
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.3 MARCH 2015
497

PAPER Special Section on Foundations of Computer Science—New Spirits in Theory of Computation and Algorithm—

The Biclique Cover Problem and the Modified Galois Lattice∗

Hideaki OTSUKI†a) and Tomio HIRATA††, Members

SUMMARY The minimum biclique cover problem is known to be NP-
hard for general bipartite graphs. It can be solved in polynomial time for
C4-free bipartite graphs, bipartite distance hereditary graphs and bipartite
domino-free graphs. In this paper, we define the modified Galois lattice
Gm(B) for a bipartite graph B and introduce the redundant parameter R(B).
We show that R(B) = 0 if and only if B is domino-free. Furthermore, for an
input graph such that R(B) = 1, we show that the minimum biclique cover
problem can be solved in polynomial time.
key words: biqlique cover, Galois lattice, domino-free

1. Introduction

The problem of covering the edges of a graph has been stud-
ied in various ways. In this paper, we consider the cover-
ing problem in which all edges of an input bipartite graph
are covered by the edges of bicliques (complete bipartite
graphs). Covering a graph by bicliques arises in many ar-
eas [2]. From theoretical interests, Stockmeyer [3] investi-
gated the computational complexities of the biclique cover
problem and showed that it is equivalent to the set basis
problem [3]. In computer graphics, bicliques are used to
model the rectangle cover problem that asks if a rectilin-
ear polygon can be expressed as the union of a minimum
number of rectangles [4]. There are some applications in ar-
tificial intelligence, data mining [5] and biology [6].

The minimum biclique cover problem is NP-hard for
general bibartite graphs [3], [7], [8] and it is also NP-hard
for chordal bipartite graphs [9]. However, it can be solved
in polynomial time for C4-free bipartite graphs [9], bipar-
tite distance-hereditary graphs [9] and bipartite domino-free
graphs [10]. A bipartite graph is C4-free if it has no cycle of
length four as an induced subgraph. There are some char-
acterizations for bipartite distance-hereditary graphs and we
adopt the following definition: a bipartite graph is bipar-
tite distance-hereditary if it is (6,2)-chordal, that is, every
cycle of length at least 6 has at least 2 chords. A bipar-
tite graph is domino-free if it has no domino as an induced
subgraph, where a domino is a cycle of length six with ex-
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Fig. 1 A domino.

actly one chord as in Fig. 1. By definition, neither bipartite
C4-free graphs nor bipartite distance-hereditary graphs have
any domino as an induced subgraph. Thus the class of bipar-
tite domino-free graphs is a strict generalization of bipartite
C4-free graphs and distance-hereditary bipartite graphs.

Amilhastre et al. [10] showed that the size of a min-
imum biclique cover and the size of a minimum biclique
partition are equal if the graph is bipartite domino-free.
To solve these problems, they defined a partial order for
the set of maximal bicliques of a bipartite domino-free
graph B. They used the Hasse diagram (the Galois lat-
tice) G(B) of this partial ordered set and solved the biclique
cover/partition problem by finding a minimum cut of G(B).
The time complexity of this algorithm is O(n × m), where
n and m are the numbers of vertices and edges of the input
graph, respectively.

In this paper, we define the modified Galois lattice
Gm(B) for a bipartite graph B. Here we do not require that B
is domino-free. Next, we introduce the redundant parameter
R(B), and show that R(B) = 0 if and only if B is domino-
free. Furthermore, for the input graph such that R(B) = 1,
we show that the minimum biclique cover problem can be
solved in polynomial time.

In Sect. 2, we give definitions which are necessary for
our discussion. Also we define the modified Galois lattice
Gm(B) for a bipartite graph B. In Sect. 3, some properties of
Gm(B) are investigated and some lemmas related to Gm(B)
are proved. In Sect. 4, defining the redundant parameter
R(B), we prove that B is a domino-free bipartite graph if and
only if R(B) = 0. Also, we show that if R(B) = 1, the min-
imum biclique cover problem can be solved in polynomial
time.

