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PAPER

Acoustic Event Detection in Speech Overlapping Scenarios Based
on High-Resolution Spectral Input and Deep Learning

Miquel ESPI†a), Nonmember, Masakiyo FUJIMOTO†b), and Tomohiro NAKATANI†c), Members

SUMMARY We present a method for recognition of acoustic events in
conversation scenarios where speech usually overlaps with other acoustic
events. While speech is usually considered the most informative acous-
tic event in a conversation scene, it does not always contain all the infor-
mation. Non-speech events, such as a door knock, steps, or a keyboard
typing can reveal aspects of the scene that speakers miss or avoid to men-
tion. Moreover, being able to robustly detect these events could further
support speech enhancement and recognition systems by providing useful
information cues about the surrounding scenarios and noise. In acoustic
event detection, state-of-the-art techniques are typically based on derived
features (e.g. MFCC, or Mel-filter-banks) which have successfully parame-
terized the spectrogram of speech but reduce resolution and detail when we
are targeting other kinds of events. In this paper, we propose a method that
learns features in an unsupervised manner from high-resolution spectro-
gram patches (considering a patch as a certain number of consecutive frame
features stacked together), and integrates within the deep neural network
framework to detect and classify acoustic events. Superiority over both pre-
vious works in the field, and similar approaches based on derived features,
has been assessed by statical measures and evaluation with CHIL2007 cor-
pus, an annotated database of seminar recordings.
key words: acoustic event detection/recognition, high-resolution feature,
spectrogram patch, communication scene understanding

1. Introduction

Most of the research efforts in conversation scene under-
standing have usually focused on speech. This is in part
due to the assumption that speech is the most informative
component of the acoustic signal. However, in real envi-
ronments, complete understanding of the scene cannot be
achieved only through speech. Non-speech acoustic signals
can reveal aspects of the scene that would be ignored oth-
erwise. Speakers typically assume the context is implied
in the conversation and neglect or avoid mentioning certain
information. This context could be the surroundings, the
activity a speaker is undergoing, etc. Acoustic event detec-
tion (AED) aims at detecting and classifying these acous-
tic signals: actively or passively produced by humans (e.g.
speech, laugh, steps, etc.) or other objects (air condition-
ing, machine sounds, etc.). The goal is to process a con-
tinuous acoustic signal and convert it into a sequence of
event labels with associated start and end times. Rich tran-
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scription in speech communication [1], [2] and scene under-
standing [3], [4] benefit from it, but also informed speech
enhancement and automatic speech recognition (ASR) sys-
tems could benefit from it as a source of information. Re-
cent hands-free meeting analysis systems already include
simple event detection components in order to differenti-
ate speech from laughter [5], but achieving a richer acoustic
event recognition could effectively support speech detection
and informed speech enhancement [6] by providing detailed
description of the surrounding noises, besides the obvious
benefits of richer transcriptions. Moreover, AED can also
be applied in a variety of areas, including surveillance [7],
context-based indexing and retrieval in multimedia [8], [9],
or health care [10]; and, at higher abstraction levels, in auto-
matic tagging [11], and audio segmentation [12].

Conversation scenes are mainly populated with speech,
which usually overlaps with other co-occurring sounds and
that we want to detect and classify. AED has typically con-
centrated efforts in the recognition stage [13], [14], leaving
the feature extraction stage to standard ASR features such as
Mel-frequency cepstrum coefficients (MFCC) or Mel-filter
bank features that tend to obtain broad characterizations but
end up reducing detail that is critical to deal with over-
lapping signals. Mel-filter-bank’s dimensional reduction
and DCT compression make MFCCs and Mel-filter-banks
dense and concentrated around specific channels, which ul-
timately causes the loss of detail. A high-resolution spectro-
gram has of course more detail and is more sparse, enabling
the assumption that there is no sound overlap within time-
frequency bins. This is also why high-resolution spectro-
grams are used in sparse-analysis based blind source separa-
tion applications [15], [16]. By looking at a simple example
of a signal with two sounds overlapped (Fig. 1), one realizes
that while most prominent properties of a sound in the Mel-
filter-bank domain are diluted when overlapping with other
sounds (Fig. 1.a), this is not the case with high-resolution
spectrograms (Fig. 1.b), where properties are still identifi-
able even after mixing it with another sound.

