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Biped: Bidirectional Prediction of Order Violations

Xi CHANG†a), Zhuo ZHANG††b), Nonmembers, Yan LEI††, Student Member, and Jianjun ZHAO†, Nonmember

SUMMARY Concurrency bugs do significantly affect system reliabil-
ity. Although many efforts have been made to address this problem, there
are still many bugs that cannot be detected because of the complexity of
concurrent programs. Compared with atomicity violations, order violations
are always neglected. Efficient and effective approaches to detecting order
violations are therefore in urgent need. This paper presents a bidirectional
predictive trace analysis approach, BIPED, which can detect order viola-
tions in parallel based on a recorded program execution. BIPED collects
an expected-order execution trace into a layered bidirectional prediction
model, which intensively represents two types of expected-order data flows
in the bottom layer and combines the lock sets and the bidirectionally order
constraints in the upper layer. BIPED then recognizes two types of candi-
date violation intervals driven by the bottom-layer model and then checks
these recognized intervals bidirectionally based on the upper-layer con-
straint model. Consequently, concrete schedules can be generated to expose
order violation bugs. Our experimental results show that BIPED can effec-
tively detect real order violation bugs and the analysis speed is 2.3x-10.9x
and 1.24x-1.8x relative to the state-of-the-art predictive dynamic analysis
approaches and hybrid model based static prediction analysis approaches
in terms of order violation bugs.
key words: concurrency bug, trace model, predictive trace analysis, order
violation

1. Introduction

Concurrency has become one of the major techniques to
improve software performance. It, however, raises concur-
rency bugs, characterized by various criteria such as data
races [1], dead lock [2]–[4], atomicity violation [5] and or-
der violation [6]. Combating concurrency bugs effectively
has been becoming more and more important.

Many techniques have been proposed to deal with data
races [7]–[12]. A recent work [13] found that only 10% of
the true data races are harmful and the remaining are benign
data races which do not compromise program’s correctness.
Thus, atomicity violations and order violations are referred
as more important criteria [6].

A real-world concurrency bug characteristic study [6]
shows that order violations account for 30% of all non-
deadlock concurrency bugs. Compared with atomicity vi-
olation bugs [14]–[20], many order violation bugs always
change the expected inter-thread data flows, instead of
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thread local logic [21]. A few works [20], [21] address or-
der violation bugs with dynamical detection and obtain con-
siderable successes, however, there still remains much pro-
cesses to make for exposing order violation bugs efficiently.

Focusing on a read owned by a thread, we observe that
there exist two kinds of expected inter-thread data flows:

• Use-Predef : A shared variable should be used for a
read event after its value has already been predefined
by a prior write event, we refer to such a data flow as
an Use-Predef relation. However, the order of such a
data flow may be violated if there is not order synchro-
nization within this cross-thread interval. As a result,
this read event uses an overdue definition older than the
expected one. We refer to such an order violation as an
overdue usage (OU) and an execution interval allowing
to violate the relative order of an Use-Predef relation
as an overdue usage interval (OUI).

Figure 1 (a) shows an overdue usage in OpenJMS-
0.7.7. Normally, a thread T2 reads the shared field
multiplexer at line S2 after it is initialized by an-
other thread T1 at line S1. However, there is not any
order synchronization ensuring that S2 happens after
S1 in the interval between S2 and S1. Consequently,
the thread T2 will use an overdue definition (uninitial-
ized), throwing a ResourceException.

• Use-Redef : A shared variable should be used for a read
event before its value is redefined by a posterior write
event, we refer to such a data flow as an Use-Redef
relation. However, the order of such a data flow may
be violated, if there is not order synchronization within
this cross-thread interval. Consequently, this read event
may use a premature definition newer than the expected
one. We refer to such an order violation as a premature
usage (PU) and an execution interval allowing to vi-
olate the relative order of an Use-Redef relation as a
premature usage interval (PUI).

Figure 1 (b) shows a premature usage in Jigsaw-
2.2. Normally, a thread reads the shared field
queue.size at line S1 before clearing it from the
queue at line S2. However, there is not any order syn-
chronization ensuring that S1 happens before S2 in the
interval between S2 and S1, it leads to that thread T2
will use a premature definition from S2, throwing an
ArrayIndexOutOfBoundsException.

The above observation indicates that it is likely to ex-
pose these order violation bugs if we can find such OUIs and

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers



CHANG et al.: BIPED: BIDIRECTIONAL PREDICTION OF ORDER VIOLATIONS
335

Fig. 1 Two kinds of order violations.

PUIs in an execution. It is, unfortunately, hard to find such
OUIs and PUIs effectively by a dynamic analysis. Specifi-
cally, during one execution, an advanced dynamic analysis
tool can only recognize one unexpected definition before a
read event of a shared variable, but it cannot find other un-
expected ones. For example in Fig. 1 (b), dynamic analysis
tools would capture the definition from statement S2 which
can reach statement S1 through postponing this statement
S1, but it cannot find S2 as a premature definition to S1 in
an execution.

In this paper, we extend the promising static technique,
predictive trace analysis (PTA) [22]–[27] to the bidirectional
predictive trace analysis, BIPED, for exposing order viola-
tions. In general, a PTA technique records a trace of exe-
cution events, statically (often exhaustively) generates other
permutations of these events under certain scheduling con-
straints, and then exposes concurrency bugs that are un-
seen in the recorded execution. Based on the general PTA
technique, on one hand, BIPED finds the OUIs from the
recorded trace, each of which represents a possible imple-
ment that allows to change the order of an Use-Predef rela-
tion, and then generates concrete schedules to re-execute the
changed trace for exposing OUs. On the other hand, BIPED
finds the PUIs from the recorded trace, each of which rep-
resents a possible implement that allows to change the or-
der of an Use-Redef relation, and then generates concrete
schedules to to re-execute the changed trace for exposing
PUs. Since the full history and context information of an
execution can be used adequately and all OUs and PUs re-
ported are real, we believe BIPED can effectively expose
order violations based on this execution.

