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PAPER

Face Recognition Across Poses Using a Single 3D Reference Model

Gee-Sern HSU†a), Member, Hsiao-Chia PENG†, Ding-Yu LIN†, and Chyi-Yeu LIN†, Nonmembers

SUMMARY Face recognition across pose is generally tackled by either
2D based or 3D based approaches. The 2D-based often require a training
set from which the cross-pose multi-view relationship can be learned and
applied for recognition. The 3D based are mostly composed of 3D sur-
face reconstruction of each gallery face, synthesis of 2D images of novel
views using the reconstructed model, and match of the synthesized images
to the probes. The depth information provides crucial information for ar-
bitrary poses but more methods are yet to be developed. Extended from
a latest face reconstruction method using a single 3D reference model and
a frontal registered face, this study focuses on using the reconstructed 3D
face for recognition. The recognition performance varies with poses, the
closer to the front, the better. Several ways to improve the performance
are attempted, including different numbers of fiducial points for alignment,
multiple reference models considered in the reconstruction phase, and both
frontal and profile poses available in the gallery. These attempts make this
approach competitive to the state-of-the-art methods.
key words: face recognition, face reconstruction, sparse representation
classification

1. Introduction

Approaches for cross-pose recognition can be split into two
categories, one is 2D image based [1]–[4] and the other is
3D model based [5]–[8]. More advances have been made on
the former which appear to outnumber the latter consider-
ably [9]. However, most 2D approaches can only work for
poses available in the training set. Because 3D facial infor-
mation is considered crucial for recognition across arbitrary
poses [9], more 3D based methods are yet to be developed.
Here we focus on the 3D based methods which match 2D
probe images with synthesized 2D images from 3D models
because many well proved image features for face recogni-
ton can be applied in the scenario.

In 2D image based methods, the Eigen Light-Fields
(ELF) [1] assumes that the pixel intensities correspond to
the radiance of light emitted from the face along certain rays
in space, and estimates the basis set of the radiance values
at each pose using samples of the same pose in the training
set. The eigen light-field is defined on this basis set, which
allows the gallery and probe faces represented in ELF co-
efficients, and recognition can be performed by matching
these coefficients. It is an effective method dealing with
poses, but suffers from the requirements that the probe im-
ages must align with light-field vectors. In the Tied Factor
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Analysis (TFA) [2], a face is decomposed into a latent vari-
able (or factor) in the identity space, a pose-dependent map-
ping from identity to observation, a pose-dependent mean
and a noise. Since the pose-dependent mapping and mean
are independent of the subject, they can be obtained from a
training set. Given a non-frontal face with a known pose,
its corresponding frontal pose can be estimated using the
learned frontal pose mapping and mean, and then matched
against those in the gallery. This method requires manual
annotation of local features for pose-specific alignment. The
performance degrades, sometimes significantly, when local
features fail to be accurately localized. A stereo matching
approach with epipolar geometry is applied in [3] to eval-
uate the similarity between two faces of different poses.
Given three or four corresponding feature points on both
faces, two sets of scanlines with epipolar constraints can be
determined, and a stereo matching cost can be computed
and optimized to reveal how well the two faces match each
other. The regression-based method in [4] estimates the co-
efficients of linear combinations of 2D faces in the training
set for approximating the linear subspaces for 3D face. To
reduce the high variances in the estimated coefficients, the
method exploits the regressors with local Gabor features for
bias-variance balancing. Although these 2D-based methods
report performances better than many 3D-based ones, all of
them and many other 2D methods suffer from the limitation
that they only work for poses available in the training set,
making them ineffective in some practical applications.

In 3D model based approaches, the morphable
model [5] uses the prior knowledge, including the 3D face
shapes and textures, collected from hundreds of 3D facial
scans to build a 3D model for a given 2D image. Although
considered as an effective solution for recognition under
pose and illumination variations, it is expensive in storage
and computation because of the storage of the hundreds of
3D scans and the search for the correspondences to the ref-
erence model. A similar approach but modified with auto-
matic feature localization is given in [6], which reports a sat-
isfactory performance for poses less than 45◦, but degrades
significantly for large poses. Because the conventional PCA
is used after synthesizing the views to match against the
probe, we consider this a baseline for 3D methods in our per-
formance evaluation. The Generic Elastic Model (GEM) [7]
reconstructs the 3D face from a 2D face annotated with 79
fiducial points and a generic facial depth map. The recon-
struction accuracy strongly depends on the correspondences
between the fiducial points on the reference faces and those
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on the gallery face, which can be difficult to define precisely.
The Heterogeneous Specular and Diffuse (HSD) [8], one of
the latest approaches, allows both specular and diffuse re-
flectance coefficients to vary spatially to better accommo-
date surface properties of real faces. A few face images un-
der different lighting conditions are needed to estimate the
3-D shape and surface reflectivity using stochastic optimiza-
tion. The resultant personalized 3-D face model is used to
render novel gallery views of different poses for cross-pose
recognition. A similar scheme to the proposed one [10] ap-
plied procrustes analysis which aligns synthetic image and
the query image after 3D model is built. The block based
MLBP feature is extracted for matching.