Another factor that has to be taken into account is that
different acoustic events have different temporal structures,
and these are also different from speech. In a field where
temporal structures have been traditionally modeled outside
the feature domain, typically with an hidden Markov model
(HMM) on top, frame-based features have dominated. How-
ever, a feature that also embeds temporal information can
lead to better recognition, even if we still continue to use
an HMM on top. By using a spectrogram patch, which
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Fig. 1 Comparing a derived feature such as log Mel-filter-bank (a) and
log-power spectrogram (b) for a the same signal, containing speech and a
coffee spoon clinging and overlapped. Feature values for a specific instant
where both sounds overlap are also shown for each of the acoustic events
isolated and mixed to compare how informative each of the features is.

we define as a number of consecutive spectrogram frames
stacked together, as the input feature we take a simple yet
effective approach to embed short-time temporal structures
in the feature. After all, a spectrogram patch can contain
sufficient temporal structure detail if enough frames are in-
cluded. Moreover, combined with the use of high-resolution
spectrograms to generate the patches, we can assume that
these would package enough time-frequency detail to model
complex sounds.

Finally, to tackle the problem of modeling such a high-
dimensional input feature, we need a model that can keep
up with it. One of the reasons why high-resolution fea-
tures have not been used until recently with state of the art
classifiers was that before the arrival of deep learning, the
standard classifier was Gaussian mixture model with hidden
Markov models (GMM-HMM). GMMs excelled at model-
ing almost any distribution, however they are not as effi-
cient when modeling high-dimensional data [17]. In GMMs,
each component must generate all the features causing that
as data has more dimensions, the number of patterns the
GMM has to model on each feature segment grows too,
and therefor the amount of parameters the model requires
grows exponentially. That is why low resolution features
(e.g. derived features) have dominated for so long. Deep
neural networks (DNNs), on the other side, have flourished
through recent years to become the standard discriminative

Fig. 2 Overview of the proposed spectrogram patch input model.

classifier also on AED related areas [18]. One of the advan-
tages is that we have a model where the number of param-
eters needed grows linearly as data dimensionality grows.
Mainly, because each component of the model is in charge
a specific feature segment. Summarizing, it is because of
DNNs that we are able to model the spectrogram directly as
a feature. Restricted Boltzmann machines (RBMs) [19], un-
supervised generative models with great high-dimensional
modeling capabilities, allow us to learn features in an unsu-
pervised manner from such a high dimensional input. Not
only that, but given that RBMs are the base of current state-
of-the-art DNNs [17] classification model. The learned fea-
ture extraction is integrated into the DNN framework seam-
lessly. Thus, resulting in a model that performs both fea-
ture extraction and classification at once, as we briefly intro-
duced in a previous work [20]. Figure 2 shows an overview
of the proposed model. In this paper we have considered
two kinds of inputs: log-power-spectra patches, which can
be dealt with current RBMs; and power-spectra patches, for
which we also introduce exponential unit RBMs.

The remainder of this paper relates this research with
other works in Sect. 2, introducing the spectrogram patch
modeling and the acoustic modeling in Sect. 3, and a vi-
sual analysis of the training process in Sect. 4. Experimental
evaluation, described in Sect. 5, confirmed that spectrogram
patch models outperform those based on derived features,
completing the paper with concluding remarks and future
work in Sect. 6.

2. Prior Art and Contributions

Recent developments using spectrogram part decomposition
approach the overlapping events problem by-passing fea-
tures derived from acoustic spectra, and observing spectra
itself instead (e.g. non-negative matrix factorization). Ref-
erence [21] proposes to exploit the acoustic spectrogram di-
rectly within the NMF framework. This work focuses in
semi-supervised to unsupervised diarization of recordings.
Besides tackling the problem of overlapping signals, the
proposed method attempts to solve two main issues: de-
tection of unknown acoustic events, and the lack of labeled
AED training resources. This is done by defining a gen-
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erative model in which the overlapping acoustic events are
modeled based on non-negative factorization matrix (NMF),
incorporating Bayesian modeling. NMF is in charge of de-
composing signals into two components: a set of basis and
their activations in time. By incorporating Bayesian model-
ing, the model can autonomously determine the appropriate
number of basis. However, while these approaches succeed
to some extent, computational cost and relevance of discov-
ered information are still a significant trade-off.

