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Candidate Boolean Functions towards Super-Quadratic Formula
Size

Kenya UENO†a), Member

SUMMARY In this paper, we explore possibilities and difficulties to
prove super-quadratic formula size lower bounds from the following as-
pects. First, we consider recursive Boolean functions and prove their gen-
eral formula size upper bounds. We also discuss recursive Boolean func-
tions based on exact 2-bit functions. We show that their formula complexity
are at least Ω(n2). Hence they can be candidate Boolean functions to prove
super-quadratic formula size lower bounds. Next, we consider the reason of
the difficulty of resolving the formula complexity of the majority function
in contrast with the parity function. In particular, we discuss the structure of
an optimal protocol partition for the Karchmer-Wigderson communication
game.
key words: Boolean function, computational complexity, formula complex-
ity

1. Introduction

Proving formula size lower bounds is a fundamental prob-
lem in complexity theory as a weaker version of the cir-
cuit size lower bound problem and P � NP. A super-
polynomial formula size lower bound for a function in NP
implies NC1 � NP. As extensions of the classical result
of Khrapchenko [1] proving the matching n2 formula size
lower bound for the parity function, there are a lot of tech-
niques studied to improve formula size lower bounds. The
current best formula size lower bound of n3−o(1) is proven
by Håstad [2] for the Andreev function [3]. We do not know
any Boolean function with a super-quadratic formula size
lower bound except the Andreev function.

In recent studies [4]–[6], it has been revealed that the
LP bound of Karchmer, Kushilevitz and Nisan [7] subsumes
most of known techniques such as Khrapchenko [1], its ex-
tension by Koutsoupias [8], a key lemma used in the proof of
Håstad [2], and the quantum adversary bound [4], [9]. How-
ever, Karchmer, Kushilevitz and Nisan have also shown that
their technique cannot prove a formula size lower bound
larger than 4n2. Therefore, all these lower bound tech-
niques as extensions of Khrapchenko’s method have limi-
tation and cannot prove super-quadratic formula size lower
bounds. Our recent work [10], [11] devised stronger ver-
sions of the LP bound, which are potentially strong enough
to prove super-polynomial formula size lower bounds. How-
ever, there are still obscure barriers even against proving
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super-quadratic formula size lower bounds.
One of the main difficulties to prove a super-quadratic

formula size lower bound is how to find candidates which
are potentially hard enough to have super-quadratic formula
size. Of course, hard Boolean functions which are defined
with difficult problems (e.g., matching and clique) are def-
initely good candidates to prove strong lower bounds [12].
However, these functions are extremely hard to analyze. For
the purpose of attacking the quadratic barrier, we need can-
didate Boolean functions which are relatively easier to ana-
lyze. At the same time, they must be hard enough to have
super-quadratic formula complexity.

When we consider tractability of Boolean function
analysis, two important notions are “symmetric” and “re-
cursive”. The n-bit parity function is both symmetric and
recursive in the sense that it is invariant under permutations
of the input bits (i.e., symmetric) and can be constructed
by composing the 2-bit parity function with the �n/2�-parity
function and the �n/2�-parity function (i.e., recursive). This
is the main reason why we can prove its matching formula
size lower bound easily.

This paper consists of two parts, which consider the
difficulty of proving super-quadratic formula size lower
bounds in terms of candidate Boolean functions as follows.

In the former part, we define recursive Boolean func-
tions, and show that naive and recursive construction for
some of them provides formulas of super-quadratic size.
They are not always symmetric in general. Since it is widely
believed that such naive and recursive construction provides
an optimal formula in most cases [13]–[15], we conclude
that the recursive Boolean functions are good candidates
for a super-quadratic formula size lower bound. Moreover,
we particularly pick up an explicit recursive Boolean func-
tion based on exact 2-bit functions, and propose the function
as the best candidate. Their formula size upper bounds are
O(nlog2 5) or O(nlog2 6) depending on the size of the base func-
tions. We prove that their formula size lower bounds are at
least Ω(n2) by reducing them to the parity function.