Our method extends the latest work on 3D face re-
construction proposed by Kemelmacher-Shlizerman and
Basri [11] to tackle cross-pose recognition. It is 3D model
based in nature, but different from [5]–[8] and others in
that it exploits a single 3D reference model and recovers
the 3D shape of a 2D face image in the gallery without the
need of a dense set of correspondences. It consists of the
following steps: (1) 3D reconstruction based on the refer-
ence model, (2) model-based synthesis of novel poses, and
(3) pose-oriented feature extraction and matching. The pro-
posed method is a low-cost alternative to many 3D model-
based approaches that require a large number of 3D scans.
We evalutate the impacts made by multiple reference mod-
els, multiple sets of fiducial points for alignment, various
settings on the features and algorithms, along with an exten-
sive experimental study.

The rest of the paper is organized as follows: The
preparation of the 3D reference model and the model-based
reconstruction are presented in Sect. 2. Although the re-
construction part is mostly based on [11], our interpretation
from a different viewpoint can be easier for implementation.
The model-based synthesis of novel views and the pose-
clustered recognition using the Sparse Representation-based
Classification (SRC) are elaborated in Sect. 3. An extensive
experimental study on the performance of SRC with differ-
ent settings is presented in Sect. 4, along with a comparison
with state-of-the-art approaches. A conclusion of this study
is then given in Sect. 5.

2. Reconstruction Using Single Reference Model

We reformulate the problem as a constrained minimization
so that the well-known scheme with Lagrange multipliers
can be applied. We also make some minor modifications
to the original algorithm in [11], making our reconstruc-
tion different from theirs, although the results are similar.
Nevertheless, the investigations that we have added to the
reconstruction phase include the rendering of a smooth sur-
face given the noisy data of a 3D face scan for the refer-
ence model, model parameter estimation and the study on
different numbers of fiducial points used for the alignment
between the 2D image and 3D reference model. The for-
mer is presented in Sect. 2.1, and the latter in Sect. 4 with
experimental results.

2.1 Reference Model Surface Rendering and Parameter
Estimation

This step is not described explicitly in [11], but considered
an essential part of the reconstruction when making a raw
3D face scan good as the reference model. Instead of using
samples from the USF database as the reference models as
in [11], we select samples from the FRGC database [12] be-
cause of its popularity. Each FRGC 3D face scan consists
of a range image and a texture image that we can use to es-
timate the surface normal �nr(x, y) and albedo ρr(x, y), which
are required for the reconstruction of other faces.

We applied the Moving Least Squares (MLS) [13] to
smooth zr,0, the raw depth data of the reference model, so
that the measurement noise in zr,0 can be removed and the
smoothed surface zr can best approximate zr,0. Given a sub-
set of zr,0 in the form of point clouds with Nk points in the
subset, denoted as Pk = {�pi}i=1,··· ,Nk , the goal is to determine
a novel set of points, Rk = {�ri}i=1,··· ,Nk , on a low-order poly-
nomial that minimizes the distance between Pk and Rk. The
smoothed surface zr can then be obtained from {Rk}∀k. Mod-
ified from the MLS reported in [13] for better efficiency, our
method is composed of the following step,

1. Use Pk to determine a local plane H0 with origin �q0

and normal �n0 so that the following weighted sum can
be computed,

Nk∑
i=1

(
u0(xi, yi) − μi,0

)2 φ (∥∥∥�pi − �q0

∥∥∥) (1)

where u0(xi, yi) is the distance of �ri to H0 with the lo-
cation of its projection onto H0 given by (xi, yi); μi,0

is the distance of �pi to H0, i.e., μi,0 = �n0 · (�pi − �q0);
and φ(·) is a Gaussian function so that the points closer
to �q0 are weighted more. Assuming that Rk are de-
scribed by a low-order polynomial in terms of the
coordinates (xi, yi) on H0, i.e., �ri = f (xi, yi|Λ0) and
u0(xi, yi) = �n0 · ( f (xi, yi|Λ0) − �q0), where f (xi, yi|Λ0)
is a polynomial surface with parameter Λ0 that defines
the local geometry of Rk.