2.1 Deep Learning and AED

Phone classification in ASR and detection of single non-
speech acoustic events similarities led in [13], [14] to exploit
the tandem connectionist model in AED too. The tandem
connectionist model [22] consists in discriminatively trained
posteriors from a neural network that are fed to a generative
model (typically a GMM-HMM) as features themselves.
The model benefits from the neural network posterior fea-
tures, and the nonlinear mapping it provides, revealing un-
derlying relationships between events [13]. This is further
exploited in [14], which includes extended features related
to non-speech acoustic events in the model. Reference [18]
also shows a preliminary study on using DNNs for scene
classification using tuned low resolution features, yet little
has been done in the classification of single events, detection
of start and end points, or more suitable characterizations of
non-speech events using such models.

2.2 Contributions of This Work

The goal of this work is to take advantage of both, an ad-
vanced classification model such as DNNs, and using the
spectrogram directly as the input by defining a deep model
that learns hidden features from the spectrogram, and fine-
tunes itself for the specific task of AED.

The major contributions of this work are: overcom-
ing the limitations of low resolution features in non-speech
acoustic event detection by using high-resolution spectro-
gram directly as a features; a model in which short-time
temporal structure is directly embedded in the feature by us-
ing spectrogram patches as input, rather than single-frame
features; providing a model that is able to deal with such
a high-resolution input, deep neural networks, along with
necessary and specific modifications to model power spec-
trogram too; and a detailed analysis of the learning process
and results which show substantial improvements in recog-
nition accuracy over systems based on derived features for a
speech overlapping conditions task.

The presented approach tackles the issue of recogniz-
ing acoustic events that overlap with speech, and does not
offer support for overlapping of multiple non-speech events
as there is only a single recognition stream as the output.
That means that only the following four scenarios are con-
sidered: silence, speech, acoustic events one at a time, or
speech and single acoustic events. Polyphony approaches
such as the one described in [23] could be considered, al-

though this is out of the scope of this work.

3. High-Resolution Spectrogram Patch Modeling

RBM provide the means to obtain binary representations
of spectrogram, a powerful functionality to characterize
classes in data, but this is not the first time this has been ap-
plied. In speech coding, [24] introduced a deep encoder with
a first layer pre-trained to obtain binary representations of
log-power-spectra enabling it to capture greater detail from
acoustic signals. In AED, exploiting this fact can allow the
hidden layer to learn insights from non-speech signals. In
this paper we propose two approaches: modeling log-power-
spectra (Sect. 3.1) and, as in many spectrogram part de-
composition approaches, raw power-spectra (Sect. 3.2), for
which we introduce exponential unit RBMs to train a power-
spectrogram patch modeling layer. The resulting layer can
be effortlessly integrated in the DNN framework for classi-
fication, as it is the ultimate goal of this work. Further on
DNN training and classification can be found in Sect. 3.3.

3.1 Log-Power-Spectrogram Patch

For log-power-spectra, log transformation allows us to
model this with Gaussian (real-valued) input units, which
are currently supported in RBMs. The spectrogram patch
auto-encoder is trained as an RBM with Gaussian visible
units to model acoustic features, and Bernoulli (binary) hid-
den units (see Fig. 3), just as it is done also with MFCC or
Mel-filter-bank features. RBMs are trained by contrastive
divergence [19], which repeatedly updates the parameters
using the difference between the correlations of the training
data, and the reconstruction sampled from that.

Δwi j ∝ 〈vih j〉data − 〈vih j〉reconstruction (1)

Reconstructions are produced by sampling the required
distribution from the hidden states computed from actual
data. In the case of log-power-spectra, reconstructions

Fig. 3 Overview of the pre-training for log-power-spectrogram and
power-spectrogram patch feature layer.
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are sampled using a Gaussian distribution, hence Gaussian
units. Gaussian units require a modified equation for the
free energy as follows,

E(v, h) =
1
2

(v − b)T (v − b) − aT h − vT Wh (2)

Visible units are subject to a conditional distribution as fol-
lows

P(v|h) = N(μ, 1)

μ = b + hT WT (3)

where v and h refer to the array of values of visible and
hidden units, respectively.