In the latter part, we will discuss difficulties of resolv-
ing the formula complexity of the majority function. It
is symmetric, but not recursive. The current best formula
size upper and lower bounds of the majority function are
O(n4.57) [16] and Ω(n2) [1], [10], respectively. Since there
is a large gap between its formula size upper and lower
bounds, it has been a main target to prove a super-quadratic
formula size lower bound, even for the monotone case [17].
We propose a hypothesis named singleton cell hypothesis on
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matrices to analyze formula complexity. We show that the
hypothesis is true for the functions such that some of known
quadratic lower bounds are optimal. We also observe that
the hypothesis is related to the difficulty of proving super-
quadratic formula size lower bounds of the majority func-
tion.

We hope that our analysis explaining the difficulties of
resolving formula complexity will be useful to overcome
the stiff barrier against proving super-quadratic formula size
lower bounds.

2. Preliminaries

We assume that the readers are familiar with the basics of
Boolean functions. Throughout the paper, n means as the
number of input variables on Boolean functions. We will
use the following Boolean functions.

Definition 2.1 (Boolean Functions). The parity function
PARn : {0, 1}n �→ {0, 1} is defined by

PARn(x1, · · · , xn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 (
n∑

i=1

xi ≡ 1 mod 2),

0 (
n∑

i=1

xi ≡ 0 mod 2).

The exact 2-bit function EXACT2
n : {0, 1}n �→ {0, 1} is de-

fined by

EXACT2
n(x1, · · · , xn) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 (

n∑
i=1

xi = 2),

0 (otherwise).

The majority function MAJn : {0, 1}n �→ {0, 1} is defined by

MAJn(x1, · · · , xn) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 (

n∑
i=1

xi ≥ �n/2�),
0 (otherwise).

A threshold function THt
n : {0, 1}n �→ {0, 1} as a generaliza-

tion of the majority function is defined by

THt
n(x1, · · · , xn) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 (

n∑
i=1

xi ≥ t),

0 (otherwise).

for any fixed integer t (0 ≤ t ≤ n).

For Boolean vectors x = (x1, · · · , xn) and y =

(y1, · · · , yn), we define x ≤ y if xi ≤ yi for all i ∈ {1, · · · n}.
A Boolean function f is called monotone if x ≤ y implies
f (x) ≤ f (y) for all x, y ∈ {0, 1}n.

Formula sizes for Boolean functions are defined as fol-
lows.

Definition 2.2 (Formula Size). A formula is a binary tree
with each leaf labeled by a literal and each internal node la-
beled by either of the binary connectives ∧ and ∨. A literal

is either a variable or its negation. The size of a formula
is its number of literals. We define formula size L( f ) of a
Boolean function f as the size of the smallest formula com-
puting f . We also define Lm( f ) as the monotone formula
size of a monotone Boolean function f where a monotone
formula is a formula without negations.

3. Formula Complexity of Recursive Boolean Func-
tions

3.1 Definitions

In this section, we consider recursive Boolean functions,
which can be divided by 2 cases, the balanced case and the
unbalanced case as illustrated in Fig. 1. Throughout the pa-
per, we assume α, β ≥ 2. First we define the balanced recur-
sive functions as follows.

Definition 3.1 (Balanced Recursive Functions). From a
base Boolean function f on α input bits, we recursively de-
fine a Boolean function RECh

β[ f ] with β = α on n input
variables by

REC1
β[ f ](x1) = f (x1)

for h = 1, and

RECh
β[ f ](xh) =

f (RECh−1
β [ f ](x1

h−1), · · · ,RECh−1
β [ f ](xβh−1))

for h ≥ 2. Here x1, xh, xi
h−1(i = 1, · · · , β) denote Boolean

vectors.