2. Definitions

Let B = (XB,YB, EB) be a bipartite graph, where XB =

{x1, x2, . . . , xnx }, YB = {y1, y2, . . . , yny } are the sets of ver-
tices and EB ⊆ XB × YB is the set of edges. Let n = nx + ny
and m = |EB|. Let NB(x) = {y | (x, y) ∈ EB} be the set of
neighbors of x in B. A subgraph K = (X,Y, EK) of B is a
biclique if EK = X × Y , where ∅ � X ⊆ XB and ∅ � Y ⊆ YB.
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K is an induced subgraph of B if EK = EB ∩ (X × Y). A bi-
clique cover of B is a set of bicliques {K1,K2, . . . ,Ks} such
that EB =

⋃s
i=1 EKi , and a biclique partition of B is a set

of bicliques {K1,K2, . . . ,Ks} such that EB =
⋃s

i=1 EKi and
EKi ∩ EK j = ∅ (i � j). The minimum biclique cover (par-
tition) problem is a problem of finding a minimum biclique
cover (partition, respectively) for a given bipartite graph B.

A domino is a cycle of length six with exactly one
chord that produces two C4’s as in Fig. 1. A bipartite graph
B is domino-free if B has no domino as an induced subgraph.
LetKM(B) be the set of maximal bicliques of B. We define a
partially order < onKM(B) as follows. For distinct bicliques
Kp,Kq ∈ KM(B), Kp < Kq if and only if YKp ⊂ YKq . Kr and
Ks are incomparable if neither Kr < Ks nor Ks < Kr. Let
(KM(B),≤) be the reflexive closure of the defined ordered
set.

In [10], Amilhastre et al. defined a directed graph G(B)
for a domino-free bipartite graph B as follows. The set of
vertices of G(B) isKM(B)∪{�,⊥}, where� is the maximum
element to KM(B), that is, � > K for all K ∈ KM(B) and ⊥
is the minimum element. For two elements Kp and Kq such
that Kp < Kq, put a directed edge (Kq,Kp) if there is no Kr

such that Kp < Kr and Kr < Kq. They call G(B) as Galois
lattice of B [10]. G(B) is actually the Hasse diagram of the
partially ordered set (KM(B),≤) [11].

In this paper, we define the modified Galois lattice
Gm(B) as follows. Here, we do not assume that B is domino-
free. Let Xi (1 ≤ i ≤ nx) be the maximal star graph centered
at xi. Denote the set of all Xi by Xs(B). Define Yj (1 ≤ j ≤
ny) and Ys(B) in the same manner. We define the partial or-
der on Ks(B) ≡ KM(B) ∪ Xs(B) ∪ Ys(B) as follows: for any
distinct Kp,Kq ∈ Ks(B), Kp < Kq if and only if YKp ⊆ YKq

and XKp ⊇ XKq . Let K(B) ≡ Ks(B) ∪ {�,⊥}. According to
this partial order on K(B), we construct Gm(B) in the same
manner as G(B). Let us see an example for a bipartite graph
B shown in Fig. 2. As vertices {x2, x3, x4, y3, y4, y5} induces
a domino, B is not domino-free. It is obvious that B has six
maximal bicliques K1, . . . ,K6 such that

XK1 = {x1, x4}, YK1 = {y1, y2, y3},
XK2 = {x2, x3}, YK2 = {y2, y3, y4},
XK3 = {x3, x4}, YK3 = {y2, y3, y5, y6},
XK4 = {x1, x2, x3, x4},YK4 = {y2, y3},
XK5 = {x3}, YK5 = {y2, y3, y4, y5, y6}
XK6 = {x4}, and YK6 = {y1, y2, y3, y5, y6}.

Then the Galois lattice G(B) and the modified Galois lattice
Gm(B) are shown in Fig. 3 and Fig. 4, respectively. Here, we
follow the conventional drawing of the Hasse diagram, that
is, each edge has downward direction. Note that the Galois
lattice is embedded, in some way, in the modified Galois
lattice.

Amilhastre et al. [10] defined a “simplification” opera-
tion on a domino-free bipartite graph. They repeatedly apply
this operation to an input bipartite graph B until no operation
can be applied. The resulted graph is called as a “simplified”
domino-free bipartite graph. Gm(B) is coincident with G(B)

Fig. 2 A Bipartite graph B.

Fig. 3 The Galois lattice G(B).

Fig. 4 The modified Galois lattice Gm(B).

if B is a simplified domino-free bipartite graph.

3. Properties of the Modified Galois Lattice

Let K1 = (XK1 ,YK1 , EK1 ) and K2 = (XK2 ,YK2 , EK2 ) be dif-
ferent bicliques of KM(B). K1 and K2 have the following
property.
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Property 1: For any distinct K1,K2 ∈ KM(B), XK1 ⊂
XK2 ⇐⇒ YK2 ⊂ YK1 .