The key technical challenge is how to find the possible
OUIs and PUIs from the original trace to expose the cor-
responding OUs and PUs. Considering that possible OUIs
and PUIs cannot directly be found in the original trace, we
first present a simple and safe tactics to use for recogniz-
ing candidate OUIs and PUIs. A pair of check algorithms
is subsequently presented to find possible OUIs and PUIs
from the candidate ones, respectively. Moreover, to con-
centrate on the Use-Predef and Use-Redef relations for rec-
ognizing and checking the candidate OUIs and PUIs, we
use a layered prediction model to represent the inter-thread
data flow information in the bottom layer and the thread-
scheduling constraints in the upper layer. With encoding of
the happens-before relationship between the events bidirec-

Fig. 2 Overview of BIPED’s operation.

tionally, the upper layer model supports efficient check of
the candidate OUIs and PUIs in parallel, driving BIPED to
predict long trace with different directions. Figure 2 shows
the overview of BIPED’s basic operations.

We have implemented BIPED for Java programs and
conducted the experiments in IBM ConTest benchmark suite
for evaluating it. Our evaluation results show that BIPED is
able to effectively and efficiently predict the possible OUIs
and PUIs to create concrete schedules for exposing order
violation bugs in all the five evaluated subjects.

In summary, the main contributions of this work can be
summarized as follows:

1. We present a bidirectional predictive trace analysis
technique, BIPED, for exposing order violations in
concurrent Java programs in parallel.

2. We present a layered prediction model, which distin-
guishes two types of expected data flow information
and encodes the happens-before relations with two dif-
ferent directions. This model can ease the recogni-
tion of candidate violation intervals and bidirectionally
check these two types of intervals.

3. We present a pair of statically prediction algorithms
that respectively check whether the two types of candi-
date violation intervals satisfy the corresponding muta-
tion condition.

4. We implement a prototype tool BIPED and our ex-
periments demonstrate that BIPED is able to effi-
ciently predict OUIs and PUIs and generate the con-
crete schedules to expose real order violations.
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Fig. 3 An illustrative example.

2. An Illustration Example

We use in this section a simple example to illustrate how
our bidirectional predictive trace analysis exposes the order
violation bugs. The execution of a program in Fig. 3 (a) con-
tains three threads, t1, t2 and t3, and three shared variables x,
y and z. Let us use the global index K as the identifier of each
event. During this execution, thread t1 creates two child
threads t2 and t3 by event e2 and event e3, and joins back
these child threads by event e31 and event e32, respectively.
In addition, these three threads must do some simple coop-
eration. Specifically, event e10 must wait for the signal that
notified by event e9, event e12 must wait for the signal that
notified by event e11 and event e22 must wait for the signal
that notified by event e17. We use Use-Predef(e j, ei) for rep-

resenting the Use-Predef relation between read event e j and
prior write event ei, and Use-Redef(e j, ei′ ) for representing
the Use-Redef relation between read event e j and posterior
write event ei′ . For this execution, it contains the following
expected inter-thread data flows Use-Predef(e14, e7), Use-
Redef(e14, e29), Use-Predef(e26, e20), Use-Redef(e24, e33),
Use-Predef(e24, e18).

BIPED exposes the violations to these expected data
flows by taking the following main four steps.

1) After recording a normal execution of a program, the
first step is to take a recorded trace as the input to con-
struct a layered prediction model. The layered predic-
tion model of this sample trace is shown in Fig. 3:

– The bottom layer is an expected-order usage ta-
ble (EUT). Let us use the global index K and the
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owned thread T as a unique identifier to denote an
event owned by a thread. For each identifier i@t′
in the Predef column, it indicates a relation Use-
Predef(e j, ei), where the identifier i@t′ is in the
same line with j@t in the Use column. For each
identifier i′@t′ in the Redef column, it indicates
a relation Use-Redef(e j, ei′ ), where the identifier
i′@t′ is in the same line with j@t in the Use col-
umn. Figure 3 (c) shows the expected inter-thread
data flow information in the sample trace, identi-
fying all the inter-thread Use-Predef relations and
Use-Redef relations.

– The upper layer is a communication-aware bidi-
rectional tree (CBT). Figure 3 (b) shows such tree
of the sample trace built by BIPED. Each node in a
CBT branch CBT(t) is also identified by the above
unique identifier and can be (1) a shared-memory
accessing (MEM) node corresponds to a read or
write event; (2) a mutually exclusive synchroniza-
tion (MES) node corresponds to a lock or unlock
event; (3) an inter-thread order synchronization
(IOS) node corresponds to a wait, notify, fork,
start, join or end event. The attribute local prede-
cessor (lp) and local successor (ls) of each node
is used to bidirectionally denote a thread-local or-
der relation ≺L, such as a thread-local order rela-
tion e2 ≺L e3 in the trace Fig. 3 (b), the identifier 2
is referred as the attribute lp of node n3@t1, mean-
while, the identifier 3 is referred as the attribute
rs of node n2@t1. Each IOS node contains two
auxiliary attributes (i.e., remote predecessor (rp)
and remote successor (rs)) that are used to bidi-
rectionally denote an inter-thread happens-before
relation ≺R, such as, for a happens-before rela-
tion e2 ≺R e4 in the trace Fig. 3 (b), the identifier
2@t1 is referred as the attribute rp of node n4@t2,
meanwhile, the identifier 4@t2 is referred as the
attribute rs of node n2@t1.

2) The second step is to recognize the candidate OUIs and
PUIs on the basis of the layered prediction model.
For each Use-Predef relation in the EUT, BIPED rec-
ognizes a backward sequence of consecutive nodes in
the CBT as the corresponding candidate OUI to change
the relative-order of this relation.