Besides the notion of balanced recursive functions, we
add the following notion of unbalanced recursive functions.

Definition 3.2 (Unbalanced Recursive Functions). From a
base Boolean function f on α input bits, we recursively de-
fine a Boolean function RECh

β[ f ] with β < α on n input

Fig. 1 Comparison between a balanced recursive function (α = β = 3)
and an unbalanced recursive function (α = 3 and β = 2) where the base
function is MAJ3 and h = 3 (Variables at the bottom level are omitted).



526
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.3 MARCH 2015

variables by

REC1
β[ f ](x1) = f (x1)

for h = 1, and

RECh
β[ f ](xh) =

f (x′h,RECh−1
β [ f ](x1

h−1), · · · ,RECh−1
β [ f ](xβh−1))

for h ≥ 2. Here x1, xh, x′h, x
i
h−1(i = 1, · · · , β) denote Boolean

vectors.

We distinguish 2 definitions of balanced and unbal-
anced recursive Boolean functions RECh

β[ f ] by looking at
the condition whether β = α or β < α.

The number of branches β is the number of occurrences
of sub-functions RECh−1

β (xh−1) in the recursive definition. It
implies that

α = |x′h| + β,
and

|xh| = |x′h| + β · |x1
h−1|.

We assume that the number α and β are constants and do not
depend on the input length n.

We will use the following definition in our analysis.

Definition 3.3 (Partial Formula Size). From the input vari-
ables of a Boolean function f , we choose arbitrary k vari-
ables

Xk = {xi1 , xi2 , · · · , xik } ⊆ {x1, x2, · · · , xn}
and count the number of their occurrences Lk(Xk, F) in a
formula F computing f . By taking minimization over all the
subsets of variables Xk and formulas computing F and we
define

Lk( f ) = min
Xk ,F

Lk(XkF)

In the monotone case, Lk
m( f ) is similarly defined by replac-

ing formulas with monotone formulas.

This notion is an extension of the definition of formula
size because L( f ) = Ln( f ).

3.2 General Upper Bounds for Recursive Boolean Func-
tions

In this section, we discuss limitation and perspective of
proving formula size lower bounds for recursive Boolean
functions in general based on the following theorem.

Theorem 3.4. For any Boolean function f depending on all
the α input variables,

L(RECh
β[ f ]) ∈ O(nγ)

where γ = logβ(2
β+1 − 2).

Proof. To prove the theorem, we would like to prove

Lk( f ) ≤ 2k+1 − 2.

For this purpose, we assume that the fixed k variables are
x1, x2, · · · , xk. By Shannon’s expansion,

f (x1, x2, · · · , xk, · · · , xn)

=(x1 ∧ f (1, x2, · · · , xk, · · · , xn))

∨ (¬x1 ∧ f (0, x2, · · · , xk, · · · , xn)).

Iterating this process for i = 1, · · · , k, we can obtain a for-
mula in which a variable xi (1 ≤ i ≤ k) appears 2i times.
Therefore,

Lk( f ) ≤ 2 + 4 + · · · + 2k

=

k∑
i=1

2i = 2k+1 − 2.

To construct a formula for RECh
β[ f ](xh), we take a

formula computing f in which some β variables appears
at most 2β+1 − 2 times in total. Then, we replace the
β variables by RECh−1

β [ f ](x1
h−1), · · · ,RECh−1

β [ f ](xβh−1), re-
spectively, and the other n − β variables by x′h.

To estimate the general formula size upper bound lh
(≥ L(RECh

β[ f ])), we consider a recursive inequality

lh ≤ (2β+1 − 2) · lh−1 + δ

where the constant δ depends on the construction of the for-
mula which achieves Lβ( f ). Since α and β are independent
from h, δ is also independent from h. We can transform the
inequality as follows.

lh +
δ

2β+1 − 3
≤ (2β+1 − 2) ·

(
lh−1 +

δ

2β+1 − 3

)

Solving the inequality, we can obtain

lh ≤ (2β+1 − 2)h−1 ·
(
l1 +

δ

2β+1 − 3

)
− δ

2β+1 − 3
.

for h ≥ 2. Taking sufficiently large constant c which is inde-
pendent from h, we have

lh ≤ c · (2β+1 − 2)h.