Proof : Let K1 and K2 be bicliques inKM(B). Assume that
XK1 ⊂ XK2 and YK2 � YK1 . If YK1 ⊆ YK2 then K1 is not max-
imal. Thus YK1\YK2 � ∅ and YK2\YK1 � ∅. Then we have
a biclique K3 = (XK1 ,YK1 ∪ YK2 , EK3 ) that properly include
K1. Therefore K1 is not maximal. �

For two vertices Xi ∈ Xs(B) and Yj ∈ Ys(B) of Gm(B),
let P(i, j) be the set of directed paths from Xi to Yj. Then we
have the next lemma.

Lemma 1: P(i, j) � ∅ ⇐⇒ (xi, y j) ∈ EB, for all i and j.

Proof : (⇒) Assume that there is a directed edge from Xi

to Yj in Gm(B). Then {y j} = YY j ⊆ YXi = NB(xi) holds.
Thus there is edge (xi, y j) in B. Assume that there is a path
P ∈ P(i, j) from Xi to Yj with length greater than two. Let
P = (Xi,Ki1 , . . . ,Kis ,Yj). Then Xi > Ki1 > . . . > Kis > Yj

and thus Xi > Yj holds. This means that in B, the center
of star graph Yj is in YXi (= NB(xi)). Therefore, B has edge
(xi, y j).

(⇐) Assume that B has an edge (xi, y j). Then y j ∈
NB(xi), and thus, YY j ⊂ YXi and Yj < Xi. Therefore, there is
at least one directed path from Xi to Yj in Gm(B). �

We have the following lemmas for a vertex on a path
from a vertex of Xs(B) to a vertex of Ys(B) in Gm(B).

Lemma 2: Let K be a vertex on a path from Xi to Yj then
(xi, y j) ∈ EK .

Proof : If K is either Xi or Yj then the lemma obviously
holds. Then K is not a star graph and Xi > K > Yj holds.
Therefore, in B, YXi ⊇ YK ⊃ YY j = {y j} holds. Thus, (xi, y j)
is an edge of K, since K is a maximal biclique. �

Lemma 3: If (xi, y j) ∈ EK for some K ∈ K(B)\{�,⊥} then
there is a path from Xi to Yj passing through K in Gm(B).

Proof : Since (xi, y j) ∈ EK , xi ∈ XK . Then XXi ⊆ XK and
YK ⊆ YXi . Thus K ≤ Xi holds. Similarly, Yj ≤ K holds.
From the construction of Gm(B), there is a path from Xi to
K and a path from K to Yj. �

Let C be a subset of K(B)\{�,⊥}. C is a cut of Gm(B),
if for all i, j, every path from Xi to Yj on Gm(B) has at least
one vertex that belongs to C. That is, all paths from a ver-
tex of Xs(B) to a vertex of Ys(B) are cut by C. Obviously
{X1, . . . , Xnx } (or also {Y1, . . . ,Yny }) is a cut of Gm(B). A min-
imum cut of Gm(B) is a cut with the minimum size. In Fig. 4,
for example, {K1,K2,K3} is the minimum cut of Gm(B).

Lemma 4: A cut of Gm(B) is a biclique cover of B.

Proof : Let C be a cut of Gm(B). For any (xi, y j) ∈ EB,
there is a path from vertex Xi ∈ Xs(B) to vertex Yj ∈ Ys(B)
in Gm(B) by Lemma 1. Let K be a vertex on the path and
K ∈ C. From Lemma 2, K has edge (xi, y j). Thus, every
edge (xi, y j) of B is contained in at least one biclique of C.

�

If B is a domino-free bipartite graph, then B has the

following property. (We give the proof to make the paper
self-contained.)

Property 2 (Theorem 3.1 of [10]): Let B be a bipartite
graph. Then B is domino-free if and only if for any dis-
tinct K1,K2 ∈ KM(B) such that K1 and K2 have at least one
common edge, one of these statements is true: (i) XK1 ⊂ XK2

and YK2 ⊂ YK1 ,(ii) XK2 ⊂ XK1 and YK1 ⊂ YK2 .

