 4 cannot be removed either.

After carefully analyzing the example program, we find
the reason is that the configuration propagation disregards
the local object information. In this paper, we call a static
object, which is created by a “new” statement within the
method currently being analyzed, a local object. For exam-
ple, the static object O created by the statement at line 2 is
a local object. Obviously, each local object will be assigned
with a different runtime object each time when the method is
invoked at runtime. Therefore, for the example in Fig. 4, the
configuration S 22 should not have the same variable binding
as S 14. If we have the local object information of the ex-
ample program, i.e., no need to do the second forward and
backward iteration, then both of the “nop shadows” at line 3
and line 4 can be removed. Based on the observations moti-

vated by this example, we optimize NSA by exploiting local
object information.

The example in Fig. 5 demonstrates the third optimiza-
tion for NSA. Different from the above two examples, this
example program involves three relevant methods. Before
invoking the “write” operation on the Connection Object
pointed to by variable c in the main method, the program
always call the method m1 in which the operation “recon-
nect” on the same object is invoked. Clearly, the programm
doesn’t violate the “ConnectionClosed” property and all the
shadows in the three methods should be removed. But the
original NSA can not remove any shadow in this example.

The imprecision of the original NSA is mainly caused
by the overly conservative inter-procedure data-flow anal-
ysis. For example, when a configuration is propagated
through a method call statement during analysis, the orig-
inal NSA can only obtain all the shadows in other methods
that can be transitively reached via this method call state-
ment. But, it cannot determine the orderings of these reach-
able shadows in control flows. In order to avoid jeopar-
dizing soundness, the original NSA assumes that all these
reachable shadows can appear in any order at runtime [4].
As shown in Fig. 5, the method call statement at line 3 in
main method transforms the configuration S 1 = ({0},T ) (T
means that this configuration is compatible to any shadow)
into S 2 = ({0, 1},T ) in the forward analysis. We assume that
the main method creates static object O at line 2. Because
the shadow at line 4 in main method changes the configu-
ration S 2 into S 3 = ({0, 2},C = O) which contains an error
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Fig. 6 The example for refining method call statement.

state, this shadow cannot be removed. Based on the same
argument, the shadows in methods m1 and m2 cannot be re-
moved by the original NSA either.

Let us assume that the formal parameter of method m1

points to static object O1 at compile-time. Figure 5 shows
all the configurations (i.e., S 6 = ({0},C = O1) and S 7 =

({0, 1, 2},C � O1)) associated to the statement at line 3 in m1

in the forward analysis, which means that if the current state
of Connection object is state 1 or 2 when returning from
the method m1, this object must not be O1. Additionally,
the static object O is passed as the actual parameter to m1

at line 3 in the main, so static objects O and O1 must be
the same object. Based on the above information, we can
get the conclusion that the method invocation statement at
line 3 in main cannot transition the state from 0 into 1 on
object O in the forward analysis. Therefore, we refine the
configuration S 2 into S ′2 = ({0},T ) and S ′′2 = ({1},C � O)
(see Fig. 6). Therefore, the shadow at line 4 in main method
is not compatible to the new configuration S ′′2 , and it cannot
drive the object O into error state and can be safely removed.
After removing this shadow, the shadows in method m1 and
m2 can be easily removed too. Inspired by this example,
we can draw the following optimization: for a method call
statement st which invokes method m, although we cannot
determine the full orderings of shadows that can be reached
via st, we can use the original NSA analysis results of m to
refine the inter-procedural data-flow analysis induced by st.

For simplicity, the above motivating examples do not
contain complex programming language features, such as
recursion, exception handling and aliasing. In Sect. 4, we
will give the details of our optimization approaches that can
be applied in general.

4. Optimization Approaches

This section presents the details of our optimization ap-
proaches which also apply the conditions described in
Sect. 2 to identify “nop shadow” as the original NSA. How-
ever, our optimizations make use of program structure infor-
mation to improve the precision of the original NSA. Specif-
ically, our first two optimizations prune irrelevant configu-
rations that can otherwise prevent “nop shadow” from be-
ing identified. The third optimization refines the configura-
tions produced by inter-procedural analysis to identify more
“nop shadow”. These three optimizations are complemen-
tary to each other. They address different aspects of the is-

sues separately that can potentially lead NSA to lose preci-
sion. Therefore, they can be combined together to further
improve the precision of the original NSA.

4.1 Identifying Changeless Configurations

How can we identify changeless configurations, like F8 in
Fig. 3, from the results produced by backward analysis?
Basically, if the states of a configuration have never been
through a state transition during backward analysis, then
we consider the configuration as a changeless configuration.
For a changeless configuration Ci = (Qi, bi) that is induced
by a “final” shadow s f and associated to a shadow si, even
if Ci is compatible with si, there is no need to consider Ci

when checking whether the shadow si is a “nop shadow”.
The reason is: the states in set Qi of the objects specified by
the variable bindings bi will definitely not change anymore
before program execution passes the “final” shadow s f , and
the execution of the “final” shadow s f would not trigger an
error either because of the incompatibility of s f and Ci.

