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PAPER

Scalable Hardware Winner-Take-All Neural Network with DPLL∗

Masaki AZUMA†, Nonmember and Hiroomi HIKAWA††a), Member

SUMMARY Neural networks are widely used in various fields due to
their superior learning abilities. This paper proposes a hardware winner-
take-all neural network (WTANN) that employs a new winner-take-all
(WTA) circuit with phase-modulated pulse signals and digital phase-locked
loops (DPLLs). The system uses DPLL as a computing element, so all
input values are expressed by phases of rectangular signals. The pro-
posed WTA circuit employs a simple winner search circuit. The proposed
WTANN architecture is described by very high speed integrated circuit
(VHSIC) hardware description language (VHDL), and its feasibility was
tested and verified through simulations and experiments. Conventional
WTA takes a global winner search approach, in which vector distances
are collected from all neurons and compared. In contrast, the WTA in the
proposed system is carried out locally by a distributed winner search cir-
cuit among neurons. Therefore, no global communication channels with
a wide bandwidth between the winner search module and each neuron are
required. Furthermore, the proposed WTANN can easily extend the sys-
tem scale, merely by increasing the number of neurons. The circuit size
and speed were then evaluated by applying the VHDL description to a
logic synthesis tool and experiments using a field programmable gate ar-
ray (FPGA). Vector classifications with WTANN using two kinds of data
sets, Iris and Wine, were carried out in VHDL simulations. The results
revealed that the proposed WTANN achieved valid learning.
key words: neural network, winner-take-all, supervised learning, digital
phase-locked loop, hardware architecture

1. Introduction

Neural networks are used to predict and recognize cli-
mate, images and voices. A winner-take-all neural network
(WTANN) is a supervised neural network. The most impor-
tant feature of WTANN is its ability to determine a win-
ner neuron that has a weight vector nearest to the input
vector, which is called a “winner-take-all (WTA)” opera-
tion. Hence, in most applications, WTANNs are treated as
classifiers. The WTANN has been extensively adopted to
solve problems in pattern recognition and signal process-
ings [1], [2]. The MAXNET is a well-known WTANN [3].
The WTA operation is used in other neural networks, such
as self-organizing map (SOM) [4].
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Neural networks implemented in software are ex-
tremely flexible, but performance that can be achieved with
software solutions is insufficient if networks are too large.
Therefore, hardware implementations of neural networks
are preferable to software implementations. Hardware im-
plementations can make use of the parallelism embedded
in the neural network algorithm. Field programmable gate
arrays (FPGAs) are suitable platforms to implement neural
networks due to their shorter development times and lower
costs.

Many designers and researchers have been develop-
ing VLSI implementations with various techniques, ranging
from digital to analog and even optical. One effective ap-
proach to implementing neural networks in hardware is a
pulse-stream based architecture [5], where pulse density or
frequency is used to represent a neuron’s signal level. In
addition, a stochastic computation is used to implement the
required computation [6].

It is generally known that information processing by
the brain is performed by exchanging spikes between neu-
rons, which involves rapid electrical changes in the shape of
pulses. The Hodgkin-Huxley (HH) [7] model is one of the
first detailed neuron models developed. A simple model is
the leaky integrate and fire (LIF) model [8], which is com-
putationally cheaper. In recent years, experimental evidence
indicates that many biological neural systems use the tim-
ing of single spikes to encode and process information. This
method, known as “temporal coding,” is considered to be
the coding mechanism in biological neural systems. In hard-
ware spiking neural networks with temporal coding, coinci-
dence or synchrony detection plays important roles in neural
information processing. Many spiking neural networks have
been reported [9]–[11].

Hikawa used a digital phase-locked loop (DPLL) as an
arithmetic circuit for a SOM since the operation of DPLL is
very similar to that of neurons, and the method succeeded
in simplifying the circuit [12]. The input value was ex-
pressed by timing of the rising edge of the rectangular wave.
SOM with phase modulated signals is very similar to the
pulse-stream based neural networks because phase modu-
lated rectangular waves can be regarded as temporal coded
spikes. The main problem with this architecture is that the
WTA was implemented by a global winner search based on
a binary-tree search scheme. Thus, the search circuit must
be designed in accordance with the number of neurons, so
the system was not scalable since the winner search circuit
must be re-designed if the number of neurons is increased.