Proof : (⇒) Let K1 and K2 be two maximal bicliques shar-
ing a common edge {x, y} and such that (i) and (ii) are false.
From Property 1, we have XK1\XK2 � ∅, XK2\XK1 � ∅,
YK1\YK2 � ∅ and YK2\YK1 � ∅. Let x1 ∈ XK1\XK2 . We claim
that there exists y2 ∈ YK2\YK1 such that (x1, y2) � EB. If
YK2\YK1 ⊆ N(x1) then YK2 ⊆ N(x1) since YK1 ∩ YK2 ⊆ N(x1).
Then K2 is not maximal. Thus, there exists y2 ∈ YK2\YK1

such that (x1, y2) � EB. Let x2 ∈ XK2\XK1 . From similar
discussion, there exist y1 ∈ YK1\YK2 such that (x2, y1) � EB.
Then, {x, y, x1, y1} and {x, y, x2, y2} induces two C4’s. As
(x1, y2) � EB and (x2, y1) � EB holds, {x, y, x1, y1, x2, y2}
induces a domino.

(⇐) Assume that B has a domino induced by
{x, y, x1, y1, x2, y2} with chord {x, y}. Then there is K1 ∈
KM(B) such that K1 contains C4 = (x, y, x1, y1) and K2 ∈
KM(B) such that K2 contains C4 = (x, y, x2, y2). Since
(x1, y2) � EB, x1 ∈ X1\X2, so (i) is false. Similarly, we
obtain that (ii) is false. �

We define Unique Path Condition as follows.

For all i, j (1 ≤ i ≤ nx, 1 ≤ j ≤ ny)

|P(i, j)| = 1 ⇐⇒ (xi, y j) ∈ EB.

Lemma 5: If B is a domino-free bipartite graph then
Unique Path Condition holds.

Proof : From Lemma 1, if (xi, y j) � EB then |P(i, j)| =
0. Thus if |P(i, j)| = 1 then (xi, y j) ∈ EB. Therefore it
is sufficient to prove that if (xi, y j) ∈ EB then |P(i, j)| = 1
whenever B is a domino-free bipartite graph.

Assume that |P(i, j)| ≥ 2. Let P1, P2 be paths from Xi

to Yj such that P1 � P2. Then there are two incomparable
bicliques K1 on P1 and K2 on P2. Note that neither K1 nor
K2 is a star graph. Thus |XK1 |, |YK1 |, |XK2 |, |YK2 | ≥ 2 holds.
Since K1 and K2 are incomparable, neither YK1 ⊂ YK2 nor
YK2 ⊂ YK1 . Thus YK1\YK2 � ∅ and YK2\YK1 � ∅ hold. As
K1 and K2 are maximal bicliques, Property 1 implies that
XK1\XK2 � ∅ and XK2\XK1 � ∅. Then there exist four ver-
tices of B, x1, x2, y1 and y2 such that x1 ∈ XK1 , x1 � XK2 ,
x2 � XK2 , x2 ∈ XK2 , y1 ∈ YK1 , y1 � YK2 , y2 � YK1 and
y2 ∈ YK2 . Thus, the graph induced by the set of vertices
{xi, x1, x2, y j, y1, y2} is a domino. This contradicts to the
premise that B is a domino-free bipartite graph. Therefore,
if (xi, y j) ∈ EB then |P(i, j)| = 1. �

Also the converse of Lemma 5 holds.

Lemma 6: If Unique Path Condition holds then B is a
domino-free bipartite graph.

Proof : Assume that B is not a domino-free graph. Then
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there is a subgraph induced by six vertices of two C4’s shar-
ing edge (xi, y j). Then there are two incomparable maximal
bicliques K1 and K2 that shares edge (xi, y j). Thus there is
two distinct paths form Xi to Yj in Gm(B) and |P(i, j)| ≥ 2
holds. That is, if B is not a domino-free graph, then Unique
Path Condition does not hold. �

Let P be the set of all paths from a vertex of Xs(B) to a
vertex of Ys(B) in Gm(B), that is, P = ⋃1≤i≤nx,1≤ j≤ny P(i, j).
Let Pi, j ∈ P(i, j) be a path from Xi to Yj. Let f be a map
from P to EB such that f (Pi, j) → (xi, y j). For example, in
Fig. 4, a path P = (X2,K2,K4,Y3) is mapped to edge (x2, y3),
that is, f (P) = (x2, y3).

Corollary 1: B is a domino-free bipartite graph if and only
if f is bijective.