Hence, we extend the original configuration tuple from
(Q, b) to (Q, b,T ), where Q is the state set, b is the vari-
able bindings and T indicates whether the states of this
configuration have ever been through a state transition be-
fore. Therefore, we need to record the information of T dur-
ing the configuration transitions in backward analysis. The
new configuration transition algorithm is displayed in Algo-
rithm 2.

Algorithm 2 transition((Qc, bc,Tc), s, δ)
1: cs := ∅; // initialize result set
2: l := label(s), βs := shadowBinding(s); //extract label and bindings

from s
3: //compute target states
4: Qt := δ(Qc, l);
5: //compute configurations for objects moving to Qt;
6: β+ := and(bc, βs);
7: if β+ �⊥ then

8: cs := cs ∪ (Qt , β
+, true);

9: end if
10: //compute configurations for objects staying in Qc;
11: B− :=

⋃
v∈dom(βs) andNot(bc, βs, v) \ {⊥};

12: cs := cs ∪ {(Qc, β
−,Tc) | β− ∈ B−};

13: return cs;

The algorithm is basically the same as the original
one [4]. The different parts are enclosed in boxes. Line 4
computes the state set of the successor configuration. If the
shadow s can drive the state set Qc into Qt (c.f. line 4), and
the shadow is compatible to the configuration (determined
by β+ �⊥ at line 7), the value of T in successor configura-
tions is assigned with true, indicated by lines 7-9; otherwise,
the value of T remains the same during the configuration
transition (lines 11-12). Moreover, the value of T in the ini-
tial configurations is set to false.

In fact, as shown in Algorithm 2, both algorithms cal-
culate the state set Q and variable binding b in the resulting
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configurations in the same way. The new algorithm only re-
serves some extra state transition information at line 4 and
12, compared to the original one. Therefore, our new al-
gorithm is just a simple extension of the original one, and
doesn’t change the inner workings of the original algorithm.
Based on the extra information provided by the new algo-
rithm, our first optimization then prunes changeless configu-
rations that can otherwise prevent “nop shadow” from being
identified. Specially, for a given shadow s and a configura-
tion (Q, b,T ) in f utures(s), if T is false, the configuration
will be considered to be interferential, and should be filtered
out when checking whether the shadow s is a “nop shadow”.

4.2 Exploiting Local Object Information

First, we present how to determine whether a static object is
a local object to a given method. We have the following two
observations: first, for a given static object inside a method,
if it is created by a “new” statement within the method, the
object must be a local object to this method; second, for any
two strong must-alias [24] static objects O1 and O2 inside
a method, these two objects always refer to the same heap
object, which implies that they always point to the same lo-
cal object or the same non-local object. Based on these two
insights, we design Algorithm 3 to identify local objects.

Algorithm 3 isLocalObject(m, O)
1: Set〈staticObject〉 newOb jects;
2: for all stmt ∈ m do
3: if stmt is a new statement then
4: create a new static object Oi;
5: newOb jects := newOb jects ∪ {Oi};
6: end if
7: end for
8: for all O j ∈ newOb jects do
9: if O j must-alias O then

10: return true;
11: end if
12: end for
13: return false;

For a given method m and a static object O, the algo-
rithm returns true if O is a local object to method m; other-
wise returns false. Algorithm 3 first declares a set newOb-
jects, and then adds all the local objects created by the “new”
statements in m to newObjects (lines 1-7). Then, the algo-
rithm checks whether there exists an element in newObjects
that is strong must-alias to O. If that is the case, the al-
gorithm returns true and terminates running (lines 8-12).
Currently, the must-alias analysis is only intra-procedural
flow-sensitive, and we make a sound assumption that any
two static objects coming from different methods may alias.
In order to gain more efficiency, we can extract lines 2-7
from Algorithm 3 and compute the newObjects set before
performing the optimizations.

Besides identifying local objects, for a configuration,
we also need to know whether it is gotten by statically mod-
eling the multiple consecutive invocations of the analyzed

method in forward or backward analysis. Similar to the first
optimization, we also extend the original configuration tu-
ple to (Q, b,R), where R is a boolean variable. If the cur-
rent configuration is indeed gotten by statically modeling
the multiple consecutive invocations of the method being
analysed, R gets assigned true.

As shown in Fig. 2, for a given method m, the intra-
procedural control-flows cannot lead to the multiple con-
secutive invocations of m. Hence, the shadows in m can-
not change the value of R. Obviously, there are only three
types of inter-procedural control flows (solid arrows (1), (2)
and (4)) in Fig. 2, which can lead to multiple consecutive
invocations of the method m. Therefore, for all the config-
urations that reach the entry statements of m or the recur-
sive call sites within m along these inter-procedural control
flows, we should assign true to R in these configurations in
forward analysis. Based on the same argument, the value
of R in configurations, which reach the exit statements of m
or the recursive call sites within m along these reverse inter-
procedural control flows, should be assigned true in back-
ward analysis. Furthermore, for each initial configuration,
the value of R is set to false in both forward and backward
analysis.