– A straightforward way to recognize the candidate
OUI corresponding to a Use-Predef relation is to
only enclose the consecutive nodes between the
dependent node pair. For instance, the candidate
OUI of the relation Use-Predef(e26, e20) can be
shown as follows:

OUI(26, t3, 20, t2) = n20@t2 ← n21@t2 ← n22@t3

← n23@t3 ← n24@t3 ← n25@t3 ← n26@t3,

where this backward sequence is denoted as
OUI(26, t3, 20, t2) since the interval-latest node

is node n26@t3, the interval-earliest node is node
n20@t2, and the goal of this interval is to move
event e26 to a position before event e20.

– For some special cases, the straightforward way
is insufficient for determining whether the relative
order of the Use-Predef relation can be changed
or not, because of the affection by the mutual ex-
clusive constraints. For instance, the candidate
OUI of the relation Use-Predef(e24, e18) is as fol-
lows:

n18@t2 ← n19@t2 ← n20@t2 ← n21@t2 ← n22@t3

← n23@t3 ← n24@t3.

It cannot make sure that event e24 can move to
the position before e18 even if there does not ex-
ist any order constraint between e24 and e18 be-
cause the position immediately before event e18 is
restricted to this movement by the acquired lock
of e18. Thus, we adopt some recognition tactics
given in Sect. 4.1 to expand the candidate OUI of
this relation as follows:

OUI(25, t3, 16, t2) = n16@t2 ← n17@t2

← n18@t2 ← n19@t2 ← n20@t2 ← n21@t2, n22@t3

← n23@t3 ← n24@t3 ← n25@t3.

For each inter-thread Use-Redef relation in the EUT,
the candidate PUI of an Use-Redef relation is a for-
ward sequence of consecutive nodes of the CBT that
encloses this relation at least. The recognition tactics
for the corresponding candidate PUI given in Sect. 4.1
are symmetrical to that of inter-thread Use-Predef re-
lation, we can recognize the following candidate PUIs,
which correspond to the relations Use-Redef(e14, e29)
and Use-Redef(e24, e33), respectively.

PUI(30, t1, 13, t3) = n13@t3 → n14@t3 → n15@t3

→ n16@t2 → n17@t2 → n18@t2 → n19@t2 → n20@t2

→ n21@t2 → n22@t3 → n23@t3 → n24@t3 → n25@t3

→ n26@t3 → n27@t3 → n28@t1 → n29@t1 → n30@t1

PUI(33, t1, 23, t3) = n23@t3 → n24@t3 → n25@t3

→ n26@t3 → n27@t3 → n28@t1 → n29@t1 → n30@t1

→ n31@t1 → n32@t1 → n33@t1.

3) The third step is to find the possible OUIs/PUIs through
checking the candidate OUIs/PUIs based on the prede-
cessor/successor information in the upper model.
For each candidate OUI, BIPED checks whether this
OUI is possible through backward computing the
predecessor relation between nk�@t� and nk⊥@t⊥ . A
straightforward way to check the predecessor relation
is to only check between two owner threads of the rela-
tion pair. For some special cases, the transitive prede-
cessor relation between the relation pair cannot be im-
mediately found by adopting the straightforward way.
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For instance, OUI(15, t3, 6, t2) is impossible because
there is a transitive predecessor relation between n6@t2

and n15@t3:

n6@t2 ≺L n9@t2 ≺R n11@t1 ≺R n15@t3.

This relation is difficult to be found because this rela-
tion depends on the intermediate thread, i.e., t2. There-
fore, besides two owner threads of the relevant nodes,
we should check the predecessor relation relevant to
the intermediate threads. A detailed explanation of the
check algorithm is given in Sect. 4.2. Consequently,
BIPED can predict that only one following OUI is pos-
sible:

OUI(26, t3, 20, t2)

For each candidate PUI, BIPED checks whether this
PUI is possible through forward computing the succes-
sor relation between nk�@t� and nk⊥@t⊥ . For instance,
BIPED can determine PUI(33, t1, 23, t3) is impossible
because there is a transitive successor relation between
n33@t1 and n23@t3:

n23@t3 	L n27@t3 	R n32@t1 	R n33@t1.

Consequently, BIPED can predict that only the follow-
ing PUI is possible:

PUI(30, t1, 13, t3)

4) Taking these possible OUIs/PUIs, the fourth step is to
generate concrete possible schedules.
For the possible interval OUI(26, t3, 20, t2), BIPED
permutates the original subtrace within the correspond-
ing interval into a read-backward-move subtrace as fol-
lows:

〈e22, e23, e24, e25, e26, e20, e21〉.
For the possible interval CPUI(13, t3, 30, t1), BIPED
permutates the original subtrace within the correspond-
ing interval into a read-forward-move subtrace as fol-
lows:

〈e28, e29, e30, e13, e14, e15, e16, e17,

e18, e19, e20, e21, e22, e23, e24, e25, e26, e27〉.
It can be seen that the above concrete schedules can

expose the real order violations according to a normal exe-
cution trace. Compared with other dynamic analysis tech-
niques, for an execution, BIPED can expose all OUs and
PUs effectively in this execution trace, instead of only one
order violation for each shared-memory read event at most.
Compared with other PTA techniques, BIPED can predict
the OUs and PUs simultaneously, It can improve the predic-
tion performance.

3. Prediction Model

Based on an execution trace, we present a new predic-
tion model called expectation-based bidirectional constraint

model to simultaneously predict OU and PU bugs. In this
section, the representation of the trace is formalized first and
then the layered prediction model is defined.

3.1 Trace

Given an execution E of a multi-threaded program P, it re-
flects a multi-threaded program execution E = 〈ek〉 over the
set of events. An event is one of the following forms.

• (k, t, read, sv) is the kth event that read the shared vari-
able sv.

• (k, t, write, sv) is the kth event that wrote to the shared
variable sv.