2. Because H0 can be uniquely defined given �q0 and �n0,
one can change them to �q1 and �n1 and obtain a novel
plane H1. Given that the order of the polynomial
f (xi, yi|Λ0) is fixed (so that the number of parameters
of f (xi, yi|Λ0) is fixed), a parameter estimation prob-
lem can be defined as the minimization of the weighted
sum as:

Λ∗k, �n
∗
k, �q
∗
k = argmin

Λ,�n,�q

Nk∑
i=1

(u(xi, yi) − μi)
2 φ
(∥∥∥�pi − �q

∥∥∥)

(2)

The above can be repeated on other subsets {Pk}∀k for esti-
mating {Λk, �nk, �qk}∀k and {Rk}∀k. A key issue in this scheme
is the initial estimates of �n0 and �q0. A few possible ways are
given in [13]; however, from our experiments we found that
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the minimum principal component extracted from Pk offers
a good estimate of �n0 and the centroid of Pk can be appro-
priate as �q0. To extract the principal components, one needs
to solve the eigenvectors of the covariance Ck,

Ck =
1
k

k∑
i=1

(
�pi − �q0

) · (�pi − �q0
)T (3)

where �q0 is the centroid of Pk, and considered as the origin
of the initial plane H0. �n0, the normal vector of H0, is given
by the eigenvector of Ck associated with the lowest eigen-
value. Following the above approach, the surface normal �nr

can be obtained from the estimated polynomials f (xi, yi|Λk).
Given �nr and the associated 2D image Ir, ρr can be estimated
using the method presented in the next section with some
simplification, as described at the end of Sect. 2.2.

2.2 Irradiance Evaluation Using Constrained Minimiza-
tion

The goal in this section is to estimate the 3D shape model
of any given 2D face image I(x, y) using the depth zr(x, y),
surface normal �nr(x, y) and albedo ρr(x, y) of the reference
model. Assuming that the face surface is Lambertian, I(x, y)
can be decomposed as

I(x, y) = ρ(x, y)�h(x, y) · �n(x, y) = ρ(x, y)R(x, y) (4)

where ρ(x, y) is the surface albedo at the point (x, y),
�h(x, y) ∈ R3 is the lighting cast on (x, y) with intensity on
each of the three directions, �n(x, y) is the face surface nor-
mal at (x, y), and the reflectance R(x, y) = �h(x, y) · �n(x, y).
For simplicity of notation, the coordinates (x, y) is dropped
in the rest of the paper, and �n(x, y), for example, is written
as �n. With a few assumptions [11], the reflectance can be
approximated using spherical harmonics,

R(x, y) ≈ �l · �Y(�n) (5)

where �l is the lighting coefficient vector and �Y(�n) is the
spherical harmonic vector, which, in the second order ap-
proximation, takes the following form:

�Y(�n) =
[
c0, c1nx, c1ny, c1nz, c2nxny, c2nxnz, c2nynz,

c2(n2
x − n2

y)/2, c2(3n2
z − 1)/2

√
3
]T

(6)

where c0 = 1/
√

4π, c1 =
√

3/
√

4π, c2 = 3
√

5/
√

12π.
The difference between (4) and (6) is that the lighting

intensity and direction are all merged into �h in (4), separated
from �n, but in (6) they are split into the lighting vector �l and
the spherical harmonics �Y(�n), which is solely dependent on
the components of �n, namely nx, ny and nz.