Based on Algorithm 3 and the extended configuration,
we can filter interferential configurations as follows: for a
given shadow s in method m, if there exists a variable v in
the variable bindings of s pointing to a local object, any con-
figuration (Q, b,R) in source(s) or f utures(s) can be safely
eliminated if R is true. The reason is: even if the shadow
s and the configuration have the same static variable bind-
ing with respect to the variable v, v will definitely point to a
different new object during each invocation of m at runtime,
which means that the shadow s and the configuration are not
actually compatible at runtime. After eliminating all the in-
terferential configurations from sources(s) and f utures(s),
we use the remaining configurations to determine whether
the shadow s is a “nop shadow” according to the conditions
in Sect. 2.

4.3 Refining Inter-procedural Data-flow Analysis

4.3.1 Combining Analysis Results

The original NSA is only intra-procedural, not inter-
procedural, flow-sensitive. When a configuration set cs
reaches a given method call statement st which invokes
method m, the original NSA will compute the configuration
set TranCon f igs(cs, st) which contain all the configurations
that can be reached from cs by executing 0 or more shad-
ows, transitively reachable via st, in any order [4]. Obvi-
ously, the set TranCon f igs(cs, st) is a very conservative ap-
proximation and includes some unreachable configurations
during runtime. Additionally, the original NSA performs
intra-procedural flow-sensitive analysis on the method m,
and we define ExitCon f igs(m) as the set of configurations
that are associated to exit (in forward analysis)/entry (in
backward analysis) statements or recursive call statements
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within m. In other words, the set ExitCon f igs(m) contains
all the configurations that may be reached when the pro-
gram just leaves from method m. In Fig. 5, for example,
ExitCon f igs(m1) = {S 6, S 7} in forward analysis. There-
fore, we can refine the inter-procedural data-flow analysis
with ExitCon f igs(m). We denote Insect(cs, st) as the re-
sulting configuration set after refinement. Therefore, each
of the configuration G1(Q1, b1) in Insect(cs, st) should sat-
isfy the following two conditions:

- ∃G2(Q2, b2) ∈ TranCon f igs(cs, st) such that Q1 ⊆
Q2 ∧ b1 ⊆B b2

†, and
- ∃G3(Q3, b3) ∈ ExitCon f igs(m) such that Q1 ⊆ Q3 ∧

b1 ⊆B b3.

A variable binding b is defined as b = (b+, b−) where
both b+ and b− are binding functions which map free vari-
ables defined in FSM to set of static objects [2], [4]. For a
variable v, b+(v) and b−(v) represent the static objects that v
may and must not point to, respectively. In this paper, we
introduce a new operator ∗ on variable bindings, and define
b = b1 ∗ b2 as follows: for any variable v defined in FSM,
b+(v) = b+1 (v) ∪ b+2 (v) and b−(v) = b−1 (v) ∪ b−2 (v). If variable
bindings b1 and b2 are not compatible, we denote this case
by b =⊥, which means that b can not be bound to any ob-
ject. Obviously, the ∗ operation complies to the following
properties:

- b ⊆
B

b1 ∧ b ⊆
B

b2

- ∀b′ such that b′ ⊆
B

b1 ∧ b′ ⊆
B

b2 ⇒ b′ ⊆
B

b

In other words, variable binding b is the “biggest” variable
binding that is compatible to both b1 and b2. Based on the
notion of the above operation, we further define a new oper-
ator� on configurations as follows.

(Q, b)�(Q′, b′) = (Q ∩ Q′, b ∗ b′)

Now, we can safely define the configuration set Insect(cs, st)
as:

Insect(cs, st) = {C1�C2 | C1 ∈ TranCon f igs(cs, st),

C2 ∈ ExitCon f igs(m)}
Informally, Insect(cs, st) contains all the common states of
common objects which are implied by both configuration set
TranCon f igs(cs, st) and ExitCon f igs(m).

4.3.2 Inter-procedural Points-to Must-alias analysis

As shown in Fig. 6, if we do not know that the static ob-
jects O in method main and O1 in method m1 must alias,
we will get the configurations S �2 = ({1},C � O1) and

S �3 = ({2},C = O ∧ C � O1) instead of S ′′2 = ({1},C � O)
and S ′′3 = ({0, 1},C � O) at line 3 and line 4 respectively.

Because the S �3 contains an error state, the shadow at line 4
†The “inclusion relation” ⊆

B
on variable bindings is defined

in that literature [4]. b1 ⊆B b2 means that any object or group of
related objects that can be bound to b1 can also be bound to b2.

in main method can not be removed. However, the original
NSA computes must-alias information on intra-procedural
level only. In fact, the actual and formal parameters of
a method invocation may serve as springboards to exploit
aliasing relationships between the objects coming from the
caller and the corresponding callee. Inspired by this in-
sight, we designed the Algorithm 4 to determine whether
two static objects coming from a caller and the correspond-
ing callee are must-alias during the execution of the caller.

Algorithm 4 isInterProceduralMustAlias(O, O1, R)
1: for all Ri = (Ai, Fi) ∈ R do
2: if Ai must-alias O && Fi must-alias O1 then
3: return true;
4: end if
5: end for
6: return false;

Without loss of generality, we make the following as-
sumptions:

- Method mCaller invokes method mCallee at statement
st in its method body;

- Static objects O and O1 come from method mCaller
and mCalee respectively;

- Ai and Fi denote the objects pointed to separately by
the ith actual and formal parameter of the method in-
vocation at the statement st, and N represents the total
number of parameters.