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers



AZUMA and HIKAWA: SCALABLE HARDWARE WINNER-TAKE-ALL NEURAL NETWORK WITH DPLL
1839

In addition, a global communication channel was required
because the circuit had to obtain all vector distance infor-
mation from all neurons.

This paper proposes a new WTA circuit that can find
winner neurons efficiently by taking advantage of the nature
of phase modulated signals. XNOR is employed as the coin-
cidence detector in the proposed WTA circuit, and a neuron
having the nearest internal signal in the phase is detected
as a winner neuron. Combined with DPLL, the proposed
WTA circuit is employed to form a WTANN and its feasi-
bility is examined. There is no winner search module in the
proposed WTANN, since the winner search is carried out
locally by all neurons. Therefore, WTANN has a simple
structure and it can easily be extended, merely by connect-
ing the neurons. The proposed WTANN was described by
VHDL and its operation was tested with VHDL simulations.

First, the learning capabilities and scalability of the
proposed WTA method that were demonstrated by multi-
dimensional WTANN are described. Vector classifications
using general data sets were performed in the second simu-
lation. The WTANN was trained as a vector classifier that
identified input vector classes of the Iris and Wine data sets.
Then, the system was implemented on an FPGA, and the cir-
cuit size and operating speed were evaluated. The function
of the proposed WTANN was also verified by experiments.

The remainder of this paper is organized as follows:
Section 2 describes the WTANN algorithm. The detail of the
proposed WTANN architecture with DPLLs is explained in
Sect. 3. Simulation results are presented in Sect. 4. FPGA
implementation, FPGA experiments and circuit properties
are examined in Sect. 5, followed by conclusions in Sect. 6.

2. Winner-Take-All Neural Network

The general structure of a WTANN is outlined in Fig. 1. A
conventional WTANN consists of multiple neurons, a super-
vised learning unit, and a winner search unit. An N dimen-
sional vector, �wi, called a weight vector, is assigned to all
neurons.

�wi = {μi0, μi1 . . . , μiN−1}. (1)

The operation of WTANN can be divided into two
phases of learning and recall. Supervised learning is carried
out in the learning phase, and weight vectors of all neurons
are trained with a set of training vectors. The weights of
neurons remain unchanged after the learning phase and are
used in the recall phase.

The learning phase starts with an appropriate initializa-
tion of the weight vectors and a class number is assigned to

Fig. 1 Winner-take-all neural network (WTANN).

each neuron. Training vectors �x and their class numbers are
subsequently presented to the neurons in multiple iterations.

�x = {ξ0, ξ1 . . . , ξN−1}. (2)

The supervised learning unit activates neurons that are
assigned to a given class, so that the weight vector of the
selected neuron is updated to be closer to the training vector.

�wi(k + 1) = �wi(k) + α(�xi − �wi(k)), (3)

Here, k is a time index, and α is the learning rate, (0 ≤ α ≤
1). The weight vector of each neuron is properly adjusted to
the vectors belonging to one of the classes by repeating the
above computation.

The distances to all weight vectors are calculated in the
recall phase for each input vector. The Euclidean distance
is commonly used to measure the vector distance. However,
most hardware neural networks employ Manhattan metric
di instead of the Euclidean distance to reduce the computing
cost. The saving in the silicon area by using the Manhattan
metric is substantial since no squaring circuits are required.

di =

N−1∑

j=0

|ξ j − μi j| (4)

The neuron having the smallest distance is determined
to be the winner neuron.

c = arg min
i

di. (5)

The winner neuron search, i.e., the WTA operation,
is generally implemented by a global winner search unit,
as shown in Fig. 1. The winner search circuit searches for
the winner neuron having the smallest vector distance af-
ter receiving the vector distances from all neurons. Various
WTA architectures that determine the winner neuron were
proposed. The MAXNET [3] is a well-known competitive
architecture for selecting the maximum or minimum from
a set of data. Since all nodes in the MAXNET are mutu-
ally connected, its entire configuration must be re-organized
if the number of neurons is increased. Another popular
WTA is the winner search circuit that is based on binary tree
search [13], [14]. The circuit size increases in proportion
to the number of neurons, so circuits become complicated
due to the nature of binary-tree search. Since the vector dis-
tances di must be collected from all neurons, the circuit must
be designed in accordance with the number of neurons. In
addition, circuits must obtain all vector distance informa-
tion from all neurons, which requires a global communica-
tion channel with wide bandwidth. Hence, the structure of
the winner search circuit must be modified to accommodate
additional neurons. Note that the binary-tree based winner
search circuit was used in our previous work [12].