3.2 Power-Spectrogram Patch

As literature shows, power-spectra is better handled with ex-
ponential distributions [25], rather than Gaussian distribu-
tions. Therefore, we require the visible units to be exponen-
tial in this case. Note that with exponential units we do not
normalize the data, and we ignore the bias,

E(v, h) = −vT Wh (4)

and the visible units are defined by the conditional distribu-
tion,

P(v|h) = Exponential(λ)

λ = hT WT (5)

which can be sampled as,

− ln U
λ

(6)

where U is a random variate drawn from a uniform distribu-
tion, and λ is the distribution parameter [26].

3.3 DNN and Acoustic Modeling

DNNs training strategy is not original of this work, and
while we summarize the keypoinrts here, further details can
be found in [17], [19]. Training of DNNs consists of two
main stages: generative pre-training of each hidden layer
as an RBM [19], and discriminative fine-tuning of the whole
network as a multi-layer perceptron (MLP) using the back
propagation algorithm [17]. This is roughly described in
Fig. 4.

1. Training data is sampled through the spectrogram patch
hidden layer described in Sects. 3.1 and 3.2. Then,
sampled data is considered the feature (i.e. visible
units) to a new RBM. In thin new RBM both layers
will be considered as binary, and after training this will
become the first regular hidden layer h(1).

2. As in previous step, training data is sampled through all
previous hidden layers to obtain a representation of the
input and then used as data for the following layer h(2).
This step repeats until reaching the desired number of

Fig. 4 Overview of the DNN layer pre-training and stacking.

hidden layers, resulting in a deep network with each
layer having learned a good representation of the data
in its predecessor.

3. Finally, the entire network is fine-tuned using the back-
propagation algorithm. The network is trained so
that an output “softmax” layer placed at the output of
the network estimates label units representing HMM
states. The discriminative training learns the weights
from the last layer to the label units, and re-trains the
detectors from unsupervised pre-training, using labeled
data.

Once we have pre-trained the hidden layers and fine-
tuned the entire network to output label probability distribu-
tions over the central frame of the window, the most likely
sequence of acoustic events û associated with the input se-
quence of features X is determined as,

û = argmax
u

P(u|X) = argmax
u

P(X|u)P(u) (7)

given, a sequence of observations X = {x1, x2, · · · xt |xt ∈ RD}
where D denotes the number of features.

Then a sequence of acoustic events can be represented
as a particular sequence of states s, leaving P(X|u) as fol-
lows,

P(X|u) =
∑

x1,x2,···

∏

t

P(xt |st)P(st |st−1, u) (8)

P(xt |st) =
P(st |xt)
P(st)

P(xt) (9)

acting as a conventional GMM-HMM, only that the obser-
vation probabilities P(st |xt) are estimated by the DNN in-
stead of the GMM, considering xt as the input and P(st |xt)
as the output of the DNN. The decoding network consists of
an ergodic HMM with equal transition probabilities.

4. Visualizing the Learning Process

Besides the goal of achieving robust performance in AED,
we also want to observe how the proposed model learns new
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Fig. 5 A simple example of evolution of the weights in a small DNN be-
tween the input (spectrogram patch) and the first hidden layers throughout
after pre-training as an RBM (a), and after fine-tuning the entire network
as an MLP (b).

features. To do so we have visualized the features that the
proposed model learns in an unsupervised manner. As we
have defined in the previous section, the model consists of
a series of layers with hidden nodes, which are fully con-
nected to the previous and posterior layers with weights be-
tween each of the nodes, and a bias. Basically, by propagat-
ing the input through the neural network, each layer consists
of a dot product of the input and the weights matrix between
these layers, and adding the bias. Then the activation func-
tion, sigmoid for hidden layers and softmax for the output
layer, is applied.

While the entire model is in charge of feature extraction
and classification, it is the first layer the one that will be
dealing directly with the input and the one that will show
more insights. That is why we have obtained instant values
of the weights matrix between the input, and first hidden
layer to observe its evolution. Figure 5 shows 2D plots of
this weight matrix, which can be analyzed as follows:

• each of the boxes w:i accounts for the weights connect-
ing all the input nodes (spectrogram patch) to node i
• since the weights are directly connected to the input

we have reshaped them in to 2D patches which vertical
and horizontal axes account for frequency bin and time

frame, respectively.
• the first matrix plot (a) refers to the weights after the

pre-training as an RBM model, while the second plot
(b) refers to the final weight matrix after the fine-tuning
stage where the entire network is trained as an MLP.