Moreover, we define the binary relation set R = {(Ai, Fi)|0 �
i < N}. Algorithm 4 returns true if O and O1 are must-
alias on inter-procedural level; otherwise returns false. For
method invocations in java programs, object references are
passed in as method parameters, so the actual parameter
and its corresponding formal parameter actually point to the
same object. Therefore, based on the intra-procedural flow-
sensitive information provided by original NSA, if there ex-
ist an element Ri = (Ai, Fi) ∈ R where Ai and Fi are must-
alias to O and O1 respectively, static objects O and O1 must
alias.

4.3.3 Workflows

For a given program, the workflow of the third optimization
includes the following steps:

• Step 1: We perform the original forward/backward
analysis on every shadow-bearing method, and cache
the configurations associated to exit/entry statements or
recursive call statements of these methods.
• Step 2: Based on the information cached in Step 1,

we refine the dataflow information of the currently an-
alyzed method according to the approach presented in
Sect. 4.3.1. If we can not identify any “nop shadow”
in this method, we perform refinements on the next
method; otherwise, we 1) remove a “nop shadow”, 2)
perform the original forward and backward analyses on
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Table 1 Typestates properties used in our experiments [2].

Property Name Description

FailSafeEnum do not update a vector while iterating over its elements
FailSafeEnumHT do not update a hash table while iterating over its elements or keys
FailSafeIter do not update a collection while iterating over its elements
FailSafeIterMap do not update a map while iterating over its keys or values
HasNextElem always call hasMoreElements before calling nextElement on the same Enumeration object
HasNext always call hasNext before calling next on the same Iterator object
Reader do not use a Reader after its InputStream is closed
Writer do not use a Writer after its OutputStream is closed

the current method again and modify the cached con-
figurations (because the current method may be recur-
sive), 3) re-iterate the refined analysis on the current
method, until we reach a fixed point.
• Step 3: If some “nop shadows” have been identified

in step 2, we return back to step 1. The reason is that
removing a “nop shadow” in one method can alter the
context and inter-procedural data-flow information of
other methods.

Obviously, the optimized NSA analysis is more complex
and time-consuming, compared with the original one. In
fact, Clara include other two simple, but relatively efficient,
flow-insensitive data-flow analyses, i.e., Quick Check and
OSA [4]. Therefore, we can apply these less expensive anal-
yses to the program before skipping back to step 1 from Step
3.

5. Experiments and Discussion

We have implemented our optimizations on the Clara frame-
work and conducted experiments on the DaCapo benchmark
suite [20]. NSA cannot support multi-threaded programs.
Hence, we ignore the multi-threaded programs hsqldb, luse-
arch and xalan in the benchmark. Our experiments are
based on the experiments of the original NSA [2], [4]. We
are only interested in 23 property/program combinations for
each of which the original NSA cannot remove all the shad-
ows. These 23 combinations involve 8 typestate properties
and 7 programs. Table 1 lists the typestate properties used
in the experiments.

In order to make our experimental results more con-
vincible, we also limit the maximum number of configura-
tions to be 15000, which is the same as that of the original
NSA. Once the number of configurations computed by our
optimized analysis is above the threshold, it will abort the
analysis of the current method and process the next one.

We evaluate our optimizations as follows: for each op-
timization, we carry out NSA first, then use the optimized
NSA to further identify “nop shadows”. This way of evalu-
ation is different from using an optimized NSA directly. Ac-
tually, according to our experimental results, under the same
configuration limit, using an optimized NSA after original
NSA will obtain better results than that of using the opti-
mized NSA directly. The reason is that using each opti-
mized analysis directly generates more configurations than
the original NSA and makes it easier to abort analysis of

programs.
We conducted all the experiments on a Server with

256GB memory and four 2.13GHz XEON CPUs.

5.1 Experiment Results

To justify the effectiveness of our optimizations, we use the
original NSA as the baseline for our experiments. Table 2
shows the results of our optimizations, and the cases on
which optimizations have no effect are not listed. The forth
column (O1) shows the number of remained shadows after
using the first optimization, i.e., filtering changeless config-
urations generated from backward analysis. For 4 out of
23 combinations (17.4%), our first optimization can further
identify removable shadows after the original NSA. In one
case (FailSafeIterMap/bloat), the shadows removed by our
first optimization are more than the shadows removed by the
original NSA.

The fifth column (O2) of Table 2 shows the number
of the shadows that remain after using the second opti-
mization, e.g., exploiting the local object information. For
10 out of these 23 combinations (43.5%), the optimized
NSA can further remove shadows after the original NSA. In
two cases (FailSafeEnum/fop and FailSafeIter/luindex),
the optimization can remove all the shadows that remain
after the original NSA. Hence, the optimized NSA based
on local object information can give the static guarantee
that the program satisfies the typestate property in each
of these two cases. Furthermore, for 5 out of these 10
cases (50%), the shadows removed by our second optimiza-
tion are more than the shadows removed by the original
NSA. Especially, in two cases (FailSafeEnum/fop and Fail-
SafeEnumHT/jython), the original NSA cannot remove
any shadow at all.

