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Secure Sets and Defensive Alliances in Graphs: A Faster Algorithm
and Improved Bounds
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SUMMARY Secure sets and defensive alliances in graphs are studied.
They are sets of vertices that are safe in some senses. In this paper, we first
present a fixed-parameter algorithm for finding a small secure set, whose
running time is much faster than the previously known one. We then present
improved bound on the smallest sizes of defensive alliances and secure sets
for hypercubes. These results settle some open problems paused recently.
key words: secure set, defensive alliance, fixed-parameter tractability, hy-
percube

1. Introduction

The concept of a defensive alliance in a graph is intro-
duced by Kristiansen, Hedetniemi, and Hedetniemi [14]. In-
tuitively, a defensive alliance is a set of vertices that is safe
from attacks by its neighborhood. Later the concept of a se-
cure set in a graph is introduced by Brigham, Dutton, and
Hedetniemi [1]. Roughly speaking, a secure set is a much
safer set of vertices than a defensive alliance. As the read-
ers see from the formal definitions in the next section, any
secure set is a defensive alliance. The problem of finding
a smallest secure set or a smallest defensive alliance is of
interest. These concepts have been intensively studied (see
e.g. [1], [4], [5], [10], [14]). Recently, Isaak, Johnson, and
Petrie [12], [16] have introduced fractional variants of se-
cure sets.

Jamieson, Hedetniemi, and McRae [13] showed that
the problem of deciding whether a graph has a defensive
alliance of size at most given k is NP-complete. Fernau
and Raible [9] showed that the problem is fixed-parameter
tractable when parameterized by the size of a defensive
alliance. Enciso and Dutton [6] later presented a fixed-
parameter algorithm with a better running time.

To the best of our knowledge, the complexity of finding
a smallest secure set is not known. It is known that given a
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graph and a set of vertices, it is coNP-complete to decide
whether the set is a secure set of the graph [3]. Enciso and
Dutton [7] presented a fixed-parameter algorithm for solving
the problem of deciding whether a given n-vertex graph has
a secure set of size at most k in time O(2k log 2kn).

1.1 Our Results

In Sect. 3, we present a faster fixed-parameter algorithm
with a running time of O(23kk2n) for finding a secure set
of size at most k. In Sect. 4, we present graph-theoretic
contributions. For hypercubes, we first determine exactly
the defensive alliance number, and also the defensive al-
liance partition number as a corollary. We then general-
ize these results to Hamming graphs. Next we present a
significantly improved lower bound of the security number
of hypercubes. The previously known lower bound due to
Petrie [16] is 2�d/2�, and our lower bound is more than 20.9d

for large enough d.

2. Preliminaries

All graphs in this paper are finite, simple, and undirected.
For a graph G, we denote its vertex set and edge set by V(G)
and E(G), respectively. The (open) neighborhood N(v) of a
vertex v ∈ V(G) is the set {u | {u, v} ∈ E(G)}. The degree
of v ∈ V(G) is |N(v)| and denoted by degG(v). The closed
neighborhood N[v] of a vertex v ∈ V(G) is the set {v}∪N(v).
For a subset S ⊆ V(G), we define its closed neighborhood
as N[S ] =

⋃
v∈S N[v]. The subgraph induced by S ⊆ V(G)

is denoted by G[S ]. The distance between u, v ∈ V(G), de-
noted dist(u, v), is the length of a shortest u–v path in G.

The Cartesian product of graphs G and H, denoted
G � H, is the graph with the vertex set V(G) × V(H) and
the edge set {{(g, h), (g, h′)} | g ∈ V(G), {h, h′} ∈ E(H)} ∪
{{(g, h), (g′, h)} | h ∈ V(H), {g, g′} ∈ E(G)}. The dth Carte-
sian power of a graph G, denoted Gd, is defined as G1 = G
and Gd = G � Gd−1 for d ≥ 2. The Hamming graph Kd

k is
the dth Cartesian power of the complete graph Kk for some d
and k. The d-dimensional hypercube Qd is the dth Cartesian
power of K2; that is, Qd = Kd

2 .
Let G be a graph. A non-empty set S ⊆ V(G) is a

defensive alliance if for each s ∈ S , |N[s] ∩ S | ≥ |N[s] \ S |.
The defensive alliance number da(G) of G is the size of a
smallest defensive alliance of G. A non-empty set S ⊆ V(G)
is a secure set if for each X ⊆ S , |N[X]∩S | ≥ |N[X]\S | (see
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[1]). The security number s(G) of G is the size of a smallest
secure set of G. Clearly, da(G) ≤ s(G) for any graph G.