Let nh be the the number of input bits nh = |xh| for the
recursive Boolean function RECh

β[ f ]. What we would like
to prove is

c · (2β+1 − 2)h ≤ c′ · nh
γ

for some constant c′ to show lh is bounded by O(nγh).
To estimate nh, we consider

nh = α − β + β · nh−1.

Solving it based on n1 = α, we obtain

nh =
α − 1
β − 1

· βh − α − β
β − 1
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Table 1 Exponents of Formula Size Upper Bounds in terms of the Number of Branches (The second
and third lines show non-monotone and monotone cases, respectively).

β 2 3 4 5 6 7 8 9 10
logβ(2

β+1 − 2) 2.5850 2.4022 2.4535 2.5644 2.6992 2.8457 2.9982 3.1539 3.3110
logβ(2

β − 1) 1.5850 1.7713 1.9535 2.1337 2.3124 2.4895 2.6648 2.8383 3.0099

for h ≥ 2. For fixed constants α and β, we have

α − 1
β − 1

≥ 1

from α ≥ β. Thus, we have

nh ≥ βh

for sufficiently large h. Therefore

nγh ≥ (βh)γ = (2β+1 − 2)h

where γ = logβ(2
β+1 − 2). �

In the monotone case, we have the following theorem.
We can prove it by a similar argument as in the case for
non-monotone Boolean functions.

Theorem 3.5. For any monotone Boolean function RECh
α

whose number of branches is β ≥ 2, we have

Lm(RECh
α) ∈ O(nγ)

where γ = logβ(2
β − 1)

Proof. The proof is based on a similar argument as in the
case for non-monotone Boolean functions. The difference is
that we use the monotone version of Shannon’s expansion
as follows.

f (x1, x2, · · · , xk, · · · , xn)

=(x1 ∧ f (1, x2, · · · , xk, · · · , xn))

∨ f (0, x2, · · · , xk, · · · , xn).

In this case, we have

Lk
m( f ) ≤ 1 + 2 + · · · + 2k−1

=

k∑
i=1

2i = 2k − 1.

and obtain the general upper bound of monotone formula
size. �

In Table 1, we list the exponents of formula size up-
per bounds for recursive Boolean functions in terms of the
number of branches. A counterintuitive fact is that the upper
bound for β = 2 is larger than that for β = 3, 4, 5. Therefore,
it might be better to focus on the case of β = 2 to seek can-
didate Boolean functions for super-quadratic formula size.

3.3 Recursive Boolean Functions Based on Exact 2-bit
Functions

In this subsection, we consider recursive Boolean functions

composed of exact 2-bit functions. First, we observe that the
balanced recursive function RECh

3[EXACT2
3] is too weak to

obtain super-quadratic formula complexity.

Proposition 3.6.

L(RECh
3[EXACT2

3]) ∈ O(nlog3 8) ⊂ O(n1.90).

Proof. We can construct a formula for EXACT2
3 as

(¬x1 ∧ x2 ∧ x3) ∨ (x1 ∧ ¬x2 ∧ x3) ∨ (x1 ∧ x2 ∧ ¬x3),

and shrink it as follows:

(((¬x1 ∧ x2) ∨ (x1 ∧ ¬x2)) ∧ x3) ∨ (x1 ∧ x2 ∧ ¬x3).