Surprisingly, the benefits of our third optimization, i.e.,
refining inter-procedural data-flow analysis, are not signif-
icant for these benchmarks. As shown in the sixth column
(O3) of Table 2, for only 2 out of these 23 combinations
(8.7%), the optimized NSA can further remove shadows af-
ter the original one. Actually, there are large amounts of
configurations generated during the whole process of this
optimization. For several cases, such as FailSafeIter/bloat,
the optimized NSA aborts its analysis before identifying any
“nop shadow”, because the number of generated configura-
tions exceeds the given fixed quota. In Sect. 5.3, we will
discuss the reasons why this optimization is not very effec-
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Table 2 Results of the optimized NSA.

Property/Program Nb Na O1 O2 O3 B1 B2 B

FailSafeEnum/fop 5 5 5 0 5 0 0 0
FailSafeEnum/jython 47 44 44 36 44 36 36 36
FailSafeEnumHT/jython 76 76 76 72 76 72 72 72
FailSafeIter/bloat 1010 916 911 905 916 899 905 899
FailSafeIter/chart 158 150 150 120 150 120 120 120
FailSafeIter/jython 119 115 115 105 115 105 105 105
FailSafeIter/luindex 30 15 15 0 15 0 0 0
FailSafeIter/pmd 305 290 290 262 287 262 259 259
FailSafeIterMap/bloat 481 479 476 479 479 476 479 476
FailSafeIterMap/jython 153 133 133 119 133 119 119 119
FailSafeIterMap/pmd 372 262 262 260 262 260 260 260
Writer/antlr 44 35 34 35 34 34 34 33
Writer/bloat 19 11 9 11 11 9 11 9

Nb: The number of shadows remained before the original NSA. Na: The number of shad-
ows remained after the original NSA. O1: The number of shadows remained after the first
optimization. O2: The number of shadows remained after the second optimization. O3:
The number of shadows remained after the third optimization. B1: The number of shadows
remained after the combination of the first two optimizations. B2: The number of shadows
remained after the combination of the last two optimizations. B: The number of shadows
remained after the combination of the three optimizations.

Table 3 The results of analysis time (in seconds).

Property/Program The 1st Opt The 2nd Opt The 3rd Opt
NSA Opt Total NSA Opt Total NSA Opt Total

FailSafeEnum/fop 0.98 0.1 251.14 1.21 0.39 276.87 0.98 0.08 252.19
FailSafeEnum/jython 8.06 0.2 243.55 8.23 1.87 269.35 7.5 0.22 242.02
FailSafeEnumHT/jython 10.30 0.69 240.91 10.41 8.19 271.05 10.35 0.71 244.09
FailSafeIter/bloat 298.05 133.94 806.02 288.5 516.82 1214.1 222.12 EX EX
FailSafeIter/chart 25.35 1.64 305.92 24.15 66.08 393.04 24.55 1.31 313.25
FailSafeIter/jython 16.9 0.74 270.23 17.69 14.87 303.80 17.73 1.66 281.21
FailSafeIter/luindex 2.21 0.07 99.1 2.53 0.47 110.64 2.16 0.07 100.24
FailSafeIter/pmd 46.01 2.51 352.67 46.97 112.01 490.54 44.88 4.41 357.87
FailSafeIterMap/bloat 58.78 30.17 433.4 65.92 85.19 521.37 62.24 EX EX
FailSafeIterMap/jython 49.67 17.61 276.74 58.38 56 337.73 44.15 EX EX
FailSafeIterMap/pmd 77.67 4.25 420.05 77.72 96.84 541.66 71.89 3.58 419.04
Writer/antlr 12.95 0.83 223.76 13.7 9.06 253.48 12.27 6.22 229.37
Writer/bloat 1.56 0.24 128.66 1.68 0.34 140.08 1.54 0.1 129.89

NSA: The analysis time that original NSA consumes. Opt: The extra analysis time consumed by the optimization. Total: The total
compilation time of the case. EX: Clara throws an exception and aborts analysis, because the number of generated configurations exceeds the
given fixed quota.

tive in detail.
The third rightmost column (B1) of Table 2 shows the

results of combining the first two optimizations, i.e., opti-
mizing by exploiting local object information first and then
by removing changeless configurations. For 13 out of these
23 combinations (56.5%), the combined optimized analy-
sis can further identify “nop shadows” after the original
NSA. In one case (FailSafeIter/bloat), both the optimiza-
tions have positive effects and identify different “nop shad-
ows” respectively. Interestingly, compared to perform these
two optimizations after original NSA individually, the com-
bination can identify one more “nop shadow” in this case.
The reason is: after the original NSA, the second optimiza-
tion firstly removes some shadows from the instrumented
program, so the first optimization generates less configura-
tions and can identify one more “nop shadow” under the
same limit to the number of configurations. In addition,
there are three cases where the second optimization cannot

remove any “nop shadow” but the other one can, which also
justifies that the two optimizations complement each other.

The second rightmost column (B2) of Table 2 shows
the results of another combination of the last two optimiza-
tions, i.e., optimizing by exploiting local object information
first and then by refining inter-procedural data-flow analy-
sis, which can enjoy the benefits of both optimizations. Of
course, we can combine the three optimizations together to
obtain the benefits of all optimizations.