Models trained in the experimental evaluation are
larger having many more parameters, however, for ease of
observation and analysis we show here a rather small sized
model (a DNN with 4 hidden layers and 64 nodes per layer)
which allows plots to be analyzed by simply looking at
them. Bear in mind that the models trained during evalu-
ation have an input layer with 1024 nodes, which makes the
weights matrix 16 times bigger. The models here have been
trained using the isolated acoustic events database (seminar
room sounds), and further description of this and other data
can be found in Sect. 5.

Figure 5 (a) show the weights after pre-training the in-
put layer as an RBM for 200 epochs (one epoch refers to
one pass over the entire training dataset). We have con-
firmed that after randomly initializing the weights, most of
learning happens within the first 100 epochs. RBMs are
expected to learn a good representations of data, i.e. hid-
den layers that are able to explain the data they have been
trained with. Two-dimensional features after pre-training
show energy concentrating in specific spectro-temporal re-
gions. These spectro-temporal shapes do not account for any
specific acoustic event, but we can assume they character-
ize components that together with other components would
form spectro-temporal objects for acoustic events.

Fine-tuning of the entire network does not change
much as it can be seen in Fig. 5 (b). This is consistent with
the assumption that in the pre-training process the network
parameters are left in a close-to-optimal state, and therefor,
much of the change during fine-tuning happens in the up-
per layers, considering that the output layer has randomly
initialized before fine-tuning.

Another interesting aspect of these fine-tuned features
is how some of them get certain randomness in their spectro-
temporal shapes (e.g. w:3, w:5, w:41, etc.). Conceptually, the
goals of RBM pre-training and back-propagation fine-tuning
go in different directions: while RBMs are trained reduce
the gap between the original signal and the signal recon-
structed using the RBM, back-propagation training aims at
reducing class discrimination error. In this way, after fine-
tuning, some spectro-temporal features are modified to ob-
tain better discrimination at the output of the DNN, while
others might remain almost the same as pre-training is ex-
pected to achieve exactly that. The randomness in some of
these features after fine-tuning could indicate that certain
features are being tuned to better detect “silence” as it is one
of targeted classes at the ouptut of the DNN. In most cases,
the absence of sound is not sparse in the frequency domain,
and such random-like features might allow discrimination
of silence from other sounds.
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5. Experimental Evaluation

The performance and comparison of the proposed approach
has been evaluated over the acoustic event recognition task
in CHIL2007 [1], a database of seminar recordings where 12
acoustic event classes appear besides speech (around 60% of
the acoustic events are reportedly overlapped with speech).
The experimental conditions are summarized in Table 1. All
models were trained using the training dataset provided by
CHIL2007, a dataset of isolated acoustic events which we
split in train and dev sets for pre-training and training of
the networks, respectively. Evaluation was completed with
the test dataset which contains 20 live seminar recordings
involving 4 to 5 participants in a seminar where there are
presentations, discussion, break-times, etc.

5.1 Evaluation Metrics

Two metrics have been obtained to analyze the performance
of our models and compare it with existing approaches:
frame-score, and AED-accuracy. The first, frame-score, ac-
counts for the percentage of correctly recognized frames at
the output of the system including “silence.” AED-accuracy,
originally defined in the CHIL challenge [27], refers to the
F-measure between precision and recall, considering cor-
rectly detected acoustic events as those where either the de-
tected central frame falls within a ground-truth event period,
or a ground-truth event central frame falls within the de-
tected period. Such a “correctly detected event” definition
comes from the fact that unlike speech, we just need to know
when, and if, an acoustic event happened with no major wor-
ries on obtaining exact start and end times. Both measures
allow us to evaluate the models in terms of frame-wise and
event-wise performances.

5.2 Evaluated Methods

The results include our proposed approaches using log-
spectrogram patches (referred as LOGSPEC), and power-
spectrogram patches (referred as SPEC), both described in
Sect. 3. Accordingly, we have compared these with state-of-
the-art DNN models using derived features: Mel-frequency
cepstrum coefficients (referred as MFCC), and 26 coef-
ficients Mel-filter-bank (referred as FBANK), both repli-
cating the DNN architectures used in the proposed model
with Gaussian input RBM pre-training. Additionally, we
also included reference AED-accuracy results in the same
CHIL2007 task for [13] and [14] which are based in the tan-
dem connectionist model and use custom features based in
MFCC and Mel-filter-bank. Best scores for all models are
summarized in Table 4.