3. Winner-Take-All Neural Network with Digital
Phase-Locked Loop

3.1 System Configuration

Figure 2 is a block diagram of the proposed WTANN. Input
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Fig. 2 WTANN with DPLL.

Fig. 3 Multi-dimensional neuron.

to the system is P, whose phase represents input vector ele-
ments ξ0-ξN−1. The system consists of a supervised learning
unit and multiple neurons.

Figure 3 outlines the proposed WTANN neuron for
the multi-dimensional (N dimensional) vector. Each neuron
contains multiple DPLLs, each of which processes one of
the vector elements μi j. Therefore, an N DPLLs are needed
for the WTANN neuron to handle N dimensional vector.
Note that there is no winner search module in the system,
because the winner search is carried out locally by all neu-
rons.

The signals used in the proposed neuron circuit are out-
lined in Fig. 4. Qi j and Pj are carrier signals whose phases
are modulated to convey the vector elements μi j and ξ j in
Eqs. (1) and (2). Since other signals are used inside the neu-
ron circuit, they are explained in the following subsections.

3.2 Digital Phase-Locked Loop

DPLL is mainly used in data transmission systems [15]. Fig-
ure 5 is a block diagram of the DPLL that is used in this pa-
per. A phase detector (PD), a loop filter (LF), and a digital
controlled oscillator (DCO) constitute the DPLL. The PD in
the DPLL detects the phase difference between the input sig-
nal and its internal signal. Then, the LF converts the phase
difference signal into a control signal, and the phase differ-
ence is decreased by sending the control signal to the DCO.
The phase of the local signal eventually synchronizes to that
of the incoming signal by repeating the above process.

Fig. 4 Signals in proposed WTANN.

Fig. 5 Digital phase-locked loop (DPLL)

3.2.1 Phase Detector

Figure 6 (A) shows a block diagram of the phase detector.
The PD compares the rising edges of the input signal and
its local signal; then, one of its Lead or Lag output signals is
made to be high level. Figure 4 depicts two situations, where
ξ j < μi j and ξ j > μi j. In the case of ξ j < μi j, the phase of Qi j

is behind that of Pj, and the Lag signal is generated from the
PD, which is then converted to a Forward signal by the LF.
The Lead and Backward signals are generated if ξ j < μi j.
The output level of the PD is given as the logical-high dura-
tion of the output signal. Resulting phase comparison char-
acteristic of the PD is a linear function shown in Fig. 6 (B).
The PD output signals are then fed to the LF.

3.2.2 Loop Filter

The LF is made of two counters, as shown in Fig. 7. One of
the counters is enabled while the corresponding input sig-
nal (Lag or Lead) is high level, and a phase control signal
(Forward or Backward) is generated when the counter over-
flows. With this operation, the LF can detect the statistical
tendency of the occurrence of Lag or Lead, and in this sys-
tem, the LF is used to provide the learning coefficient α in
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Fig. 6 Phase detector, (A) block diagram, (B) characterristic

Fig. 7 Loop Filter

Fig. 8 Digital controlled oscillator (DCO)

(3).

3.2.3 Digital Controlled Oscillator

There is a block diagram of the DCO in Fig. 8. The
DCO consists of increment/decrement circuits, a K-bit pro-
grammable counter, and an L-bit counter. Typical DCO sig-
nals are shown in Fig. 9. A single forward or backward con-
trol signal changes the output phase of the DCO by a single
clock cycle. Output of the DCO is the phase-modulated car-
rier signal Qi j in Fig. 4.