5.2 Analysis Time

Table 3 displays the analysis time of the cases on which
our optimizations have effects. The analysis time of NSA is
mainly dominated by the prior supporting analyses, such as
constructing call graphs and computing points-to informa-
tion, and we evaluate each optimization by running original
NSA first and then the optimized one. Therefore, the analy-
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sis time for evaluating each optimization is definitely longer
than that of the original NSA. The original NSA has been
run three times which correspond to the three NSA columns
in Table 3 respectively. Due to the unstability of the testing
environment, the values of the three NSA columns vary in a
narrow range is reasonable.

From the experimental results, it can be justified that
the analysis time of NSA is just a small part of the total com-
pilation time. The average analysis time of the original NSA
is under 1 minute, though it needs several minutes in one
case. The total compilation time including our optimization
is under 10 minutes, except for the case FailSafeIter/bloat.
Next, we elaborate upon the extra analysis time consumed
by each optimization separately.

In all cases but two, FailSafeIter/bloat and FailSafeIt-
erMap/bloat, the extra analysis time incurred by the first
optimization is under 30 seconds. For the second optimiza-
tion, the extra analysis time is also relatively few - an av-
erage of 75 seconds. The worst case is FailSafeIter/bloat,
and the corresponding extra analysis time does not exceed
10 minutes. To our surprise, the extra time induced by the
third optimization is under 10 seconds for each case. The
extra analysis time incurred by our optimizations is deter-
mined by the following two factors: 1) the number of shad-
ows remained after the original NSA. Obviously, if there
are more shadows in the monitored program, our optimized
NSA will produce more configurations during the analyses
and consume more time to identify a “nop shadows”. 2)
the number of “nop shadows” removed by our optimiza-
tions. After removing every single “nop shadows”, the op-
timized NSA has to re-iterate the forward and backward
analysis over the monitored program. Therefore, removing
more “nop shadows” means performing more iterations and
consuming more time. For those worst cases, such as Fail-
SafeIter/bloat and FailSafeIterMap/bloat, the monitored
programs contain more than 400 shadows after the original
NSA, and some “nop shadows” can be removed respectively
by our optimizations. Hence, the extra analysis time of those
cases is much longer than that of other cases.

Additionally, for the optimized NSA with the combi-
nation of optimizations, the extra analysis time is under 2
minutes in the majority of cases. Overall, our optimization
methods do not cause a significant overhead in the weaving
process in our experiments. Considering the total compi-
lation time, the overhead incurred by our optimizations is
acceptable.

5.3 Discussions

According to the experimental results, the first optimization
only has effects on 17.4% cases, which is not very impres-
sive. The reason is that this optimization works well on the
methods containing several interleaved relevant operations
on different objects. For example, in Fig. 7 (a), the program
is slightly different with that in Fig. 3 (the method calls on
c1 and c2 are not interleaved), the original NSA can identify
the shadow at line 9 as a “nop shadow”. Hence, the capabil-

Fig. 7 Examples on which optimizations have no effect.

ity of the optimized NSA is the same as that of the original
one in this situation.

The optimization based on local object information has
limitations too. For example, it has no effects on the lo-
cal objects created within loop statements. In Fig. 7 (b),
we show a method m that extends the method in Fig. 4 by
adding a for loop. Obviously, the method satisfies the type-
state property in Fig. 1, but the optimized NSA based on the
local object information cannot remove the shadows at lines
5 and 6. The key reason is that the forward\backward analy-
sis 1) assumes that the static objects created at line 4 during
each iteration may be the same object, and 2) propagates
the configurations at the end\entry of the “for” statement to
the entry\end of the “for” statement. Therefore, we can fur-
ther optimize NSA based on the local objects created in loop
statements, which will be our future work.

For the third optimization, it is only effective on two
cases. We dissected the whole process of this optimization
and experimental results to learn why it fails in the majority
of cases.

- First, as mentioned in Sect. 5.1, our optimization is
prone to abort the analysis because of explosion of
the generated configurations, especially for the cases
where there are lots of shadow-bearing methods and
method invocations. Actually, in our implementation,
we only refine the forward analysis to significantly re-
duce the number of the generated configurations.

- Second, the third optimization is not fully inter-
procedural flow-sensitive, and it lacks the context in-
formation of the currently analysed method, which
is essential for the fine-grained inter-procedural flow-
sensitive analysis. For example, the program in
Fig. 8 (a) is the same as that in Fig. 5, except for a
method invocation of “write” on a Connection object
in m2. Although our optimization can also identify the
shadow at line 4 in main as a “nop shadow”, it fails
to remove other unnecessary shadows in this example.
The reason is explained as follows: when our opti-
mized NSA performs data-flow analyses on the method
m1, it does not have the accurate context information
whether the method m2 has been executed or not when
the program reaches the entry of method m1. Hence,
the shadow at line 11 in m1 can not be removed. Based
on the same argument, the shadows at lines 16 and 17
in m2 cannot be removed either.