The core problem can now be formulated as the mini-
mization of ||I−ρ�l·�Y(�n)|| over ρ,�l and �n. The solution in [11]
uses the depth zr, the surface normal �nr and the albedo ρr of
the reference model for initialization, making the problem
solvable by regularization. We choose DoG (Difference of
Gaussian) instead of LoG (Laplacian of Gaussian) adopted

in [11] in the minimization because of a better computa-
tional efficiency without loss of accuracy:

min
�l,�z,ρ

∫
(I−ρ�l·�Y(�n))2+λ1(Dg∗dz)

2+λ2(Dg∗dρ)2dxdy (7)

where dz = z(x, y) − zr(x, y), dρ = ρ(x, y) − ρr(x, y), and Dg∗
denotes the convolution with the DoG; λ1 and λ2 are con-
stants. Although this is not described explicitly in [11], the
formulation in (7) can be better interpreted as the minimiza-
tion of ||I − ρ�l · �Y(�n)|| subject to the constraints Dg ∗ dz ≈ 0
and Dg ∗ dρ ≈ 0. Such a formulation allows the interpreta-
tion of λ1 and λ2 as the Lagrange multipliers. Assuming that
I is aligned to the reference model, the reconstruction tack-
les the minimization in (7) by first solving for the spherical
harmonic coefficients �l using the references zr and ρr, then
the depth z(x, y), and then the albedo ρ(x, y).

The alignment between I and the reference model
needs corresponding fiducial points on both I and the ref-
erence model. We applied the method in [14] for automatic
detection of facial features, and adjusted the results manu-
ally in case the method failed to perform ideally. Given a set
of fiducial points that splits I and the reference face into cor-
responding local regions, perspective and affine transforms
are then applied to fit each local region of the reference
model to the corresponding region in I.

The minimization (7) is also used for computing ρr

given Ir and �nr. In such a case, there are no constraint terms
in (7), and one can use the average of 2D faces in the gallery
as the initial guess of the albedo, ρ(0)

r , to solve the lighting
coefficients �l(0) and search for the desired ρr iteratively.

3. Cross-Pose Recognition Using SRC

3.1 Generation of Model-Based Training Images

We assume a common scenario that the gallery has one
frontal face image per subject for enrollment, and the probe
set contains face images of other poses for recognition. A
couple issues must be solved for this scenario: the genera-
tion of images good for training from the reconstructed 3D
face, and the estimate of the pose of a given probe so that its
matching to the gallery can be fast. To constrain the scope
of this paper from covering facial feature localization, which
can be solved by many algorithms, e.g., [14], we assume that
the fiducial points on a probe can be available using these al-
gorithms or manual annotation.

The overall recognition workflow is given in Fig. 1.
Each frontal face image in the gallery is taken as the I(x, y)
in (7) for making its corresponding 3D face. The alignment
between I(x, y) and the reference model is performed us-
ing a set of fiducial points. Our experiments reveal that
the fiducial-points-based alignment makes a strong impact
on the reconstruction and recognition performance. Fig-
ures 2 (a) and (b) show the reconstruction using 3 and 12
fiducial points. This, however, does not imply that more
fiducial points always lead to better reconstruction. This is-
sue is discussed along with experimental results in Sect. 4.
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Fig. 1 Workflow of recognition across pose given the reconstructed 3D face in the gallery.

Fig. 2 (a) 12 fiducial points for piece-wise warping. (b) Reconstruction with alignment using 3 fidu-
cial points in the upper row, and 12 fiducial points in the bottom row. (c) Translation error in x and y
direction with different number of neighboring samples at pose R22.5◦, L67.5◦ and L90◦.

Following the approach in Sect. 2, one can obtain a
3D reconstructed face for each gallery image. The surface
smoothing and rendering in Sect. 2.1 is performed on each
reconstructed face to obtain the finalized face surface. A
weak perspective transformation with a rotation matrix Rs

and a translation vector ts specified for pose ps is then ap-
plied on the 3D facial surface to render its 2D projection on
the image plane as the training image with pose ps.

To better tolerate possible pose deviation in a given
probe, the training set is generated in pose-oriented clusters.
Take the pose subset in the CMU PIE database [15] as an
example which is used in our experiments. The pose sub-
set offers 13 poses in total, 9 taken from horizontal views
with yaw angle roughly 22.5◦ apart (so the central one cor-
responding to the frontal), 2 taken from the vertical views
with pitch angle 22.5◦ up and down, and the rest 2 taken
from surveillance views with yaw angle 67.5◦ to both side
and pitch angle 22.5◦ down.

When generating the training set, each of these poses
is considered as the center of a pose-oriented cluster, several
neighboring poses are synthesized and added to the cluster.