Note that the number of frames stacked in the spec-
trogram patch is larger than the context window with de-
rived features. While MFCC and Mel-filter-bank models
have only 11 frames context windows, they include two-
frames-wide deltas and acceleration coefficients, enlarging

Table 1 Experimental conditions.

Acoustic events applause, spoon/cup jingle, chair moving,
(12 events) cough, door slam, key jingle, door knock,

keyboard typing, laugh, phone ring, paper
wrapping, and steps

Datasets train: 10 sessions, 303 events
× 9 overlapping speech conditions (3.5h)
→ pre-training (RBM)

dev: 10 sessions, 306 events
× 9 overlapping speech conditions (3.5h)
→ fine-tuning (back-propagation)

test: 20 sessions (1.5h)
Features Re-sampled to 16 kHz

Frame: 25 ms, shift: 10 ms
MFCC (39 features): MFCC (12) + energy (1)

including deltas and accelerations
FBANK (78 features): Mel-filter-bank (26)

including deltas and accelerations
LOGSPEC (257 features): log-power-spectrum

Gaussian-binary RBM (1024 hidden units)
SPEC (257 features): power-spectrum

Exponential-binary RBM (1024 hidden units)
Context window MFCC, FBANK: 11 frames (current ±5)

LOGSPEC, SPEC: 19 frames (current ±9)
Nodes per layer 256, 512

Hidden layers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

the information in those context windows with four frames
before and after. Spectrogram patches have no delta or ac-
celeration coefficients and therefore width has been set to
19 frames (4+11+4) so they contain equivalent information.
As frames are 25 ms long, each of the spectrograms patches
contain 205 ms of consecutive frames. As in many of the
events targeted in these experiments are usually shorter (e.g.
a knock, a clap, a door slam, etc.), we can assume the
patches package enough spectro-temporal detail. Bear in
mind this assumption is task-specific, and tasks with more
complex sounds might require longer patches, or more so-
phisticated HMM architectures.

5.3 Robust Training Setup

As seen in many recent DNN-based ASR works [28], DNNs
perform reasonably well when they are trained with large
datasets, while the opposite happens with datasets that are
small. This is usually assumed to be caused by DNN mod-
els being weak to unseen data. Acoustic events are short and
sparse in real environments, and this is no exception in the
CHIL dataset. Since the target is to achieve robust perfor-
mance in the presence of speech, we have introduced a step
previous to the pre-training and training in which we aug-
ment the dataset by mixing it with speech signals. This is
done by adding a random chunk of speech to the signal with
a specific signal-to-noise ratio, where the original sound is
the signal, and the random chunk of speech is the noise.

In order to obtain robust models, acoustic conditions
of both train and dev datasets have been enlarged by adding
overlapping speech publicly available from AURORA-
4 [29], under several signal-to-noise ratio conditions: −9,
−6, −3, 0, 3, 6, 9, 12, 15, and 18 dB.
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Table 2 AED evaluation results: frame-score (%) by input feature and
nodes/layer, and number of hidden layers.

input MFCC FBANK LOGSPEC SPEC
nodes/layer 256 512 256 512 256 512 256 512

1 68.9 69.9 59.0 60.2 75.6 75.4 71.6 70.9
2 69.9 70.1 60.5 60.3 75.7 75.7 70.6 71.8
3 70.5 71.0 61.3 60.9 75.3 75.5 72.3 72.3
4 70.3 72.3 59.8 61.4 75.9 76.0 72.4 72.0
5 70.1 69.5 61.8 60.9 75.8 76.1 72.8 72.8
6 71.8 69.4 62.7 60.2 75.8 76.0 72.2 72.5
7 69.9 69.9 61.6 62.3 75.8 75.9 72.7 72.7
8 70.7 70.0 65.3 61.8 75.9 76.1 72.8 73.0
9 69.6 70.3 61.9 61.3 76.2 75.8 72.4 72.4

10 70.4 70.0 61.3 59.9 75.7 75.3 72.8 72.4

Table 3 AED evaluation results: AED-accuracy (%) by input feature
and nodes/layer, and number of hidden layers.