• (k, t, lock, l) is the kth event that acquired the lock l.
• (k, t, unlock, l) is the kth event that released the lock l.
• (k, t, fork, t′) is the kth event that created the thread t′.
• (k, t, join, t′) is the kth event that joined back thread t′.
• (k, t, wait, m) is the kth event that finished waiting for

some signal m.
• (k, t, notify, m) is the kth that notified an event waiting

on m.
• (k, t, start) is the kth event that started a thread t.
• (k, t, end) is the kth event that terminated a thread t.

In our presentation, we use t(k), et(k) to denote the owner
thread, the event type of the kth event, respectively.

3.2 Expectation-Based Bidirectional Constraint Model

In this research we define an expectation-based bidirec-
tional constraint model to represent the concurrent behav-
iors.

Let Tr denote a multi-threaded execution trace of a pro-
gram. The expectation-based bidirectional constraint model
of Tr contains two layers: the bottom layer model uses a ta-
ble for depicting the expected data flow cross threads, the
upper layer model uses tree structure for describing how
multiple threads are restricted into Tr.

3.2.1 The Bottom Layer

To represent the expected data flow cross threads, we first
define two types of expected use-definition relations.

Definition 1: The expected use-definition relations contain
two types of association relations

Use − Prede f (e j, ei)

Use − Rede f (e j, ei′ )

where event ei/ei′ is the last/first write event before the read
event e j, they access the same shared variable and are owned
by different threads.

An expected-order usage table (EUT) is designed to rep-
resent these two types of expected use-definition relations.
This table contains three columns 〈Use, Predef, Redef〉,
where the column Use is the key column. Each line (j@t(j),
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i@t(i), i′@t(i′)) can indicate an Use-Predef relation be-
tween e j and ei and an Use-Redef relation between e j and
ei′ . We should note that every element in the EUT com-
bines the global index and the owned thread of the event, as
the combination can facilitate the identification of the corre-
sponding nodes in the upper layer model (see Sect. 3.2.2).

3.2.2 The Upper Layer

Many race detection techniques use a hybrid constraint
model [28] that combines the lockset condition [1] and
the happens-before relation [29] to predict potential races.
Based on the hybrid constraint model, we encode a happens-
before relation bidirectionally to define a bidirectional hy-
brid constraint model in order to predict possible OUIs and
PUIs, respectively.

Specifically, two events ei and e j are independent iff

1. Mutual exclusive constraint:
they do not hold a common lock.

2. Order constraint:

• ei is not a predecessor of e j, where i < j.
• e j is not a successor of ei, where j > i.

The predecessor and successor relations are defined as fol-
lows:

Definition 2: Given two events ei and e j (i < j), event ei is
the predecessor of event e j, meanwhile, event e j is the suc-
cessor of event ei, if one of the following conditions holds:

• Thread-local order constraints: ei and e j are events
from the same thread,

• Inter-thread order constraints:

- ei is the event that forked the thread t, and e j is the
start event of thread t.

- ei is the end event of thread t and ei is the event that
joined back thread t.

- ei is the event that notified the signal g and e j is the
event that finished waiting the signal g.

• The predecessor and successor relations are transi-
tively closed.

We design a communication-aware bidirectional tree to
encode the lockset and the predecessor successor relation of
every node bidirectionally.

Definition 3: A Communication-aware Bidirectional Tree
(CBT) (Root, CBT(t1), CBT(t2), . . . , CBT(tn)) contains a
root node and a set of branches, where each branch CBT(t)
corresponds to a thread t. A node in a path CBT(t) which
corresponds to an event, can be one of the following nodes:

• An inter-thread order synchronization node 〈k@t, et,
L, rp, lp, ls, rs〉 representing an inter-thread order
synchronization event, et ∈ {wait, notify, fork, join,
start, end},

• A mutual exclusive synchronization node 〈k@t, et, L,
lp, ls〉, et ∈ {lock, unlock},

• A shared-memory accessing node 〈k@t, et, L, lp, ls〉,
et ∈ {read, write},

where

- k is the global order of event e in the trace,
- t is the owner thread executing event e,
- L is the acquired locks of event e,
- rp refers to the node index of a remote predecessor node,
- lp refers to the node index of a local predecessor node,
- ls refers to the node index of a local successor node,
- rs refers to the node index of a remote successor node.

A CBT provides engineers with supports in helping
identify a set of trace intervals.

Definition 4: A trace interval, denoted as I(k⊥, t(k⊥), k�,
t(k�)), is defined as a bidirectional sequence of nodes be-
tween the interval-earliest node nk⊥@t(k⊥) and the interval-
latest node nk�@t(k�):

nk⊥@t(k⊥) � . . .� nk�@t(k�).

In the following presentation, n.k and n.t denote the global
index and the owner thread associated with a node n, re-
spectively. Moreover, RP(t) and RS(t) denote the set of re-
mote predecessor nodes and remote successor nodes of the
thread t in CBT, and I(k⊥, t(k⊥), k�, t(k�)).nodes(t) denotes
the nodes owned by thread t within this interval.

Based on the model, the prediction demands can be
separated into a pair of sets for predicting their respective
ones. For each demand set, the cost is linear to the length
of the corresponding interval of trace and quadratic to the
number of inter-thread order synchronization events.

4. Expectation-Violated Bidirectional Prediction

Based on Lamports reduction theory [29], the idea behind
bidirectional prediction is that the relative positions of in-
dependent events in the trace can be changed. It simulates
the different thread scheduling effects. Specifically, a Use-
Predef/Use-Redef relation is witnessed in a normal trace, as
long as an interval of the trace enclosing this relation allows
to change the relative order of this relation, we can generate
a concrete schedule to expose the OU/PU.

To facilitate our discussion, we first define two con-
cepts called candidate OUI and PUI that will be used in the
explanation of our approach:

Definition 5: For a relation Use-Redef(e j, ei), the candi-
date OUI corresponding to it, denoted as OUI(k�, t(k�), k⊥,
t(k⊥)), is a backward trace interval from the interval-latest
node nk�@t(k�) to the interval-earliest node nk⊥@t(k⊥):

nk⊥@t(k⊥) ← . . .← nk�@t(k�),

where k⊥ < k�, k⊥ ≤ i and k� ≥ j.