This formula size is 8. Therefore, we can obtain a formula
size upper bound of O(n1.90) for the balanced recursive func-
tion by recursive compositions of the formula. �

This kind of subquadratic formula size upper bounds
is widely applicable for many balanced recursive functions
rather than a special case for the exact 2-bit function. Cur-
rently, we know few Boolean functions on a constant num-
ber of input bits with super-quadratic formula complexity.
Therefore, we do not know any candidate base function to
achieve our goal by analyzing balanced recursive Boolean
functions.

On the other hand, unbalanced recursive Boolean func-
tions can be good candidates to prove super-quadratic for-
mula size lower bounds. As an example, we consider the
following unbalanced recursive Boolean function with its
formula size upper bound.

Proposition 3.7.

L(RECh
2[EXACT2

3]) ∈ O(nlog2 5) ⊂ O(n2.33).

Proof. In the above construction of formula for EXACT2
3,

the numbers of appearances of the variables x2 and x3 are
3 and 2, respectively. Hence we can recursively construct
a formula for RECh

2[EXACT2
3] with 5 sub-formulas for

RECh−1
2 [EXACT2

3]. By using a similar argument as in the
proof of Theorem 3.4, we can prove the upper bound. �

It is widely believed that naive recursive constructions
of Boolean formula are optimal in most cases. The previous
studies [13]–[15] show some supporting evidence for this
conjecture by proving almost tight lower bounds for com-
positions of the universal relation ({0, 1}n × {0, 1}n), which
includes all the communication matrices of Boolean func-
tions (Definition 4.1).

Similarly, we also conjecture that the formula size up-
per bound for RECh

2[EXACT2
3] is tight. One nice property
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of the exact 2-bit function is that it contains the parity func-
tion as its sub-function. So we can prove the following for-
mula size lower bound.

Theorem 3.8.

L(RECh
2[EXACT2

3]) ∈ Ω(n2).

Proof. If we assign x1 = 1 as

EXACT2
3(1, x2, x3) = (¬x2 ∧ x3) ∨ (x2 ∧ ¬x3)

= PAR2(x2, x3).

for each level of the recursive definition of the recur-
sive function RECh

2[EXACT2
3], it becomes the 2h-bit par-

ity function. We know the formula size lower bound
of (2h)2 for it by Khrapchenko’s bound [1]. As a result,
L(RECh

2[EXACT2
3]) cannot be less than it. �

We can prove the same lower bound by the weighted
version of the quantum adversary bound [9]. In general, we
can give the condition in which formula size lower bounds
of the recursive Boolean functions are bounded by Ω(n2).

Theorem 3.9. We fix α − 2 bits of the α input bits of a
Boolean function f . If the Boolean function on the remain-
ing 2 input bits becomes either the 2-bit parity function or
its negation, then we have

L(RECh
2[ f ]) ∈ Ω(n2).

Proof. This theorem can be proven by the same argument
as the proof of the previous theorem. �

We can prove a larger bound for a larger base function
EXACT2

4.

Proposition 3.10.

L(RECh
2[EXACT2

4]) ∈ O(nlog2 6) ⊂ O(n2.59).

Proof. We can construct a formula for EXACT2
4 as

(¬x1 ∧ x2 ∧ x3 ∧ x4) ∨ (x1 ∧ ¬x2 ∧ x3 ∧ x4)

∨(x1 ∧ x2 ∧ ¬x3 ∧ x4) ∨ (x1 ∧ x2 ∧ x3 ∧ ¬x4),

and shrink it as follows:

(((¬x1 ∧ x2) ∨ (x1 ∧ ¬x2)) ∧ x3 ∧ x4)

∨(x1 ∧ x2 ∧ ((¬x3 ∧ x4) ∨ (x3 ∧ ¬x4))).

Its formula size is 12. Therefore, we have obtained the for-
mula size upper bound. �

It matches the general upper bound for β = 2 and
seems to be one of the best candidates with smaller branches
(β ≤ 5) towards super-quadratic formula size lower bounds
because of L2(EXACT2

4) = 6.