3. A Faster Fixed-Parameter Algorithm for Secure Sets

Recall that the running time of the algorithm by Enciso and
Dutton [7] is O(2k log 2kn), where n is the number of vertices
of G. Here we present an improved O(23kk2n)-time algo-
rithm.

Theorem 3.1. The problem of deciding whether s(G) ≤ k
can be solved in time O(23kk2n).

Proof. For any S ⊆ V(G), the following claims follows
from the definitions (see [7]):

Claim 3.2. If |N[S ]| > 2k, then there is no secure set S ′ that
satisfies S ⊆ S ′ and |S ′| ≤ k.

Claim 3.3. If S ′ � S is a minimal secure set, then there is a
vertex u ∈ S ′ \ S such that u ∈ N[S ] \ S .

Now we describe our algorithm. See Algorithm 1. We
first guess a vertex v ∈ V(G), and call Find({v}, ∅) to find a
secure set containing v. For S ⊆ V(G) and F ⊆ N[S ]\S , the
procedure Find(S , F) finds a secure set S ′ of size at most k
such that S ⊆ S ′ and F ∩ S ′ = ∅. If S itself is secure, then
Find(S , F) outputs S and stops.

Assume S is not secure and there is a minimal secure
set S ′ � S with |S ′| ≤ k and S ′ ∩ F = ∅. Clearly, |S | < k.
Since F ⊆ N[S ′] \ S ′, we have |F| ≤ |S ′| ≤ k. By Claim 3.2,
|N[S ]| ≤ 2k. Hence, if not all the conditions are satisfied,
then there is no such S ′. If all the conditions are satisfied,
the procedure recursively finds such S ′. If S ′ exists, then
there is a vertex u ∈ S ′ \ S such that u ∈ N[S ] \ (S ∪ F)
by Claim 3.3. Moreover, if u ∈ N[S ] \ (S ∪ F), then either
u ∈ S ′ \ S or u ∈ N[S ′] \ S ′ holds. We add u into S in
the former case and into F in the latter case. To check both
cases, we call Find(S ∪ {u}, F) and Find(S , F ∪ {u}).

Algorithm 1 Find a secure set of G with size at most k.
1: for all v ∈ V(G) do
2: Find({v}, ∅)

3: procedure Find(S , F)
4: if Secure(S ) then
5: Output S , and stop.

6: if |S | < k and |F| ≤ k and |N[S ]| ≤ 2k then
7: u := a vertex in N[S ] \ (S ∪ F)
8: Find(S ∪ {u}, F)
9: Find(S , F ∪ {u})

10: procedure Secure(S )
11: for all X ⊆ S do
12: if |N[X] ∩ S | < |N[X] \ S | then
13: return false
14: return true

Next we show the running time. We first have n
branches corresponding to the calls of Find({v}, ∅) for all

v ∈ V(G). Each call of Find(S , F) has no or two branches
that correspond to the calls of Find(S ∪ {u}, F) and Find(S ,
F ∪ {u}) if |S | < k, |F| ≤ k, and |N[S ]| ≤ 2k. Therefore,
the search-tree has depth at most 2k in which the root has n
children, and other inner nodes have two children for each.
Thus it has at most 1 + n

∑2k−1
i=0 2i ≤ 22kn nodes. Since the

algorithm takes O(2kk2) time for checking whether S is se-
cure for each node of the search-tree, the total running time
is O(23kk2n). �

4. Improved Bounds for Hypercubes

4.1 Defensive Alliances in Hypercubes

The defensive alliance partition number of G, ψda(G), is de-
fined to be the maximum number of sets in a partition of
V(G) such that each set is a defensive alliance [14]. Eroh and
Gera [8] showed that ψda(Qd) ≥ 2d/2�, and asked whether
the bound is tight. In this section, we first answer the ques-
tion affirmatively. We then generalize the result to show sim-
ilar results for Hamming graphs.

The first result is an almost direct consequence of the
following beautiful proposition.

Proposition 4.1 (Chung, Füredi, Graham, and Sey-
mour [2]). If G is a subgraph of a hypercube with average
degree s, then |V(G)| ≥ 2s.

Theorem 4.2. For any d, da(Qd) = 2�d/2�.

Proof. Eroh and Gera [8] showed that da(Qd) ≤ 2�d/2�. Thus
we only show the lower bound. Let S be a defensive alliance
of Qd and v ∈ S . Since |N[v]∩S | ≥ |N[v]\S | and d = |N[v]∩
S |+ |N[v]\S |−1, it follows that degQd[S ](v) = |N[v]∩S |−1 ≥
(d − 1)/2� = �d/2�. Hence the average degree of Qd[S ] is
at least �d/2�. Now, by Proposition 4.1, |S | ≥ 2�d/2�. �

The theorem above implies that ψda(Qd) ≤ 2d/2�d/2� =
2d/2�. Combining this fact with the lower bound of Eroh
and Gera [8], we have the following answer.