Proof : From Lemma 1, Lemma 5 and Lemma 6, the corol-
lary holds. �

For any biqliques K1, K2 in B, we define a subgraph
K2−1 = K2 − K1 such that K2−1 has all edges of K2 but none
of K1, and has no singletons. We denote the edges of K2−1

by E2−1. From Property 2, the next lemma holds.

Lemma 7: (Lemma 3.1 of [10]) Let B be a domino-free
bipartite graph. Let K1 be any maximal biclique and K2

be any biclique in B such that EK2 � EK1 . Then K2−1 is a
biclique.

Proof : If K2 is a star graph, the proof is trivial. Assume
that K2 is not a star graph. Let K3 ∈ KM(B) such that EK2 ⊆
EK3 . By Property 2, there are two cases: (i) XK3 ⊂ XK1 and
(ii)YK3 ⊂ YK1 . (i) XK3 ⊂ XK1 implies XK2 ⊂ XK1 . Then for
any x ∈ XK2 and y ∈ YK2\YK1 , (x, y) ∈ E2−1 and (x, y) � EK1

holds. Thus K2−1 = (XK2 ,YK2\YK1 , E2−1) is a biclique of B.
(ii) YK3 ⊂ YK1 implies YK2 ⊂ YK1 . Then for any x ∈ XK2\XK1

and y ∈ YK1 , (x, y) ∈ E2−1 and (x, y) � EK1 holds. Thus
K2−1 = (XK2\XK1 ,YK2 , E2−1) is a biclique of B. There is no
other case. �

Theorem 1: (Theorem 3.2 of [10]) Let B be a domino-free
bipartite graph. The size of a minimum biclique cover of B
is equal to the size of a minimum biclique partition of B.

Proof : Let SCOVER(B) be a minimum biclique cover of B
and let SPARTITION(B) be a minimum biclique partition of B.
Since any biclique partition of B is also a biclique cover of
B, |SCOVER(B)| ≤ |SPARTITION(B)| holds. Let SCOVER(B) =
{K1,K2, . . . ,Kc}. Then {Ki−Ki+1−Ki+2− · · ·−Kc|1 ≤ i ≤ c}
is a set of bicliques of B (Lemma 7) that form a biclique
partition of B. Thus |SCOVER(B)| ≥ |SPARTITION(B)| holds.
Therefore |SCOVER(B)| = |SPARTITION(B)|. �

Let SCUT(B) be a minimum cut of Gm(B). The next
theorem holds.

Theorem 2: Let B be a domino-free bipartite graph. Then
|SCUT(B)| = |SPARTITION(B)| = |SCOVER(B)| holds.

Proof : From Theorem 1, it is sufficient to prove that
|SCUT(B)| = |SCOVER(B)|. Assume that there is a path from
Xi to Yj in Gm(B). Then there exists an edge (xi, y j) in B.

As SCOVER(B) covers (xi, y j), there exists K ∈ SCOVER(B)
such that (xi, y j) ∈ EK . From Lemma 3, K is on a path from
Xi to Yj in Gm(B). If B is a domino-free bipartite graph,
then the path from Xi to Yj in Gm(B) is unique from Corol-
lary 1. Thus, SCOVER(B) is a cut of Gm(B) and |SCUT(B)| ≤
|SCOVER(B)|. From Lemma 4, |SCUT(B)| ≥ |SCOVER(B)|
holds. Therefore, |SCUT(B)| = |SCOVER(B)|. �

For a simplified domino-free bipartite graph B, Amilhas-
tre et al. [10] showed that the size of Galois lattice G(B)
is O(n + m). They constructed G(B) in O(n × m) time.
Since a minimum cut of G(B) can be computed in polyno-
mial time by using network flows techniques, the minimum
cover/partition problem can be solved in polynomial time.

4. The Redundant Parameter and the Minimum Bi-
clique Cover

We denote the degree of a vertex x in B by dB(x). We denote
by P(i, ∗) the set of directed paths of Gm(B) from Xi to any
vertex of Ys(B), and denote by P(∗, j) the set of directed
paths of Gm(B) from any vertex of Xs(B) to Yj. That is,
P(i, ∗) = ∪ny

j=1P(i, j) and P(∗, j) = ∪nx

i=1P(i, j).
We define Rx(B) and Ry(B) as follows.