4. Parity versus Majority with Respect to Formula Size

In this section, we try to give some reason behind the diffi-
culty of proving a super-quadratic formula size lower bound

for the majority function. Before going to the results, we
review some notions to prove formula size lower bounds.

4.1 Communication Matrix and Singleton Cell Hypothesis

Karchmer and Wigderson [18] characterize the formula size
of any Boolean function in terms of a communication game.
In the game, given a Boolean function f , Alice gets an input
x such that f (x) = 1 and Bob gets an input y such that f (y) =
0. The goal of the game is to find an index i such that xi � yi.
Here, xi and yi denote the i-th bits of x and y, respectively.
From the game, we consider the following matrix called the
communication matrix.

Definition 4.1 (Communication Matrix). Given a Boolean
function f , its communication matrix is defined as a matrix
whose rows and columns are indexed by X = f −1(1) and
Y = f −1(0), respectively. Each cell of the matrix contains
indices i such that xi � yi. A combinatorial rectangle is a
direct product X′ × Y ′ where X′ ⊆ X and Y ′ ⊆ Y. A combi-
natorial rectangle X′ × Y ′ is called monochromatic if every
cell (x, y) ∈ X′ × Y ′ contains the same index i. To describe
it simply, we define a relation Rf ⊆ X × Y × {1, 2, · · · , n} as
Rf = {(x, y, i) | x ∈ X, y ∈ Y, xi � yi}. We can also define
the monotone version of the communication matrix and the
relation associated with a monotone Boolean function f as
Rm

f = {(x, y, i) | x ∈ X, y ∈ Y, (xi = 1) ∧ (yi = 0)}.
When we interpret behavior of a communication proto-

col as a tree, the number of leaves in a best communication
protocol for the Karchmer-Wigderson game is equivalent to
the following bound.

Definition 4.2 (Protocol Partition Number). For any com-
binatorial rectangle X′ × Y ′, we call its partition a pair of
X′1 × Y ′ and X′2 × Y ′ where X′ = X′1 ∪ X′2 and X′1 ∩ X′2 = ∅,
or a pair of X′ × Y ′1 and X′ × Y ′2 where Y ′ = Y ′1 ∪ Y ′2 and
Y ′1∩Y ′2 = ∅. The protocol partition number CP(Rf ) is defined
by the minimum number of disjoint monochromatic rectan-
gles which recursively partition the communication matrix
X × Y where Rf = {(x, y, i) | x ∈ X, y ∈ Y, xi � yi}. In the
monotone case, it is similarly defined by replacing Rf with
Rm

f .

Then, the theorem of Karchmer and Wigderson can be
stated as follows.

Theorem 4.3 ([18]). For any Boolean function f , CP(Rf ) =
L( f ) and CP(Rm

f ) = Lm( f ).

To prove a lower bound, we sometimes restrict rows
and columns of the communication matrix as Rf (X′,Y ′) =
{(x, y, i) | x ∈ X′, y ∈ Y ′, xi � yi}, and Rm

f (X′,Y ′) = {(x, y, i) |
x ∈ X′, y ∈ Y ′, (xi = 1)∧ (yi = 0)} for some X′ ⊆ f −1(1) and
Y ′ ⊆ f −1(0). In particular, we will consider the following
restriction.

Definition 4.4 (Minterms and Maxterms). For a monotone
Boolean function f , an input x is called a minterm if f (x) =
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1 and (y ≤ x) ∧ (x � y) implies f (y) = 0 for any y and is
called a maxterm if f (x) = 0 and (x ≤ y) ∧ (x � y) implies
f (y) = 1 for any y where x ≤ y if xi ≤ yi for all i ∈ {1, · · · n}.
Let min( f ) and max( f ) be the sets of all the minterms and
maxterms for f , respectively.

Protocol partition numbers for monotone communica-
tion matrices are invariant even when we restrict their rows
and columns to minterms and maxterms, respectively, as fol-
lows.