Corollary 4.3. For any d, ψda(Qd) = 2d/2�.

Now we generalize the result. For Hamming graphs,
the following fact is known.

Proposition 4.4 (Squier, Torrence, and Vogt [17]). If G is
a subgraph of Kd

k with n vertices and m edges, then 2m ≤
(k − 1)n logk n.

The proposition above can be seen as a generalization
of Proposition 4.1.

Corollary 4.5. If G is a subgraph of Kd
k with average degree

s, then |V(G)| ≥ ks/(k−1).

Proof. Assume that G has n vertices and m edges. Then s =
2m/n. By Proposition 4.4, 2m ≤ (k − 1)n logk n. Dividing
each side by (k − 1)n, we obtain s/(k − 1) ≤ logk n. This
implies ks/(k−1) ≤ n. �
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Theorem 4.6. For any d and k, k�d/2� ≤ da(Kd
k ) ≤ kd/2�.

Proof. First observe that Kd
k is (k−1)d-regular. To show the

upper bound, take a subgraph isomorphic to Kd/2�k . Each
vertex in the subgraph has (k−1) d/2� neighbors in the sub-
graph, and (k − 1) �d/2� neighbors outside of the subgraph.
Thus the vertex set of the subgraph, which is of size kd/2�,
is a defensive alliance.

Let S be a defensive alliance of Kd
k . By the same way

as the one in the proof of Theorem 4.2, we can show that the
degree of v ∈ S is at least �(k − 1)d/2�. By Corollary 4.5,
|S | ≥ k�(k−1)d/2�/(k−1) ≥ k�d/2�. �

Corollary 4.7. For any d and k, k�d/2� ≤ ψda(Kd
k ) ≤ kd/2�.

Proof. The upper bound ψda(Kd
k ) ≤ kd/2� immediately fol-

lows from the lower bound da(Kd
k ) ≥ k�d/2� in Theorem 4.6,

because ψda(G) ≤ |V(G)|/da(G) for any graph G.
The lower bound ψda(Kd

k ) ≥ k�d/2� follows from the
construction of size kd/2� defensive alliances in the proof
of Theorem 4.6. The vertices with fixed first �d/2� coor-
dinates induce Kd/2�k . Thus we can partition Kd

k into k�d/2�

isomorphic copies of Kd/2�k . �

4.2 Secure Sets of Hypercubes

Petrie [16] showed that 2�d/2� ≤ s(Qd) ≤ 2d−1, and asked
whether the bounds can be improved. In this section we
present an improved lower bound on s(Qd) which is roughly
20.9d. We only use the simple fact that S is not secure if |S | <
|N[S ] \ S |. Harper [11] showed that the breadth-first search
ordering gives sets S that minimize |N[S ] \ S |. Using this
result, we show that |S | < |N[S ]\S | for any S ⊆ V(Qd) with
1 ≤ |S | ≤ ∑�(d−2)/3�

i=0

(
d
i

)
. The following proposition follows

from Program and Theorem 1 in Harper’s paper [11].

Proposition 4.8 (Harper [11]). For any positive integer
k ≤ 2d, there exist a set S ⊆ V(Qd), a vertex u0 ∈
V(Qd), and an integer r, such that |S | = k, |N[S ] \ S | =
minT⊆V(Qd),|T |=k |N[T ] \ T |, and {v | dist(u0, v) ≤ r} ⊆ S ⊂ {v |
dist(u0, v) ≤ r + 1}.
Theorem 4.9. For d ≥ 2, it holds that s(Qd) >

∑�(d−2)/3�
i=0

(
d
i

)
.

Proof. First, we show a property of a partial sum over bino-
mial coefficients.

Claim 4.10. For d ≥ 2,
∑r

i=0

(
d
i

)
<

(
d

r+1

)
for r ≤ �(d − 2)/3�.

We prove the claim by induction on r. The case of
r = 0 clearly holds. Assume

∑r−1
i=0

(
d
i

)
<

(
d
r

)
for some r

with 1 ≤ r ≤ �(d − 2)/3�. The assumption r ≤ �(d − 2)/3�
implies r + 1 ≤ d − 2r − 1. Therefore, it holds that

∑r−1
i=0

(
d
i

)
(

d
r

) < 1 ≤ d − 2r − 1
r + 1

=
d − r
r + 1

− 1,

which implies that

r−1∑
i=0

(
d
i

)
<

(
d
r

) (
d − r
r + 1

− 1

)
=

(
d

r + 1

)
−

(
d
r

)
.