The programmable counter divides the input signal
(clock signal) by 2K−1 in the absence of the control pulse
shown in Fig. 9 (A) and then the following L-bit counter di-
vides the signal by 2L. The cycle of the DCO’s output signal

Fig. 9 Phase control in DCO.

is 2K+L−1, and its center frequency is given by

fDCO =
fCK

2K+L−1
. (6)

Figures 9 (B) and (C) indicate phase control by
Forward and Backward signals. The Forward signal ac-
tivates the decrement circuit and the output cycle of the pro-
grammable counter is shortened to 2K−1 − 1, resulting in the
rising edge of the DCO being moved forward by one clock
cycle. In the presence of the Backward signal, the cycle pe-
riod of the programmable counter is altered to 2K−1 + 1, and
the edge is moved backward. In this way, each Forward
or Backward pulse can adjust the timing of the output sig-
nal’s rising edge. Note that the DCO signal cycle is 2L times
longer than the programmable counter output in Fig. 9. A
single programmable counter could have been used instead
of the two counters, but two counters are used to reduce the
circuit sizes of the increment, decrement circuits as well as
the programmable counter.

The amount of adjustment is the same as the period of
the clock signal. Thus, phase control is quantized as

Δ =
2π

2K+L−1
. (7)

As each weight vector element is given by the phase of the
local signal, Δ governs the precision of the weight vectors.

3.3 Winner Find Operation

In update mode of the learning phase, the supervised learn-
ing unit activates the neuron that is assigned to the class to
which the training vector belongs. The phase control of the
DPLL in this neuron is enabled so that its local signal phase
is adjusted to be closer to that of the training vectors.

The mode is switched to winner search mode in the re-
call phase. The number of Pi and Qi j pairs having the same
value are detected by the XNOR unit at each clock input,
and they are counted by the ones counter and accumulated
in the register in Fig. 3. Same as the PD, the output level
of the XNOR is the high-level duration of the output sig-
nal. As shown in Fig. 4, the closer the two signals Pi and
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Fig. 10 XNOR output characteristic

Qi j are, the longer the XNOR generates a logical high out-
put; thus, the output characteristic of the XNOR is inversely
proportional to the phase difference between two signals, as
shown in Fig. 10. If the MSB of the register in neuron i be-
comes high earlier than other neurons, then neuron i is the
winner neuron. The winner neuron activates the Stop sig-
nal that is broadcast to all neurons and their registers are
disabled. Note that Stop is a bidirectional signal. The win-
ner neuron is determined in this way by distributed winner
search. Thus, no complex winner search methods or wide
band-width global communication links are required.

4. Simulation

The proposed WTANN was described through VHDL and
tested by VHDL simulations. Two kinds of VHDL simu-
lations were carried out to test and verify the operation of
WTA circuit and the learning characteristic of the WTANN.

4.1 Simulation Setup

Figure 11 is a block diagram of the system used to simu-
late the classifications, where M is the number of classes
that were classified. The system consisted of the DPLL
WTANN, M ROMs, M phase modulators, and Signal gen-
erator to provide input signals and the timing signal genera-
tor. The ROM stored K + L − 1 + T -bit sample data, T -bits
of which indicated the class number. M × N phase mea-
surement circuits were also included to measure the weight
vectors assigned to the neurons. These were not necessary
for WTANN operation, but were used to monitor the sig-
nal phases. The timing generator produced various timing
signals to control the system.

4.2 Learning Capability and Scalability

Artificially generated test data sets were used to verify
learning capabilities and scalability. The data sets were
made of 8 or 16 classes each of which was made of 16
three-dimensional random vectors. Therefore, the DPLL
WTANNs consisted of 8 or 16 neurons each of which in-
cluded three DPLLs to process three dimensional vectors.
The bit length of each counter in the DCO was set to, K = 10
and L = 3, thus each weight vector element had 13-bit ac-
curacy, and 15-bit register was used in the neurons. The
purpose of this paper is to provide a scalable WTA architec-
ture in which the number of neurons can be easily increased.
In terms of the WTA mechanism, an additional neuron can
be included by simply connecting its input and stop signal

Fig. 11 Configuration for WTANN simulation

Fig. 12 Training and weight vector after training. (A) 8 classes and (B)
16 classes.

ports to the input and stop signal lines in the WTANN, while
other neurons are left intact. Using this feature, the experi-
mental WTANN was easily scaled up so that the number of
neurons was increased from 8 to 16 by simply connecting 8
additional neurons to the WTANN as described above.