Theorem 4.5 ([18]). For any Boolean function f ,

CP(Rm
f (min( f ),max( f ))) = Lm( f ).

In the communication matrix of X ×Y , we consider the
following sets of cells

S = {(x, y) | x ∈ X, y ∈ Y, dH(x, y) = 1}.
where dH(x, y) denotes the Hamming distance, which is the
number of different bits, between x and y. These cells in S
are called singletons. We now give the following hypothesis.

Hypothesis 4.6 (Singleton Cell Hypothesis for f ). Any
leaf of an optimal protocol partition of the non-monotone
Karchmer-Wigderson game corresponding to f includes at
least one singleton cell.

4.2 Singleton Cell Hypothesis for the Parity Function

It is difficult to prove the hypothesis in general because we
should know about an optimal protocol partition. On the
other hand, we can prove that the hypothesis is true for any
Boolean function such that Khrapchenko’s bound [1] gives
the optimal formula size lower bound.

Theorem 4.7. The singleton cell hypothesis is true for any
Boolean function f for which Khrapchenko’s bound gives
the optimal formula size lower bound.

Proof. To prove the theorem, we review Khrapchenko’s
bound. For a Boolean function f , we let X = f −1(1),
Y = f −1(0) and consider the set of singleton cells

S = {(x, y) | x ∈ X, y ∈ Y, dH(x, y) = 1}.
Then, Khrapchenko’s bound is given by

L( f ) ≥ |S |2
|X| · |Y | .

To see this, we consider an optimal partition of X × Y
into monochromatic rectangles R1, · · · ,Rt. Let s1, · · · , st be
the numbers of singleton cells in R1, · · · ,Rt, respectively.
For a monochromatic rectangle Ri, let j be its correspond-
ing index. That is, x j � y j for each (x, y) ∈ Ri. For each row
x, there is at most one singleton cell (x, y) in the monochro-
matic rectangle because xk = yk for all k � j. Similarly,
for each column y, there is at most one singleton cell (x, y).

Thus, we have s2
i ≤ |Ri| for each i where |Ri| is the number

of cells in Ri. So, we have

|S |2 =
⎛⎜⎜⎜⎜⎜⎝

t∑
i=1

si

⎞⎟⎟⎟⎟⎟⎠
2

≤ t ·
t∑

i=1

s2
i ≤ t ·

t∑
i=1

|Ri|

= t · |X| · |Y |.
The first inequality comes from the Cauchy-Schwarz in-
equality.

If Khrapchenko’s bound gives the optimal formula size
lower bound, it implies that all the inequalities are saturated.
Hence, we have s2

i = |Ri|. This implies that there is at least
one singleton cell for each monochromatic rectangle. �

Thus, the singleton hypothesis is true for the parity
function with 2k input bits. Actually, it is easy to observe
that the number of monochromatic rectangles which appear
in any optimal protocol partition of the communication ma-
trix for the parity function is the same. This makes easy to
prove the optimal formula size lower bound for the parity
function.

4.3 Singleton Cell Hypothesis for the Majority Function

We cannot apply Theorem 4.7 to the majority function be-
cause Ueno [10] proved that its formula size lower bound
improved from Khrapchenko’s bound [1].

In the rest of the section, we prove that if the formula
size of the majority function is larger than that of the parity
function, then the singleton cell hypothesis is false for the
majority function. The proof will be done by combining the
following two lemmas.

Lemma 4.8. If the singleton cell hypothesis is true for a
monotone Boolean function f , then we have

L( f ) = Lm( f ) = CP(Rf (min( f ),max( f ))).

Proof. We call a monochromatic rectangle positive if every
cell (x, y) in the rectangle contains the same index i such
that xi = 1 and yi = 0, and negative if every cell (x, y) in
the rectangle contains the same index i such that xi = 0
and yi = 1. There are no monochromatic rectangles which
are both positive and negative. Theorem 4.3 shows a corre-
spondence between a protocol partition and a formula in the
sense that positive and negative monochromatic rectangles
of the protocol partition correspond to positive and negative
literals (i.e., variables and their negations), respectively.