Rx(B) ≡ max
1≤i≤nx

(|P(i, ∗)| − dB(xi)), (1)

Ry(B) ≡ max
1≤ j≤ny

(|P(∗, j)| − dB(y j)). (2)

Let R(B) ≡ max(Rx(B),Ry(B)) and call it the redundant pa-
rameter of B. For example, for B in Fig. 2, it is easy to verify
that R(B) = 2.

Theorem 3: B is a domino-free bipartite graph if and only
if R(B) = 0.

Proof : Assume that B is a domino-free bipartite graph.
From Corollary 1, there is a bijective map such that the
unique path from Xi to Yj is mapped to edge (xi, y j). Thus
|P(i, ∗)| is the number of the edges incident to xi and
|P(i, ∗)| = dB(xi) holds for all i. Similarly, |P(∗, j)| = dB(y j)
holds for all j. Therefore, R(B) = 0 holds.

Assume that R(B) = 0. As |P(i, ∗)| ≥ dB(xi), R(B) = 0
implies |P(i, ∗)| = dB(xi) for all i. From Lemma 1, there is an
unique path in P(i, ∗) from Xi to each Yj such that (xi, y j) ∈
EB. Then f is a bijective map from P to EB. Therefore B is
a domino-free bipartite graph by Corollary 1. �

If R(B) = 0 then B is a domino-free bipartite
graph, and any minimum cut of Gm(B) defines a minimum
cover/partition of B. We will show that if R(B) = 1, any
minimum cover of B is a minimum cut of Gm(B). Note that
the minimum cover of B does not define the minimum par-
tition of B, if B is not domino-free.

Theorem 4: Let B be a bipartite graph with R(B) ≤ 1.
Then any biclique cover of B is a cut of Gm(B).

Proof : Assume that there is a minimum biclique cover S
of B that is not a cut of Gm(B). As S is not a cut, there is at
least one path P that is not cut by S in Gm(B). Let P be a
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Fig. 5 K and K1 in Case 1.

Fig. 6 The modified Galois lattice of the graph in Fig. 5 (excluding �
and ⊥).

path from X1 to Y1 in Gm(B). Since edge (x1, y1) is covered
by S, if there is no vertex on P except for X1 and Y1, then X1

or Y1 is in S. This contradicts to the assumption that P is not
cut by S. Thus there is at least one biclique K on P. Since
S does not cut P, K � S. As K is not a star graph, it has at
least four vertices that induce C4 in B. Let x1, x2 ∈ XK and
y1, y2 ∈ YK and e1 = (x1, y1), e2 = (x1, y2), e3 = (x2, y1) and
e4 = (x2, y2). As S is a cover of B, these four edges must be
covered by some bicliques Ki in S. There are two cases that
we must consider.

(Case 1) Assume that S has four distinct bicliques
K1, . . . ,K4 such that ei ∈ EKi and ei � EKi′ for i � i′. Then
there are eight vertices such that

x1, x3 ∈ XK1 , y1, y3 ∈ YK1 ,

x1, x4 ∈ XK2 , y2, y4 ∈ YK2 ,

x2, x5 ∈ XK3 , y1, y5 ∈ YK3 ,

x2, x6 ∈ XK4 , y2, y6 ∈ YK4 .

See Fig. 5 and Fig. 6. Since e1 = (x1, y1) ∈ EK1 , K1 is on
a path P′ from X1 to Y1 from Lemma 3. K1 ∈ S implies
P′ � P. Thus the number of paths from X1 to Y1 is at least
two. Similar discussion holds for K2, thus the number of
paths from X1 to Y2 is at least two. Therefore the number of
paths from X1 to Y1 or Y2 is at least four. From Lemma 1,
there is a path from x1 to each y j ∈ NB(x1). Thus R(B) ≥
|P(1, ∗)| − dB(x1) ≥ 2 holds.

(Case 2) Assume that there is a biclique K1 ∈ S such
that K1 has at least two edges amoung ei (i = 1 . . . 4). With-
out loss of generality, we can assume that K1 has e1, e2. (See
Fig. 7 and Fig. 8.) Since e1 = (x1, y1) ∈ EK1 , K1 is on a path
P′ from X1 to Y1 by Lemma 3. Thus the number of paths

Fig. 7 K and K1 in Case 2.