Definition 6: For a relation Use-Redef(e j, ei′ ), the candi-
date PUI corresponding to it, denoted as PUI(k�, t(k�), k⊥,
t(k⊥)), is a forward trace interval from the interval-earliest
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Algorithm 1: LookforSafePos(k�, t(k�), i, t(i))
1begin
2nx@t(i) ← ni@t(i);
3while nx@t(i) � Root do
4count ← 1;
5for each n∈ |I(i, t(i), k�, t(k�)).nodes(t(i))| do
6if nx@t(i).lp.L ∩ n.L == ∅ then
7count ← count + 1;

8else
9break;

10if count== |I(i, t(i), k�, t(k�)).nodes(t(i))| then
11return nx@t(i)

12nx@t(i) ← nx@t(i).lp;

13return null

node nk⊥@t(k⊥) to the interval-latest node nk�@t(k�):

nk⊥@t(k⊥) → . . .→ nk�@t(k�),

where k⊥ < k�, k⊥ ≤ j and k� ≥ i′.

This section afterwards describes the bidirectional pre-
dictive trace analysis technique involving the following
steps:

• Lockset-based recognizing the candidate OUIs and
PUIs.

• Checking whether these candidate OUIs and PUIs are
possible, respectively.

• Generating concrete OU and PU schedules according
to the possible OUIs and PUIs.

• Pruning false OUIs and PUIs.

4.1 Recognizing Candidate OUIs and PUIs

Since the original trace is a possible schedule (i.e., satisfy-
ing the order constraints and mutual exclusive constraints),
it only needs to make sure a candidate OUI/PUI does not
violate the constraints, instead of the entire trace. The key
problem is how to recognize the interval-earliest node and
the internal-latest node of the candidate OUI/PUI. Without
loss of generality, we use the relation Use-Predef(e24, e18)
in Fig. 3 to illustrate how our tactics respects the interval-
earliest node and the internal-latest node.

Recognizing the interval-latest node is relatively sim-
ple. If we assign node n24@t3 as the interval-latest node of
the candidate OUI, it means that the nodes corresponding
to the to-be-moved events (i.e., n22@t3, n23@t3 and n24@t3)
should be allowed to place some positions before n18@t2 to
change the relative order of Use-Predef(e24, e18). As the
unlock event (corresponding to node n25@t3) releasing the
acquired lock of event e24 isn’t placed together with these
to-be-moved events, it can lead to the result that there exists
an unmatched lock and unlock event pair in this interval,
so that the generated schedule may violate the mutual ex-
clusive constraints. To address this problem, whenever we
enclose a lock node to this candidate OUI, we should also

make sure its corresponding unlock node is enclosed to this
one. Thus, our recognition tactics on the interval-latest node
looks for the nearest lock-free position (NLF), i.e., n25@t3

releases the required locks of the thread t3, and assigns this
unlock node as the internal-latest node of the candidate OUI,
i.e., nk�@tk� = n25@t3.

Recognizing the interval-earliest node is much more
complicated. We have already recognized the internal-latest
node of the candidate OUI, i.e., n25@t3, it means that the to-
be-moved nodes are I(18, t2, 25, t3).nodes(t3). It is impor-
tant to make sure that these to-be-moved nodes can move to
some safe positions without violating the mutual exclusive
constraints. Although there might be many possible ways
which can implement this movement, it is sufficient for us
to adopt one safest and simplest way to reduce the computa-
tional complexity of the candidate OUI recognition. Specif-
ically, we look for a safe position before the prior relation
node, where all the to-be-moved events can move to. With
this tactics, we define a safe position as follows:

Definition 7: Given the to-be-moved nodes I(k⊥, t(k⊥), k�,
t(k�)).nodes(t(k�)), a safe position just before the node
nx@t(k⊥) does not have any common lock with each of the
to-be-moved nodes.

Specifically, given a set of the to-be-moved nodes I(18, t2,
25, t3).nodes(t3), we try to look for a safe position before
nx@t2, following the branch CBT(t2), there is no common
lock with each of the to-be-moved nodes (Algorithm 1). Fi-
nally, we find nx@t2 = n16@t2.

Table 1 summarizes the tactics to recognize the can-
didate OUI/PUI for each Use-Predef/Use-Redef relation.
Since each candidate OUI/PUI is recognized with the safest
tactic, it can ensure that the interval without violating the
mutual exclusive constraints, we then check whether this
candidate OUI can satisfy the order constraints.

4.2 Interval-Restricted Bidirectional Check

After recognizing the candidate OUIs and PUIs, BIPED
next checks whether these intervals can be possible, that is,
there exists a predecessor/successor relation within each in-
terval.

We first define the four data structures and four primi-
tive operations on these data structures:

• The set n.VRP consists of all remote predecessors of
the node n within the interval between n and nk�@t(k�),
which can be obtained according to the rp attributes of
branch CBT(n.t).

• The set n.VRS consists of all remote successors of the
node n within the interval between n and nk⊥@t(k⊥),
which can be obtained according to the rs attributes
of branch CBT(n.t).

• The set n.CRP consists of the current remote predeces-
sors of node n.

• The set n.CRS consists of the current remote successors
of node n.
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Table 1 Recognition tactics.