Each neuron performed supervised learning, using
training signals with class information. Each test class data
consists of 16 samples, from which 8 samples were ran-
domly selected for learning and remaining samples were
used for testing the system. The learning rate is set to
α = 1/64, and the number of training iteration was set to
48. Example of the training data and trained weight vec-
tors are shown in Figs. 12 (A) and (B). The weight vectors
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Table 1 Recognition rate V.S. the number of class

The number of class 8 16
Recognition rate 100% 99.8%

learned by training vectors are used for recognition of test-
ing data. Table 1 shows the average recognition rate given
by 100 recognition tests. It also shows the DPLL WTANNs
are capable of classifying the test data set accurately. How-
ever, in the 16-class case, the recognition rate was not 100%.
Some of the clusters marked by double-circles in Fig. 12 (B)
were closely located to each other. The weight vectors as-
signed to these clusters were not always precisely trained to
be at the center of the clusters because the training results
depended on the training vectors. Therefore, vectors near
the cluster border were not correctly classified.

4.3 Vector Classifications

The second simulation tested WTANN with Iris data
and Wine data sets in the Machine Learning Repository
(MLR) [16] of the University California, Irvine (UCI). The
Iris data set consisted of three classes (Iris Setosa, Iris Ver-
sicolor, and Iris Versinica) with 50 instances of each. The
instances were sepal length, sepal width, petal length, and
petal width. Thus, there were four dimensions of vectors
representing the Iris data. The Wine data set contained the
results from chemical analysis of wines grown in the same
region in Italy but were derived from three different culti-
vars. The Wine data set contained 178 instances belonging
to three classes. The number of instances of each class was
59, 71, and 48. Analysis determined the quantities of 13
constituents found in each of the three types of wines. The
attributes were alcohol, malic acid, ash, alkalinity of ash,
magnesium, total phenols, flavanoids, nonflavanoid phenols,
proanthocyanins, color intensity, hue, the OD280/OD315 of
diluted wines, and proline. Thus, the vector representing the
Wine data had 13 dimensions.

The DPLL WTANN in the simulated classification of
Iris data, consisted of three neurons, each of which included
four DPLLs to process four dimensional vectors. The bit
length of each counter in the DCO was set to, K = 9
and L = 3, therefore, each weight vector element had 12-
bit accuracy, and 15-bit register was used in the neurons.
The DPLL WTANN in the simulated classification of Wine
data consisted of three neurons each of which included 13
DPLLs so that 13 dimensional vectors were processed. The
bit length of each counter in the DCO was set to, K = 10 and
L = 3, thus each weight vector element had 13-bit accuracy,
and 16-bit register was used in the neurons.

There are examples of the signals found in the simula-
tions for Iris data in Figs. 13 (A), (B), and (C). The signals
in the system correspond to Iris Setosa, Iris Versicolor, and
Iris Versinica. P0−P3 are the input signals of WTANN. Q0 j,
Q1 j, and Q2 j are the signals from neuron-i, and Win0−Win2

indicate the winner neuron. These figures show that neu-
ron 0 is assigned to Iris Setosa, neuron 1 is assigned to Iris

Fig. 13 Timing chart for recognizing simulation, where input vector are
(A) Iris Setosa, (B) Iris Versicolor and (C) Iris Versinica

Versinica, and neuron 2 is assigned to Iris Versicolor. The
black lines in the figures indicate input signals and signals
in the winner neurons. Note that two sets of signals are very
close in their phases.

Each set of Iris class data consisted of 50 samples, from
which 25 samples were randomly selected for learning and
the remaining samples were used for testing the system. The
numbers of samples belonging to the three Wine classes
were different, therefore, 50% of the samples were randomly
selected for training and the remaining 50% were used for
the recognition test. The learning rate was α = 1/64, and
the number of training iterations was set to 32.

Tables 2 and 3 summarize the recognition rates for
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Table 2 Iris data set recognition

System Class Recognition rate

Setosa 100%
DPLL WTANN Versicolor 86.2%

(proposed method) Versinica 93.4%
Average 93.4%

Setosa 99.8%
Numerical computation with Versicolor 90.1%

binary-tree search Versinica 89.2%
Average 93.0%

k-NN [17] Average 96.7%

LDA [17] Average 98.0%

Table 3 Wine data set recognition

System Class Recognition rate

1 95.7%
DPLL WTANN 2 96.6%

(proposed method) 3 98.6%
Average 97.0%

1 97.2%
Numerical computation with 2 97.2%

binary-tree search 3 99.0%
Average 97.8%

k-NN [17] Average 97.8%

LDA [17] Average 98.9%

the system given by 100 recognition test. The tables also
include the recognition accuracy of conventional WTANN
based on binary-tree search, k-NN, and the linear discrim-
inant analysis (LDA) classification algorithm [17]. Table 2
indicates that the system is capable of classifying Iris Setosa
very accurately, but the recognition rates for Versicolor and
Versinica are worse than those for Setosa. Table 3 indicates
that the system is also capable of classifying the Wine data
set very accurately.