- Finally, our inter-procedural must-alias points-to anal-
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Fig. 8 Three examples similar to the program in Fig. 5.

ysis can only process the static objects coming from
callers and the corresponding callees respectively. For
example, the program in Fig. 8 (b) is slightly different
from that in Fig. 5. It uses a shared global variable,
instead of method parameters, to pass object between
callers and the corresponding callees. Our points-to
analysis can not determine that the shared global vari-
able c in these methods must point to the same static
object. Therefore, our optimization cannot remove any
shadow contained in this case.

Indeed, our third optimization is not very impressive,
but removing a “nop shadow” may yield significant speed-
ups during runtime monitoring in some special situations.
For example, in Fig. 8 (c), the third optimization can fur-
ther remove “nop shadow” in loop statements in method
main and m2 after the original NSA. In fact, existing inter-
procedural flow-sensitive analyses are generally ineffective
for identifying “nop shadow” [18]. Although our work only
makes a little progress, it inspires us to continue to research
relevant issues in this field. Moreover, we should point out
that even if the original NSA were fully inter-procedural
flow-sensitive, it could not remove any shadow in Fig. 3 and
Fig. 4 either. This is because the entire lifetime of Connec-
tion objects in these two figures are only in the scope of
the current methods, and shadows in other methods can not
change the states of these objects. In other words, the pro-
grams in these two figures can not benefit from fully inter-
procedural flow-sensitive data-flow analysis.

6. Related Work

In the past decade, researchers paid special attention to type-
state analysis of large-scale programs. Lots of static [6], [7],
[26], [27], dynamic [9], [23], [28], [29], and hybrid typestate
analysis [4], [13]–[17] approaches have been proposed and
implemented. In this section, we give a brief description of
these approaches related to our work.

6.1 Static Analysis Approaches

Fink et al. propose a context-sensitive, flow-sensitive and
integrated static typestate verifier [27]. The verifier utilizes
a combined abstract domain of typestate and pointer ab-
stractions to improve the precision of alias analysis. Like
Clara, their static analysis framework is also designed to be
a staged system to improve the scalability and efficiency.
However, their approach can only identify potential program
points of failure, and cannot produce residual runtime mon-
itors for dynamic verification at runtime. Additionally, their
approach cannot be applied to typestate specifications in-
volving multiple interacting objects.

Jaspan et al. propose a static checker Fusion [7]. Dif-
fering from Clara [19] and Tracematches [23], Fusion makes
use of relationships to specify constraints across multi-
objects. Fusion defines three variants. Specifically, it al-
lows the users to customize their static analysis to be sound,
complete, or compromise between trade-off between these
two extremes. Fusion only performs intra-procedural anal-
ysis on programs to check constraint violations. Hence, Fu-
sion does not have effects on cases where the related oper-
ations are scatter over more than one method. Moreover,
Fusion can not be used to enforce API protocols dynami-
cally. Michael et al. proposes a fully automatic approach
to infer API protocols for Fusion, without users specifying
temporal specifications [30]. Their work is complementary
to Clara.

6.2 Dynamic Analysis Approaches

Allan et al. present Tracemathes to dynamically check type-
state properties, which are specified by pattern-based lan-
guage with free variables [23]. Tracemathes extends As-
pectJ [31] and has been implemented as an extension of
the AspectJ compiler abc [32]. However, Tracemathes does
not optimize the monitored programs at compile-time, and
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the monitored programs usually contain lots of unnecessary
monitoring instrumentations. Therefore, Tracemathes usu-
ally incurs significant runtime overheads, which impedes its
applications in practice [4], [29].

Avgustinov et al. propose two optimizations to im-
prove the runtime performance of tracematches [33]. One
optimization removes unnecessary runtime monitors to pre-
vent memory leaks [23]. The other optimization presents an
indexing data structure for partial matches to improve the
tracking efficiency. However, the effectiveness of their op-
timizations is not very impressive in some situations. Ad-
ditionally, their optimizations only focus on trace specifica-
tions, and does not analyse the monitored base programs at
compile-time, which differs from Clara. Hence, their opti-
mizations are orthogonal and complementary to our work.

Purandare et al. propose two novel approaches to mit-
igating monitoring overheads by monitor compaction [34].
The main idea of their techniques is to exploit over-lap, i.e.,
symbols shared among checked properties or common ob-
jects referenced by several property monitors, to synthesize
supermonitors. Supermonitors usually perform fewer tran-
sitions and updates at runtime. Clearly, their techniques can
only be applied to the cases where several typestate proper-
ties are checked at the same time or the property involves
multiple objects.

6.3 Hybrid analysis approaches

Naeem et al. propose and implement a a hybrid typestate
analysis [16] built on Eric Bodden’s early work [25], [35].
In order to statically facilitate reasoning and abstraction,
they define a lattice-based operational semantics of trace-
matches. Hence, their static analysis can track individual
objects along control-flow paths, and compute the types-
tate and points-to information simultaneously. They build
a control-flow graph (CFG) for the whole program, and
propagate configurations along the edges of this graph. In
other words, their analysis is context-sensitive and inter-
procedural flow-sensitive. However, there are some cases
where NSA is more precise than their inter-procedural anal-
ysis, due to the more sophisticated context-sensitive points-
to analyses applied by NSA [2], [4]. Additionally, like Eric
Bodden’s early work [25], [35], they also try to identify “nop
shadows” only through “shadow histories” computed by for-
ward analysis. Therefore, their static analysis suffers from
unsoundness problem too [2]. As literature [4] pointed out,
the original NSA can be extended to inter-procedural flow-
sensitive easily. But, it has to perform the forward and
backward analysis on the whole program again after remov-
ing each “nop shadow”. Obviously, this kind of full inter-
procedural flow-sensitive analysis is very time-consuming
and impractical to the large scale programs. Moreover,
it can not remove any shadow in Fig. 3 and Fig. 4 either
which can removed by the first two optimizations respec-
tively. The third optimization is only partial inter-procedural
flow-sensitive, and improves the precision of original NSA
in some cases without a significant overhead.