input MFCC FBANK LOGSPEC SPEC
nodes/layer 256 512 256 512 256 512 256 512

1 55.1 56.6 31.7 32.8 62.2 60.4 60.6 55.5
2 53.0 55.4 31.8 33.3 60.9 59.4 59.1 56.2
3 53.0 53.9 37.2 36.5 59.7 59.3 60.3 60.3
4 52.5 59.2 33.2 36.8 62.8 61.2 59.9 60.4
5 52.5 50.5 40.2 34.7 60.8 61.0 62.9 62.9
6 57.0 51.4 40.9 33.9 60.5 61.0 58.4 59.2
7 49.8 52.5 37.4 38.6 62.0 61.6 59.6 59.6
8 52.8 53.9 45.5 36.3 63.2 60.4 59.7 60.0
9 50.7 51.4 39.0 34.8 61.5 60.8 61.7 61.7

10 54.2 50.8 36.7 32.3 60.0 58.7 58.0 60.0

5.4 Results and Analysis

Tables 2 and 3 contain the complete list of results for
all settings as previously described, using spectrogram
patches and derived features as inputs: MFCCs, Mel-
filter-bank (FBANK), log-power-spectra (LOGSPEC), and
power-spectra (SPEC); and 1 through 10 layer DNNs to ob-
serve the performance variations. The results obtained with
narrow (256 nodes/layer) and wide (512 nodes/layer) regu-
lar hidden layer DNNs are also shown to understand how
width of the network affects the performance.

Best scores are obtained by spectrogram patch-based
models (LOGSPEC and SPEC) in terms of frame-accuracy
as it can be seen in Table 2. While LOGSPEC scores appear
to outperform other models, also notice that FBANK per-
forms much worse than the other three models in both 256
and 512 nodes/layer. Results are consistent in event-wise
accuracy (Table 3) where we can observe how LOGSPEC
outperforms all other models. Here, top three models are
much closer. In this table, we can also see scores reported
in [13], [14], both outperformed by LOGSPEC, SPEC, and
MFCC models.

It is worth as well noting the effects of width and depth
of the DNN. This can be observed in both Table 2 and Ta-
ble 3. While performance benefits from models with more
layers, improvement slows down significantly after four lay-
ers. Nonetheless, best scores both in frame-based (frame-
score) and event-based (AED-accuracy) evaluation, are not
so different between four and eight layers.

Table 4 An AED-accuracy score summary with the best performing
configurations in each model, and existing approaches [13], [14].

Method AED-Acc.
Zhuang’2010 [13] 41.20 %
Espi’2012 [14] 49.83 %
DNN-HMM-MFCC (4 layers × 512 nodes) 57.03 %
DNN-HMM-FBANK (8 layers × 256 nodes) 45.50 %
DNN-HMM-LOGSPEC (4 layers × 256 nodes) 63.20 %
DNN-HMM-SPEC (8 layers × 512 nodes) 62.90 %

Additionally, the effects of width in the model are also
interesting. While increasing the number of parameters pro-
vided better results with less layers, a much narrower net-
work of 256 nodes per layer provided better results in deeper
networks compared to a wider network of 512 nodes per
layer. A direct advantage of narrower models is computa-
tional efficiency, both during training and classification.

6. Conclusion and Future Work

We have described a high-resolution spectral input model
based on deep learning for acoustic event recognition that
achieves significantly better results than existing works on
a challenging seminar recording dataset, where acoustic
events overlap constantly with speech. Although our ex-
periments in AED-accuracy show undeniable improvements
when using the proposed spectrogram patch input models,
it is the log-power-spectra input model that provides better
performance. That being said, power-spectra input models
come close in performance, out-performing in fact similar
models based on derived features, rather than on spectro-
gram patches. This is, as we have claimed, because a high-
resolution input such as spectrogram patches provide com-
paratively more time-frequency detail than low resolution
features like MFCCs or Mel-filter-bank features. More im-
portantly, the proposed deep neural network model, along
with pre-training and training are able to model such a high
dimensional input and learn discriminative features during
pre-training. While pre-training and training are quite ex-
pensive steps, classification and later decoding are compar-
atively much light-weight, computationally speaking. This
could eventually allow the presented approach to be per-
formed in real-time.

From a broader point of view, the presented DNN ap-
proach looks over spectrogram patches as a whole, looking
for “global” shapes that together form acoustic events and
the actual spectrogram. However, this ignores “local” prop-
erties of sounds like stationarity, transiency, etc. Without
leaving the deep learning approach there are models such as
convolution layers that enable extraction of features in this
domain [30], and we believe it is a path worth exploring in
the future in combination with the current approach.
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