Thus we have
∑r

i=0

(
d
i

)
<

(
d

r+1

)
.

Next, by using Proposition 4.8 and Claim 4.10, we can
show the following.

Claim 4.11. For any subset S ⊆ V(Qd), if |S | ≤∑�(d−2)/3�
i=0

(
d
i

)
, then |N[S ] \ S | > |S |.

To prove the claim, let k ≤ ∑�(d−2)/3�
i=0

(
d
i

)
. Let S , u0, and

r be the set, the vertex, and the integer in Proposition 4.8,
respectively. Recall that |{v | dist(u0, v) = i}| =

(
d
i

)
. Ob-

viously, r ≤ �(d − 2)/3�. Hence, by Claim 4.10, we have∑r
i=0

(
d
i

)
<

(
d

r+1

)
. If k =

∑r
i=0

(
d
i

)
, then S = {v | dist(u0, v) ≤ r}

and N[S ] \ S = {v | dist(u0, v) = r + 1}. Thus, the
claim holds in this case. In the following, we will focus
on the case where k >

∑r
i=0

(
d
i

)
. In this case, it holds that

r ≤ �(d − 2)/3� − 1 ≤ (d − 5)/3. Let S i = {v | v ∈
S , dist(u0, v) = i}. Clearly,

|S | = |S r+1| +
r∑

i=0

(
d
i

)
< |S r+1| +

(
d

r + 1

)
. (1)

Let ∂i = (N[S ] \ S ) ∩ {v | dist(u0, v) = i}. Then |N[S ] \ S | =
|∂r+1| + |∂r+2|. Since S r is exactly the set {v | dist(u0, v) = r},
it follows |∂r+1| =

(
d

r+1

)
− |S r+1|. Therefore, by (1),

|S | < |∂r+1| + 2|S r+1|.
Now it suffices to show that 2|S r+1| ≤ |∂r+2|. For any v ∈
S r+1, |N[v] ∩ ∂r+2| = d − r − 1. On the other hand, for any
v ∈ ∂r+2, |N[v] ∩ S r+1| ≤ r + 2. Thus, if F is the set of edges
between S r+1 and ∂r+2, then

(d − r − 1)|S r+1| = |F| ≤ (r + 2)|∂r+2|,
which implies ((d − r − 1)/(r + 2))|S r+1| ≤ |∂r+2|. Since
r ≤ (d−5)/3 means 2 ≤ (d−r−1)/(r+2), we have 2|S r+1| ≤
|∂r+2|.

Claim 4.11 implies that there is no secure set of size at
most

∑�(d−2)/3�
i=0

(
d
i

)
. Therefore, the theorem follows. �

To see that the lower bound above is a significant im-
provement, we now show that

∑�(d−2)/3�
i=0

(
d
i

)
> 20.9d for large

enough d. (An explicit lower bound will be given in the
proof.) To this end, we need the following lower bound of
binomial coefficients.

Proposition 4.12 (Mitzenmacher and Upfal [15, Corol-
lary 9.3]). For 0 ≤ q ≤ 1/2,

(
d
d · q�

)
≥ 2d·H(q)

d + 1
,

where H(q) is the binary entropy function H(q) = −q lg q −
(1 − q) lg(1 − q).

Corollary 4.13. s(Qd) > 20.9d for large enough d.
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Proof. We prove the statement for d ≥ 652. By Theo-
rem 4.9, it suffices to show that

(
d

�(d−2)/3�
)
> 20.9d for d ≥ 652.

Observed that (d − 5)/3 > 0.33d since d > 500, and hence
(

d
�(d − 2)/3�

)
≥

(
d

(d − 5)/3�
)
≥

(
d

0.33d�
)
>

20.9149d

d + 1
,

where the last inequality follows from Proposition 4.12 and
the fact that H(0.33) > 0.9149. Thus

(
d

�(d − 2)/3�
)
≥ 20.9d · 20.0149d

d + 1
> 20.9d · 1.01d

d + 1
.

It is easy to verify that 1.01d > d + 1 for d ≥ 652. Hence(
d

�(d−2)/3�
)
> 20.9d. �

In a similar way, one can show that for any ε > 0, there
is an integer d0 such that for d ≥ d0, s(Qd) > 2(H(1/3)−ε)d.
Note that we need different argument to show a significantly
better lower bound since H(1/3) = 0.918 . . . < 0.92.
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