Besides those work, Purandare et al. present a cost
model for runtime monitoring which explains determining
factors of the monitoring overheads and the close relation-
ships among them [17]. Their optimizations for runtime
monitoring are guided by the cost model. Dwyer et al.
present an algorithm to identify the safe regions in the pro-
gram for reformulating the typestate property analysis [15].
All the instrumentations in a safe region are then replaced
with an equivalent summary instrumentation, or removed
directly. Clearly, after this transformation, the base pro-
grams have fewer instrumentations, and runtime monitors
perform fewer translations. However, their static analyses
have to be conducted on the whole program, which is very
expensive and can not be applied to large-scale programs in
practice. For the monitoring instrumentations in the loop
statements, such as while and for, their approach not only
identifies unnecessary instrumentations that can be removed
permanently, but also tries to identify monitoring instrumen-
tations that can be ignored during the partial of loop itera-
tions at runtime [36]. Furthermore, their propose optimiza-
tions to improve the runtime performance by dynamically
reclaiming unnecessary monitors [17]. Whereas, their hy-
brid approach may easily lead to significant overheads at
runtime for the typestate properties involving multiple inter-
acting objects. When unchecked exceptions happen, their
method may produce unsound results.

7. Conclusion

In this paper, we present three optimization methods for
NSA to improve its precision. The first two optimizations
filter interferential states of objects produced during the
data-flow analysis. The third optimization refine the inter-
procedural data-flow analysis induced by method invoca-
tions. Experiments on the DaCapo benchmark suite justify
that our optimizations, in total, are effective in more than
half of the studied cases, without a significant overhead. Ad-
ditionally, we dissect the experimental results and the situa-
tions on which our optimizations have no effects.

In future, we plan to evaluate our optimizations on
more benchmarks and real-world large-scale programs.
Moreover, we will try to perfect our optimizations, so that
they can be effective in more situations. For example, we
can further optimize NSA based on the local objects created
in loop statements for the second optimization, so that the
“nop shadows” in Fig. 7 (b) can be identified. In fact, mon-
itoring instrumentations in a loop statement usually execute
as the loop iterates, incurring a significant runtime overhead.
Hence, we should design a solution to mitigate this issue
induced by the instrumentations related to loop statements.
For the third optimization, we should design a more sophis-
ticated inter-procedural flow-sensitive points-to analysis to
improve its precision. Additionally, we can integrate the ex-
isting dynamic optimization approaches into Clara to further
reduce the runtime monitoring overheads.



1226
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.6 JUNE 2015

Acknowledgments

This research is supported in part by grants from the
National 973 project 2011CB302603, the National NSFC
projects (Nos. 91118007 and 61103013), the National
863 projects (Nos. 2011AA010106 and 2012AA011201),
National Natural Science Foundation of China (Nos.
61379054, and 91318301), the Specialized Research
Fund for the Doctoral Program of Higher Education
20114307120015, and the Program for New Century Excel-
lent Talents in University.

References

[1] R.E. Strom and S. Yemini, “Typestate: A programming language
concept for enhancing software reliability,” IEEE Trans. Softw.
Eng., vol.12, no.1, pp.157–171, 1986.

[2] E. Bodden, “Efficient hybrid typestate analysis by determining
continuation-equivalent states,” Proc. International Conference on
Software Engineerin, pp.5–14, New York, USA, 2010.

[3] E. Bodden, P. Lam, and L. Hendren, “Clara: a framework for par-
tially evaluating finite-state runtime monitors ahead of time,” Proc.
International Conference on Runtime Verification, pp.183–197, St.
Julians, Malta, 2010.

[4] E. Bodden, Verifying Finite-state Properties of Large-scale Pro-
grams, Ph.D. thesis, McGill University, 2009.

[5] S.A. Slaughter, D.E. Harter, and M.S. Krishnan, “Evaluating the cost
of software quality,” Commun. ACM, vol.41, no.8, pp.67–73, 1998.

[6] K. Bierhoff and J. Aldrich, “Modular typestate checking of aliased
objects,” Proc. Annual ACM SIGPLAN Conference on Object-
oriented Programming Systems and Applications, pp.301–320,
Montreal, Quebec, Canada, 2007.

[7] C. Jaspan and J. Aldrich, “Checking framework interactions with
relationships,” Proc. European Conference on Object-Oriented Pro-
gramming, pp.27–51, Genoa, Italy, 2009.

[8] E. Bodden, J-lo-a tool for runtime-checking temporal assertions,
Master’s thesis, RWTH Aachen university, 2005.
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