5. Implementation and Experiments

The circuit size and speed were evaluated by using a
logic synthesis tool. Xilinx ISE 14.6 was used for the
logic synthesis, and the DPLL WTANN for the Iris data
and Wine data were implemented on a Spartan-6 FPGA,
XC6SLX16, which includes 2,278 slices. Moreover, con-
ventional WTANN based on binary-tree search was imple-
mented on the same FPGA.

The WTANN used for Iris data recognition consisted
of three neurons, each of which contained four DPLLs. This
WTANN consumed 583 slices in the FPGA. The highest op-
erable clock frequency was 293.5 MHz. The 293.5 MHz
clock and DCO configured with K = 9 and L = 3 generated
a 143.3 kHz signal. Therefore, each input vector was recog-
nized at a frequency of 143.3 kHz or every 6.98μs. There are
examples of signals provided by the implemented circuit for
Iris data in Figs. 14 (A), (B), and (C). These figures indicate
that neuron 0 is assigned to Iris Setosa, neuron 1 is assigned
to Iris Versinica, and neuron 2 is assigned to Iris Versicolor.
The red lines in the figures indicate input signals and signals
in the winner neurons. Note that two sets of signals are very

Fig. 14 Experimental results, where input vector are (A) Iris Setosa, (B)
Iris Versicolor, and (C) Iris Versinica.

close in their phases.
The WTANN for Wine data recognition consisted of

three neurons, and each neuron contained 13 DPLLs. This
WTANN consumed 1,111 slices of FPGA. The highest op-
erable clock frequency was 283.2 MHz. The 283.2 MHz
clock and DCO configured with K = 10 and L = 3 gen-
erated a 69.1 kHz signal. Therefore, each input vector was
recognized at a frequency of 69.1 kHz or every 14.46μs.

Circuit size and speed are summarized in Table 4. The
proposed WTAN has no advantage in terms of circuit size
and speed. Improving the circuit size and speed of the
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Table 4 Circuit size and speed

System Circuit structure Circuit size Recognition speed

4 dimensions, 3 classes (Iris) 367 slices 143.3 × 103 samples/sec.

DPLL WTANN 13 dimensions, 3 classes (Wine) 1111 slices 69.1 × 103 samples/sec.

(proposed method) 4 dimensions, 16 classes 1814 slices 66.6 × 103 samples/sec.

4 dimensions, 3 classes (Iris) 222 slices 74.2 × 106 samples/sec.

Numerical computation with 13 dimensions, 3 classes (Wine) 837 slices 69.6 × 106 samples/sec.

binary-tree search 4 dimensions, 16 classes 1213 slices 39.3 × 106 samples/sec.

WTAN is left for future research.

6. Conclusion

We proposed a hardware WTANN that used DPLL and a
new WTA circuit. The vector information was provided by
a phase modulated signal, and the system used DPLL as a
computing element since its operation was very similar to
WTANN neurons. Information given to the system was ex-
pressed by the phase of a rectangular wave.

The most important function of the system is WTA op-
eration, which was simplified by the proposed winner search
circuit. The winner search circuit in the proposed system
was distributed among neurons. Since winner search was
carried out locally by all neurons, no global communica-
tion channel was needed. Therefore, the number of neurons
could easily be increased without redesigning the winner
search circuit.

The system used DPLL as a computing element. The
WTANN was designed with VHDL, and its feasibility was
tested and verified through VHDL simulations. The vec-
tor classification simulations and experiments demonstrated
the proposed WTANN had valid learning characteristic and
classification capabilities with the new WTA circuit. Two
kinds of data sets, i.e., Iris data and Wine data sets, were
used in these tests.

We proved that our design can be synthesized through
logic synthesis. The hardware cost was evaluated with a
logic synthesis tool. Experiments with the system imple-
mented on an FPGA verified the efficiency of its physi-
cal design and operational speed, but we found that the
proposed WTANN architecture needs further improvement
to decrease its circuit size while increasing the operating
speed.
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