Let f be a monotone Boolean function. Then, we have
f (x) = 1, f (y) = 0, xi = 1 and yi = 0 for every single-
ton cell (x, y) whose index is i. Otherwise, f is not mono-
tone. If a monochromatic rectangle contains the single-
ton cell (x, y), its corresponding index is also i. Note that
any other index cannot be the corresponding index of the
monochromatic rectangle because (x, y) is singleton. That
is, x j = y j for all j � i. Thus, the monochromatic rect-
angle is positive. If the singleton hypothesis is true, any
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monochromatic rectangle in an optimal partition is posi-
tive. This partition can be transformed into a formula with-
out negations (i.e., a monotone formula). Hence, we have
L( f ) = Lm( f ) = CP(Rf (min( f ),max( f ))) by using Theo-
rem 4.5. �

Lemma 4.9. For any threshold function f with n input bits,

CP(Rf (min( f ),max( f ))) ≤ L(PARn).

Proof. The restricted communication matrix (i.e.,
Rf (min( f ),max( f ))) for a threshold function f is a sub-
matrix of the whole non-monotone communication matrix
RPARn of the parity function. Thus, its protocol partition
number gives a lower bound for L(PARn). �

From these two lemmas, we can show the following
theorem.

Theorem 4.10. If the singleton cell hypothesis is true for a
threshold Boolean function f , then we have

Lm( f ) ≤ L(PARn).

Proof. Since a threshold function f is monotone, we have

Lm( f ) = CP(Rf (min( f ),max( f )))

from Lemma 4.8. On the other hand, we know

CP(Rf (min( f ),max( f ))) ≤ L(PARn)

from Lemma 4.9. Thus we have the theorem. �

Corollary 4.11. If L(PARn) < Lm(MAJn), the singleton
cell hypothesis is false for the majority function.

Many arguments as extensions of Khrapchenko’s
bound [1] focus on the structure of singleton cells. This
corollary implies that, if the optimal formula size lower
bound for the majority function is larger than that of the
parity function, it is not sufficient to focus on only single-
ton cells and necessary to analyze the other cells for resolv-
ing the formula complexity of the majority function. Con-
versely, if the hypothesis is true for the majority function,
we have improvements of its monotone and non-monotone
formula size upper bounds to O(n2).

The singleton cell hypothesis is true for majority func-
tions on small number of input bits for which we can search
an optimal formula by computation search. In the case of
the 3-bit majority function, the number of singleton cells
which appear in an optimal protocol partition is either 1 or
2. In the case of the 5-bit majority function, we know that
it can be either 1, 2, 3 or 4 in several variations of the op-
timal protocol partition. These also explain another reason
of the difficulty to prove larger formula size for the majority
function.

5. Concluding Remarks

In this paper, we have discussed candidate Boolean func-
tions to prove a super-quadratic formula size lower bound

by studying the recursive definitions of Boolean functions.
We have also discussed the reason why it is difficult to prove
a super-quadratic formula size for the majority function
from the viewpoint of some hypothesis for non-monotone
Karchmer-Wigderson game.

To show super-cubic formula size lower bounds, our
result seems to be negative at first glance because a 9-bit
Boolean function itself is already difficult to analyze, and so
are recursive Boolean functions based on it. We still have
difficulties to prove even super-quadratic formula size lower
bounds for Boolean functions excepts Andreev function as
revealed in [5]–[7].

Speaking of super-quadratic lower bounds, we have
hope by using Boolean functions recursively defined from
a 3-bit Boolean function. There also remains possibility
for super-cubic lower bounds to define an analogue of the
Andreev function replacing the parity function by a harder
Boolean function of super-quadratic formula size.
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