IN Use-Predef(e j, ei) Use-Redef(e j, ei′ )
L-condition 1 L(j) � null L(j) = null L(i′) � null L(i′) = null
K� k� = NLF(j) k� = j k� = NLF(i′) k� = i′
T� t� = t(j) t� = t(j) t� = t(i′) t� = t(i′)
L-condition 2 L(i) � null L(i) = null L(j)� null L(j) = null
K⊥ k⊥ = LookforSafePos(k�@t(k�), i@t(i)) k⊥ = i k⊥ = LookforSafePos(k�@t(k�), j@t(j)) k⊥ = j
T⊥ t⊥ = t(i) t⊥ = t(i) t⊥ = t(j) t⊥ = t(j)

Algorithm 2: CanBackwardMutate(k�, t�, k⊥, t⊥)
1begin
2nk�@t� .CRP← getVRP(k⊥, nk�@t� );
3while nk�@t� .CRP � ∅ do
4for n ∈ nk�@t� .CRP do
5if IsLP(nk⊥@t⊥ , n) then
6return false;

7for n ∈ nk�@t� .CRP do
8n.VRP← getVRP(k⊥, n);
9if n.VRP � ∅ then

10nk�@t� .CRP← nk�@t� .CRP ∪ n.VRP ;

11nk�@t� .CRP← nk�@t� .CRP/n ;

12return true

• The operation getVRP(k⊥, ny@t) returns the set of vis-
ible remote predecessors of node ny@t. The global in-
dexes of the nodes ny@t.VRP are greater than k⊥ and
belong to the remote predecessors of thread t, i.e.,

{∀n ∈ ny@t.VRP|(n ∈ RP(t)) ∧ (k⊥ < n.k < y)}.
• The operation getVRS(ny@t, k�) returns the set of visi-

ble remote successors of node ny@t. The global indexes
of ny@t.VRS are smaller than k� and belong to the re-
mote successors of thread t, i.e.,

{∀n ∈ ny@t.VRS |(n ∈ RS (t)) ∧ (y < n.k < k�)}.
• The operation IsLP(nk⊥@t(k⊥), ny@t) checks whether

nk⊥@t(k⊥) is a local predecessor of node ny@t. If node
ny@t is owned by thread t(k⊥) and y is greater than k⊥,
this operation returns true, otherwise, returns false.

• The operation IsLS(ny@t, nk�@t(k�)) checks whether
nk�@t(k�) is a local successor of node ny@t. If node ny@t

is owned by thread t(k�) and y is smaller than k�, this
operation returns true, otherwise, returns false.

A candidate interval OUI(k�, t�, k⊥, t⊥) is impossible
if there exists a predecessor relation between nk�@t(k�) and
nk⊥@t(k⊥). We transform the feasibility check on a candidate
OUI to backward compute the predecessor relation from
the interval-latest node nk�@t(k�) to node nk⊥@t(k⊥). Algo-
rithm 2 shows our backward check algorithm for finding
possible OUIs. Given an interval OUI(k�, t�, k⊥, t⊥), set
nk�@t(k�).CRP is first initialized to all of its visible remote
predecessors (line 1). The algorithm then enters the itera-
tive process. In lines 4-6, the algorithm calls operation IsLP
to check whether the interval-earliest node nk⊥@t(k⊥) is a lo-

Algorithm 3: CanForwardMutate(k�, t�, k⊥, t⊥)
1begin
2nk⊥@t⊥ .CRS ← getVRS (nk⊥@t⊥ , k�);
3while nk⊥@t⊥ .CRS � ∅ do
4for n ∈ nk⊥@t⊥ .CRS do
5if IsLS (n, nk�@t� ) then
6return false;

7for n ∈ nk⊥@t⊥ .CRS do
8n.VRS ← getVRS (n, k�);
9if n.VRS � ∅ then

10nk⊥@t⊥ .CRS ← nk⊥@t⊥ .CRS ∪ n.VRS ;

11nk⊥@t⊥ .CRS ← nk⊥@t⊥ .CRS/n;

12return true;

cal predecessor of each node in set nk�@t(k�).CRP. If the ap-
plication of operation IsLP returns true, it means that node
nk⊥@t(k⊥) is a predecessor of node nk�@t(k�) because the fol-
lowing predecessor relation can be found:

nk⊥@t(k⊥) ≺L n ≺R nk�@t(k�).

This algorithm returns false and is terminated. Otherwise,
this algorithm proceeds to the following progressive check.
For each node n in set nk�@t(k�).CRP, nk�@t(k�).CRP adds the
nodes returned from operation getVRP(k⊥, n), if the returned
set is not empty. After that, node n is removed from set
nk�@t(k�).CRP as the node cannot introduce any newly pre-
decessors (see line 7-11). The algorithm executes the itera-
tive process until set nk�@t(k�).CRP is an empty set and then
returns true.

A candidate interval PUI(k�, t�, k⊥, t⊥) is impossi-
ble if there exists a successor relation between nk�@t(k�)

and nk⊥@t(k⊥). We transform the feasibility check on an
PUI to forward compute the successor relation between
nk�@t(k�) and nk⊥@t(k⊥), starting from the interval-earliest
node nk⊥@t(k⊥). Algorithm 3 shows our forward check
algorithm for finding possible PUIs. Given an interval
PUI(k�, t�, k⊥, t⊥), set nk⊥@t⊥ .CRS is initialized to all of its
visible remote successors (line 1). The algorithm then enters
the iterative process. In lines 4-6, the algorithm calls opera-
tion IsLS to check whether the interval-latest node nk�@t� is
a local successor of each node n in set nk⊥@t⊥ .CRS. If the ap-
plication of operation IsLS returns true, it means that nk�@t�
is a successor of nk⊥@t⊥ because the following successor re-
lation can be found:

nk⊥@t⊥ 	R n 	L nk�@t� .
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This algorithm returns false and is terminated. Otherwise,
this algorithm proceeds to the following progressive check.
For each node n in set nk⊥@t⊥ .CRS , nk⊥@t⊥ .CRS adds the
nodes returned from operation getVRS(n, k�), if the returned
set is not empty. After that, node n is removed from set
nk⊥@t⊥ .CRS since the node cannot introduce any newly suc-
cessor (see line 7-11). This algorithm executes the iterative
process until set nk⊥@t⊥ .CRS is an empty set and returns true.