We compare the number of 5, 3, 1 with 5◦ interval at dif-
ferent poses. All synthesized face images are normalized in
size to either the distance between the eyes and mouth when
the poses are primarily caused by horizontal rotations, or to
the distance between both eyes when the poses are caused by
vertical rotations. Translation errors are calculated by mis-
alignment of the probe face in the x and y directions around
the highest performance. As the results shown in Fig. 2 (c),
the better performance is achieved when using 5 neighbor-
ing poses in the gallery than 3 and 1 for all pose clusters.

3.2 Pose-Clustered Recognition with SRC

Because the Sparse Representation-based Classification
(SRC) is proven effective for face recognition, especially in
handling illumination, expression and occlusion [16]–[18],
but rarely applied for tackling pose, it is explored in this
study with different algorithms, features and parameter set-
tings. We imposed a pose-oriented mask on each image to
obtain the region of interest for feature extraction. The pose-
oriented masks, made based on 12 subjects selected from
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the FRGC database, are for blocking out non-facial regions
in the probe images at recognition phase. The subjects se-
lected for making the masks are different in gender and age
for diversified contours in different poses. The mask for a
specific pose is obtained by averaging the contours of all 12
subjects in the same pose, except for poses 67.5◦ and 90◦.
Because the contours at 67.5◦ and 90◦ are affected by nose,
one of the most prominent features viewed from the sides,
we selected the contour of the subject with the closest spatial
distribution of the fiducial points to those in the probe.

To apply SRC, we first form a matrix A = [A1, A2, . . . ,
As] from the training set, where Ai denotes the subset
formed by all pose-oriented clusters of Subject-i and s is
the number of subjects. Each column in Ai is a normalized
downsampled feature vector extracted from a training im-
age, and the features can be pixel intensities or others. The
Local Binary Pattern (LBP) is chosen as another feature in
the experiments for comparison purpose. An extensive ex-
perimental study on these features is presented in Sect. 4.

Given a probe q∗, the core part of SRC considers the
linear representation of q∗ in the span of A, i.e., q∗ = Ar∗ +
μ∗, where r∗ is a sparse vector and μ∗ is a noise with bounded
energy, i.e., ||μ∗||2 < ε. Following the rules in compressing
sensing [16], r∗ can be obtained by solving the following l1-
minimization:

r̂∗ = argmin ||r||1, subject to ||q − Ar||2 ≤ ε (8)

A comprehensive discussion on the solutions for the above
l1-minimization is given in [19], where five fast algorithms
were evaluated on the face recognition performance under
illumination variations. We select the best two, the TNIP
(Truncated Newton Interior-Point) and Homotopy, from the
five to evaluate their performance against pose variations.
The TNIP exploits gradient projection (GP), and searches
for the sparse vector r along certain gradient direction with
fast convergence speed. It reformulates the problem (8) into
the following form:

r̂∗ = argmin
r

1
2
||q − Ar||22 + λ||r||1 (9)

where λ is the Lagrange multiplier. Such a formulation en-
ables the solution using quadratic programming.

A different solution scheme, known as Homotopy, finds
a solution path Xh that varies with λ,

Xh = {r∗λ : λ ∈ [0,∞)} (10)

When λ→ ∞, r∗λ = 0, and when λ→ 0, r∗λ converges to the
solution. The Homotopy algorithm considers the fact that
the objective function in (9) changes as a homotopy from
the l2 constraint to the l1 objective as λ decreases. It can be
shown that the solution path Xh is piece-wise constant as a
function of λ [17], [18]. Therefore, when constructing a de-
creasing sequence of λ, it is only necessary to identify the
“breakpoints” that lead to changes of the support set of r∗.
See [17] for more details on the computation and implemen-
tation. The Matlab programs that solve (8) using the TNIP

and Homotopy are available in the SparseLab Toolbox at
http://sparselab.stanford.edu/.

4. An Extensive Experimental Study

All experiments were run on a Linux PC with 2.6GHz and
4G DDR3. The reference models were taken from the
FRGC database [12] and normalized to 250 × 300 in size.
The face images in the training and testing sets were all
scaled to 128 × 128 and resized to 24 × 24 when compar-
ing performance variations with different scales. The per-
formance was evaluated on the PIE pose subset, which has
68 subjects and 13 poses. The frontal pose of each subject
was used in the gallery for enrollment and the rest poses
in the probe for testing. This protocol is common for 3D-
based methods. Most 2D-based methods need a “pose train-
ing set”, which is often composed of all poses of half of the
subjects, i.e., 34 subjects, for learning the relationship be-
tween the 13 poses. The frontal of the other 34 subjects are
used as the gallery and the rest poses used as the testing set.