Fig. 8 The modified Galois lattice of the graph in Fig. 7 (excluding �
and ⊥).

from X1 to Y1 is at least two. Since e2 = (x1, y2) ∈ EK , K
is on a path P1 from X1 to Y2. Since e2 = (x1, y2) ∈ EK1 ,
K1 is on a path P1

′ from X1 to Y2. Thus the number of
paths from X1 to Y2 is at least two. Therefore, there are
at least four paths from X1 to Y1 or Y2. From Lemma
1, there is a path from x1 to each y j ∈ NB(x1). Thus
R(B) ≥ |P(1, ∗)| − dB(x1) ≥ 2 holds.

Therefore, if R(B) ≤ 1 the assumption that S is not a
cut of Gm(B) fails. �

Theorem 4 is the best one in the sense that there is a
bipartite graph B with R(B) = 2 for which the theorem does
not hold. For example, the graph shown in Fig. 5 can be
covered by {K1,K2,K3,K4}, but this set is not a cut of Gm(B)
(Fig. 6).

Corollary 2: Let B be a bipartite graph with R(B) ≤ 1.
Then any minimum cut of Gm(B) is a minimum biclique
cover of B.

Proof : Let C be a minimum cut of Gm(B). From Lemma
4, C is a biclique cover of B. Let SCOVER(B) be a minimum
biclique cover of B. Then |SCOVER(B)| ≤ |C|. From Theorem
4, SCOVER(B) is a cut of Gm(B). This implies |SCOVER(B)| ≥
|C|. Therefore, |SCOVER(B)| = |C|, and thus C is a minimum
biclique cover of B. �

In the rest of this paper, we investigate the size of
Gm(B). Gm(B) could be very large if B is not domino-free.
Consider the bipartite graph B = Kn,n − Mn, where Kn,n is
the complete bipartite graph with 2n vertices and Mn is its
perfect matching. Then B has 2n − 2 maximal bicliques, and
thus Gm(B) has 2n vertices. If R(B) = 0, that is, B is domino-
free, then the number of edges in G(B) is O(n + m) [10] and
also it is O(n + m) in Gm(B).
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We will show that for a bipartite graph B with R(B) = 1
the number of edges in Gm(B) is bounded by 2n+m. Assume
R(B) = 1, we have

nx∑

i=1

|P(i, ∗)| ≤
nx∑

i=1

(R(B) + dB(xi)) = nx + m,

ny∑

j=1

|P(∗, j)| ≤
ny∑

j=1

(R(B) + dB(y j)) = ny + m.

Thus, the total number of paths from vertices of Xs(B) to
vertices of Ys(B) is at most n+m. Then next theorem holds.

Theorem 5: Let B be a bipartite graph with R(B) = 1.
Then the number of edges in Gm(B) is at most 2n + m.

Proof : We replace all vertices in Gm(B) that are not star
graphs with bicliques as follows. Let K ∈ KM(B) be a
vertex in Gm(B). Let XK = {x1, . . . , xs}, YK = {y1, . . . , yt}
in B. Delete K and its incident edges from Gm(B), and
add edges X(K) × Y(K) where X(K) = {X1, . . . , Xs} and
Y(K) = {Y1, . . . ,Yt}. Note that we allow multiedges when
we add edges. In this operation, the number of edges does
not decrease in Gm(B). The number of paths from � to ⊥
does not change and is bounded by 2n + m. Thus, after re-
placing all vertices of KM(B), the total number of the edges
in Gm(B) is equal to the total number of the paths. Note that
if we replace each multiedge with a single edge and delete
� and ⊥ and their incident edges, we obtain B. Therefore,
the lemma holds. �

Gély et al. [12] gave an algorithm that outputs all max-
imal bicliques of an input graph G = (U,V, E) in lexico-
graphical order on U with O((|U | + |V |)2) delay. As the size
of Gm(B) is O(n+m), Gm(B) can be constructed in O(n3+m3)
time. By using network flow techniques [13], the minimum
cut of Gm(B) can be computed in O(|E| √|V |) for a graph
G = (V, E). Thus the minimum cut of Gm(B) can be solved
in polynomial time.

5. Conclusion

In this paper, we define the modified Galois lattice Gm(B)
for a bipartite graph B. We introduce the redundant param-
eter R(B), and show that R(B) = 0 if and only if B is a
domino-free. Furthermore, we show that the minimum bi-
clique cover problem can be solved in polynomial time for
the class of bipartite graphs B with R(B) = 1. This graph
class properly includes the domino-free bipartite graphs.
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