Let us revisit the process on checking the interval
OUI(15, t3, 6, t2) in our sample example. To check the
interval OUI(15, t3, 6, t2), the key steps are illustrated as
follows:

1. Given the interval-latest node, i.e., node n15@t3, the vis-
ible remote predecessors of n15@t3, i.e., {n11@t1}, which
can obtain by following the branch CBT(t1). Then,
the current remote predecessors of node n15@t3 is ini-
tialized to set n15@t3.VRP.

2. Operation IsLP(n6@t2, n15@t3.CRP) returns true, since
node n6@t2 is not a local predecessor of node n11@t1.
This check process thus proceeds to step 3.

3. All visible remote predecessors of node n11@t3 are ob-
tained by following the branch CBT(t3), i.e., {n9@t2},
and add it to the set of current remote processors of
n15@t3, i.e., n15@t3.CRP. Whereafter, node n11@t3 is re-
moved from set n15@t3.CRP, that is, n15@t3.CRP is up-
dated to {n9@t2}.

4. Recall step 2. This check returns false and is termi-
nated because the node n6@t2 is a local predecessor of
node n9@t2.

Therefore, BIPED can determine that OUI(15, t3, 6, t2) is
impossible.

4.3 Possible Schedule Generation

For each Possible OUI/PUI, BIPED statically generates a
Possible thread schedule that is used to deterministically
direct an execution for exposing the OU/PU bug. To gen-
erate a concrete schedule, BIPED takes the recorded trace
and the possible OUIs/PUIs as input, and use the read-
backward-move/read-forward-move sequences to represent
the OU/PU schedules. For each possible OUI/PUI(k�, t(k�),
k⊥, t(k⊥)), BIPED moves all the events owned by t⊥ within
this interval to the position before event ek� to generate a
corresponding schedule. The generated schedules are guar-
anteed to possible, without violating mutual exclusion con-
straints or the order constraints.

With aspect to order constraints, the OUI/PUI corre-
sponding to a generated schedule has already checked that
there does not exist a predecessor/successor relation be-
tween the interval-earliest event and the interval-latest event.
Moreover, the to-be-moved thread-local events within the
interval are moved together to the same position. With as-
pect to mutual exclusion constraints, a safe position ensures
that there is no common lock with all of the to-be-moved
events. Since all the schedules are generated by moving
the sequences of events to different positions, the worst case

time complexity of the total of two schedule generation al-
gorithms is linear in the length of the trace.

4.4 Pruning False OU/PU Schedules

The possible OUIs/PUIs are sound in term of satisfying
thread schedule constraints but neglect the program control
constraints, i.e., it may generate impossible schedules for
false violations. BIPED can automatically prune all the false
OU/PU schedules away during the re-execution phase. Sim-
ilar to J. Huang’s work [27], we control the thread schedul-
ing of the re-execution to strictly follow an input gener-
ated schedule by comparing the events between the two
schedules. When we observe that some thread has exe-
cuted a new event that does not exist in the input schedule,
which means the thread has taken a different branch from
the original observed execution. We immediately stop the
re-execution and remove this OUI/PUI. In this way, we are
able to prune all the false violations as we only report suc-
cessful re-executions.

5. Implementation and Evaluation

5.1 Implementation

BIPED provides programmers with support in bidirectional
predictive trace analysis of Java programs by the following
six steps:

1. Use soot [30] instrument all the program points that
may involve the relevant events in the trace. Specifi-
cally, we instrument all the possible shared variable ac-
cess points, all the monitor entry and exit points to track
the shared variable access events, the lock acquisition
and release events, during the program execution. To
track the thread communication events, we instrument
thread fork and join, thread start and exit, and object
wait and notify points.

2. One event vector is used for recording the global or-
der of all the events, and it is maintained to collect
the trace. For each inter-thread order synchronization
event, the global ID, event type, the owned thread ID
and the relevant object of it are recorded to encode the
remote predecessor and successor relations. For each
memory accessing event, the global ID, event type,
the owned thread ID and the relevant object instance
are recorded to collect the expected-order data flow in-
formation. The lockset associated with every event is
computed offline to save runtime cost.

3. The prediction model is constructed by visiting the col-
lected trace.

4. Based on the prediction models, the candidate
OUIs/PUIs are recognized and checked.

5. Generate the corresponding schedulers according to the
possible OUIs/PUIs.

6. For the replaying process, following the generated
schedule read-backward-move/read-forward-move se-
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Table 2 Experimental results.

Program
Trace Order violations Consumed Time (ms)

Thr SV E BIPED CALLFUZZER PECAN BIPED CALLFUZZER PECAN
Critical 3 3 105 7 7 7 3.84 13.3 3.99

BuggyPrg 5 5 460 6 6 6 8.2 18.9 10.2
Shop 4 4 450 7 7 7 6 13 8

Mergesort 6 10 692 37 32 37 15 62.3 21
Bubblesort 26 25 5069 68 54 68 115 1002 213

quences, we use two replayers to deterministically con-
trol the scheduling of threads for exposing OU and PU
bugs, respectively.

5.2 Evaluation

To evaluate the effectiveness and efficiency of our proposed
technique, we experimented on a number of multi-threaded
Java benchmarks of widely-used multi-threaded Java bench-
marks, IBM ConTest benchmark suite [31], including: Crit-
ical, BuggyPrg, Shop, Mergesort, Bubblesort. All exper-
iments were carried out on a laptop equipped with a In-
tel 2.4GHz i3-2370M processor and 4GB memory, using
Red Hat′s Fedora 64-bit Linux (version 2.6.27) and Oracle’s
Java HotSpot 64-bit Server VM (version 1.6.0). To prop-
erly compare our technique to the state of the art, we have
also implemented the following techniques: a predictive dy-
namic analysis approach CALLFUZZER [32], and a general
static predictive trace analysis approach PECAN [27]. Both
of them also use the trace information to detect concurrency
bugs in Java programs. In order to make them comparable to
our technique, we extended CALLFUZZER capability and
specified the order violation patterns to PECAN.