Experiments were designed to investigate the perfor-
mance variation with the following settings:

1. Multiple reference models considered in the recon-
struction phase. The accuracy of the reconstructed face
is affected by the 3D reference model. We compared
the case with one single reference model and one with
dual reference models of different genders and ages.

2. Different numbers of fiducial points for the alignment
between the gallery face and 3D reference model. Dif-
ferent numbers of fiducial points yield reconstructed
faces of different details, five cases with 3, 6, 12, 15
and 23 fiducial points were considered. We also in-
vestigated the cases with multiple models made with
different numbers of fiducial points.

3. Different features and scales. The pixel intensities in
24 × 24 downsampled images, and the LBP features
extracted from both 24×24 downsampled and 128×128
original scales were considered.

We also compared the performance of best ones se-
lected from this study to the state-of-the-art approaches.
Although 2D-based methods were considered limited in
generic applications with unconstrained poses, they were in-
cluded in our comparison to highlight the need of a different
evaluation protocol. When showing the results, instead of
using the PIE original pose tags, such as c02, c37, . . . , we
use the nominal pose angle with a letter in the front to de-
note its direction. For example, R67.5◦ refers to 67.5◦ to the
right, U22.5◦ is 22.5◦ upward and D22.5◦ is 22.5◦ down-
ward.

Because reconstruction takes most of the processing
time, and the larger the given image I, the longer the re-
construction takes. A few scales were tested, and although
large scales generally led to better reconstruction and recog-
nition performance, the scale factor 0.3 was selected for a
balance between processing time and performance.
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Fig. 4 (a) Comparison of single and double reference models with 15 fiducial points on 24 × 24
intensity features. (b) TNIP performance with different numbers of fiducial points on 24 × 24 images
with intensity features.

Fig. 3 Two reference models with different gender and age.

Multiple reference models
The default reference model was arbitrarily selected, as

shown in the previous figures. We selected an additional one
with different gender and age as shown in Fig. 3. Follow-
ing the same approach, each gallery image had two recon-
structed models, generating an additional set of pose clusters
for training. Figure 4 (a) shows the comparison of single and
double reference models with 15 fiducial points. The perfor-
mance varies slightly for different algorithms. However, the
reference model appears to make strong impacts on the per-
formance. The model M1 performs better for large poses,
while M2 is preferred for poses ≤ 45◦. But both are outper-
formed by their combination, M1+M2.

Fig. 5 Comparison of reconstruction with 3 (top row) and 15 (bottom
row) fiucial points. Fewer fiducial points causes misalignment at nostrils
and becomes prominent features at pose U22.5.

Different numbers of fiducial points
Different numbers of fiducial points yield reconstructed

faces with different details. Five cases with 3, 6, 12, 15 and
23 fiducial points were considered. The fiducial points were
used to split the face into local regions. Perspective trans-
form and affine transform were then applied to fit a gallery
image to the reference model in one region after another. A
case with 12 fiducial points is shown in Figs. 2 (a) and (b).
We found that the reconstruction results vary with not just
the number of fiducial points, but also the locations of the
fiducial points. The fiducial points at eye regions were bet-
ter located right below the eyes, rather than on the center of
the eyes, as shown in Figs. 2 (a) and (b). Figure 4 (b) shows
the comparison of different numbers of fiducial points. Be-
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Fig. 6 Performance of LBP with different cell sizes on 24 × 24 and 128 × 128 images. Combo refers
to cases with dual reference models and multiple sets of fiducial points.

cause TNIP and Homotopy algorithms perform similarly to
each other, only the performance of TNIP is shown. The
degraded performance at U22.5 in Fig. 4 is caused by the
compound effect of imperfect reconstruction and misalign-
ment. U22.5 refers the view from under the chin where the
nostrils become prominent features as shown in Fig. 5. Be-
cause the nose is less accurately reconstructed using 3 fidu-
cial points than the case using 15 fiducial points, the asso-
ciated recognition rate of the former is also worse than the
latter. Although the case with 23 fiducial points outperform
others for poses ≤ 45◦, its performance degrades for large
poses. As more fiducial points do not always improve the
performance, an appropriate option is the combination of
facial images from multiple reconstructions based on differ-
ent numbers of fiducial points. It is shown in Fig. 4 (b) that
the combo of 6 + 12 + 15 fiducial points yields the best per-
formance.