We summarizes the experiment results of the related
techniques in Table 2. We use the number of threads, the
number of shared variables and the number of critical events
to denote the scale of the analyzed trace. The column Order
violations shows respectively the number of the found or-
der violation bugs by BIPED, CALLFUZZER and PECAN.
The column Comsumed time shows respectively the con-
sumed time by BIPED, CALLFUZZER and PECAN, where
the consumed time of CALLFUZZER is the time that the
trace is executed 100 times. According to the experimental
results, BIPED and PECAN can detect a smaller number of
order violation bugs than , because it is essentially a ran-
domized technique that dynamically explores certain spe-
cific thread schedules from an ocean of thread interleavings,
its capability of exposing real bugs is subjected to the ran-
domness and some bugs cannot be found in a limited times
of execution. Just as we can recognize that in program Bub-
blesort, BIPED and PECAN detect 68 faults while CALL-
FUZZER only seeks 54 faults. In addition, through both
of BIPED and PECAN can found the same number of the
bugs, PECAN requires the users to specify their buggy pat-
terns for predicting these order violations, BIPED doesn’t
need to any pattern information.

In addition, Fig. 4 shows a comparison among BIPED,
CALLFUZZER and PECAN on the prediction speed in cre-

Fig. 4 The comparison of BIPED, CALLFUZZER and PECAN.

ating real order violations, where the prediction speed (PS)
is defined as a ratio of the number of the found order viola-
tion bugs to the corresponding consumed time. According
to the experimental results, the prediction speed of BIPED
is 2.3x-10.98x relative to CALLFUZZER and 1.2x-1.8x rel-
ative to PECAN. Hence, with respect to find order viola-
tions, BIPED can be more efficient than CALLFUZZER and
PECAN.

5.2.1 Limitations of BIPED

Through our experimental results, we have clearly demon-
strated the efficient concurrency bug prediction capability of
BIPED with aspect to the order violations, we also observed
some limitations of BIPED that we plan to address in our
future work.

Sensitivity to the normal trace The quality of the
predicted OUs and PUs is dependent on the original trace.
Techniques such as DefUse [21] is effective in obtaining the
crucial definition-use relations by statistical extracting the
data flows. Concerning the future work, we plan to integrate
BIPED with this school of techniques to tackle the trace sen-
sitivity issue and to improve the bug detection precise of
BIPED.

Redundant exploration BIPED currently has too
many buggy schedules to expose order violations. It can ex-
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pose soundly the PU and OU bugs in an execution, there
exist a lot of the same bugs that correspond to the same
statement. This limitation can be solved by removing the
equivalent events in the trace before applying BIPED, such
as filtering the equivalent events to only keep key events.

6. Related Work

6.1 Order-Related Bug Detection

Recently, Y. Shi et al. proposed a method to detect order
violation bugs by using definition-use invariants collected
during correct runs [21]. Their approach extracts the set of
correct definitions associated with the concerned read dur-
ing the training of program execution, and captures only
those interleavings violated the invariants at runtime. It
needs to re-exercise the executions for exposing the bugs.
J. Yu and S. Narayanasamy proposed an innovative method
to avoid concurrency bugs by using data dependency infor-
mation collected during correct runs [20]. Their approach
encodes the set of tested correct interleavings in a program’s
binary executable, and enforces only those interleavings at
runtime. They use Predecessor Set (PSet) constraints to cap-
ture the tested interleavings between two dependent memory
instructions. Specifically, for each shared memory instruc-
tion, PSet specifies the set of all valid remote memory in-
structions that can be immediately dependent upon.

6.2 Predictive Trace Analysis

C. Wang et al. developed a symbolic analysis model: Uni-
versal Causality Graph, for finding concurrency errors, such
as data races, atomicity violations [25], [33]–[35]. The
model encodes the causal dependencies among events, the
program control structure, and the property of concurrency
errors in an uniform way of symbolic constraints and uses
a satisfiability solver to verify the existence of property vio-
lations. This approach can statically check whether a prop-
erty holds in all possible permutations of events in the given
execution trace. J. Huang et al. [27] proposed a persuasive
prediction of concurrency access anomalies. Their approach
encodes the order constraint and the temporal order informa-
tion in a partial and temporal order graph to search the data
races, atomicity violation, and atomic-set serializability pat-
terns and check whether a pattern can be implemented in a
possible permutation of the given execution trace. However,
order violation bugs are special, it needs to more effective
ways to expose them.

6.3 Active Testing

An active randomized testing technique [32] that also uses
the trace information to detect and create data races [7], dead
locks [3], atomic-set serializability violations [36] through
checking hybrid constraints collected during a random run.
Their approach encodes the set of predicted specific thread

schedules and tries to control these specific schedules ac-
tively at runtime. Its capability of exposing real concurrency
bugs is subjected to the randomness, instead of determinis-
tically exposing every real concurrency bug.

7. Conclusion

In this paper we have introduced BIPED which is a bidi-
rectional predictive trace analysis approach to exposing the
order violations in a recorded trace. BIPED performs a bidi-
rectional prediction of the possible OUIs and PUIs by con-
structing a layered prediction model with encoding the order
constraints bidirectionally, and adopting dual predictors to
perform a quick check of the candidate OUIs and PUIs. We
have designed the safe tactics to support the bidirectional
predictive analysis via recognizing candidate OUIs and
PUIs which enclose the corresponding Use-Predef and Use-
Redef data flows. We have also developed a BIPED tool and
conducted the experiments to compare PECAN and CALL-
FUZZER. The experimental results show that the bidirec-
tional predictive trace analysis approach of BIPED achieves
higher efficiency than a classical predictive dynamic analy-
sis approach CALLFUZZER; and higher performance than
both a recent predictive trace approach PECAN and CALL-
FUZZER does in terms of detecting order violations.

In the future, we would like to extend BIPED to itera-
tively predict the buggy interleaves to expose high-risk bugs,
because BIPED can predict all possible OUIs and PUIs in a
recorded execution that expose numerous order violations
during re-executing, while a majority of them are benign.
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