Different features and related settings
The performances of the LBP with different cell sizes

and the combos of the previously reported settings are
shown in Fig. 6. Those with image size 128 × 128 perform
better than those of 24 × 24, reflecting the fact that texture
features from higher resolution improve the performance.
Because SRC with features of 128 × 128 pixel intensities
demanded high computational cost, we consider it inappro-
priate and recommend the LBP features instead. However,
given the facial image size 24×24, both cases with pixel in-
tensities and LBP features perform well. Tests on 128× 128
images with different LBP cell scales show that the partition
with 8 × 8 cells performs the best. Both TNIP and Homo-
topy algorithms perform similarly although TNIP appears
slightly better. When using multiple sets of fiducial points
and dual reference models in the gallery, the size of the ma-
trix A increases considerably and so does the recognition
time. To expedite, the whitened PCA (WPCA) is exploited
which is claimed to be able to effectively reduce the feature

Table 1 Recognition time for LBP with different settings, 244∗4 refers to
24 × 24 image split in 4 × 4 cells and 128combo

8∗8 refers to 128 × 128 image
split in 8 × 8 cells handled by combo features.

244∗4 1284∗4 1288∗8 128combo
8∗8

TNIP 46 127 193 802
Homotopy 0.58 33 2.13 4.81
WPCA (average) - - 0.18 0.45

Table 2 WPCA dimension and recognition time for each pose cluster
using dual model and multiple fiducial point sets.

Pose L90 LD67.5 L67.5 L45 L22.5 D22.5 U22.5
Dim. 88 95 50 98 31 23 61
Time (s) 0.5 0.54 0.59 0.33 0.59 0.38 0.62

dimension [20]. Homotopy is chosen here for faster com-
putation than TNIP. Table 1 shows the comparison on the
processing time. It reduces from 2.13 to 0.18 sec using dual
reference models, and from 4.81 to 0.45 sec for the combos
of dual reference models and multiple fiducial point sets.
Table 2 shows the dimension of WPCA features extracted
from the LBP of each pose cluster†.

A few best ones from the previous studies were cho-
sen to compare with the state of the art, including TNIP
on 24 × 24 intensities (GRAY SRCT NIP

combo), TNIP on LBP

of 128 × 128 with 8 × 8 cells (LBPT NIP
128d8combo) and Homo-

topy with the same LBP settings but dimension reduced by
WPCA (LBP+WPCAcombo

8∗8 ) as shown in Fig. 7. The combo
refers dual reference models and multiple sets of fiducial
points. The 3D based ones are shown in solid lines to dis-
tinguish them from the 2D based, in dashed lines, as the
latter are limited in supported poses. Both LBPT NIP

128d8combo
and LBP+WPCAcombo

8∗8 perform almost equally well as the
HSD [8], one of the best 3D methods but requires a few face

†The WPCA dimension can be chosen in the training phase for
desired performance using the synthesized 2D images in each pose
cluster.
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Fig. 7 Comparison with the state of the art.

images under different lighting conditions to estimate the 3-
D shape. The proposed method is also competitive to B.V.
(Bias Variance [4]), one of the best 2D approaches, and is
more effective in the practical applications for more poses
available for recognition not exist in the training set. GRAY
SRCT NIP

combo performs well for poses ≤ 45◦ but degrades to
some extent for larger poses, but is considered comparable
to many. Although the performances of LBPT NIP

128d8combo and
LBP+WPCAcombo

8∗8 are similar to each other, the latter is bet-
ter because it is much faster than the former.

5. Conclusion

3D-based approaches for cross-pose recognition deserve
special attention since 2D-based ones are mostly limited to
the poses same as those in the training set. This work ex-
tends a recent work on 3D face reconstruction to recogni-
tion using SRC. The smoothed surface rendering, which is
an important part for reconstruction but missing in [11], has
been elaborated. More importantly the impacts made by
multiple reference models, multiple sets of fiducial points
for alignment, various settings on the features and algo-
rithms were also investigated, along with an extensive ex-
perimental study. This study shows that both TNIP and Ho-
motopy algorithms perform similarly well. Multiple refer-
ence models and multiple sets of fiducial points lead to addi-
tional synthesized images and improve the recognition per-
formance. Experiments show that SRC with downsampled
images can be competitive to state-of-the-art approaches,
and it can further outperform many with LBP features ex-
tracted from the original or high-resolution images.
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