IEICE TRANS. INFE. & SYST., VOL.E98-D, NO.6 JUNE 2015

1137

[PAPER Special Section on Formal Approach

A Framework for Verifying the Conformance of Design to Its

Formal Specifications*

Dieu-Huong VU™, Yuki CHIBA ™, Kenro YATAKE'®, Nonmembers, and Toshiaki AOKI'Y, Member

SUMMARY Verification of a design with respect to its requirement
specification is important to prevent errors before constructing an actual
implementation. The existing works focus on verifications where the spec-
ifications are described using temporal logics or using the same languages
as that used to describe the designs. Our work considers cases where the
specifications and the designs are described using different languages. To
verify such cases, we propose a framework to check if a design conforms to
its specification based on their simulation relation. Specifically, we define
the semantics of the specifications and the designs commonly as labelled
transition systems (LTSs). We appreciate LTSs since they could interpret
information about the system and actions that the system may perform as
well as the effect of these actions. Then, we check whether a design con-
forms to its specification based on the simulation relation of their LTS. In
this paper, we present our framework for the verification of reactive sys-
tems, and we present the case where the specifications and the designs are
described in Event-B and Promela/Spin, respectively. We also present two
case studies with the results of several experiments to illustrate the applica-
bility of our framework on practical systems.

key words: formal specification, design model, formal verification, model
checking, simulation relation

1. Introduction

A software development process begins with informal re-
quirements which the target software is expected to meet.
The informal requirements are described either in natural
languages or UML [21]; and, they are translated into formal
specifications to ensure their consistency. Then, system de-
signs are developed as models for implementation. Finally,
the implementation is done according to the designs using
programming languages. In this development process, we
should verify the fact that the designs satisfy the require-
ments described by formal specifications since incorrect de-
signs likely lead to significant costs caused by back track of
the developments.

We focus on the development of reactive systems. The
reactive systems are systems which must continually re-
spond to the stimuli from their environment. Environments
are the external systems which invoke the services of the tar-

Manuscript received August 19, 2014.
Manuscript revised December 19, 2014.
Manuscript publicized February 13, 2015.

"The authors are with the School of Information Science, Japan
Advanced Institute of Science and Technology (JAIST), Nomi-shi,
923-1292 Japan.

“This paper is an extension of [24]

a) E-mail: huongvd @jaist.ac.jp
b) E-mail: chiba@jaist.ac.jp
¢) E-mail: k-yatake @jaist.ac.jp
d) E-mail: toshiaki@jaist.ac.jp
DOI: 10.1587/transinf.2014FOP0004

get systems, e.g. software applications running on the oper-
ating systems. The specification of such a system represents
its externally visible behaviors. That is, the specification
represents what the system does in response to the invoca-
tions of its environments. Formal specification languages
such as VDM [16], Z[18] and Event-B [1] allow us to for-
mally describe the specification. On the other hand, the de-
sign represents the collaboration of internal components to
realize observable behaviors described in the specification.
It usually contains complex data structures such as record
types, flags, and hash tables. We consider that imperative
specification languages like Promela/Spin [9] are appropri-
ate to describe the design since the data structures and be-
havior based on them can be straightforwardly described.
The problem is how to verify designs with respect to their
specifications when they are described by different specifi-
cation languages.

Existing works focus on cases (i) where the user re-
quirements are translated into temporal logic formulas [22]
and the design is described in imperative specification lan-
guages like Promela[7] and (ii) where the specification
and the design are described in the same specification lan-
guage[1],[6]. We can see drawbacks when straightfor-
wardly applying the existing approaches to verify the re-
active systems. It is well-known that correctly describing
properties in temporal logic is difficult [8] and the consis-
tency of properties is not guaranteed. Whereas the formal
specification languages with rich notions (e.g. sets and re-
lations) facilitate describing the properties to be checked
against the design. In addition, the tool of such formal spec-
ification language provides a function to verify the consis-
tency and correctness of the properties. By following the
second approach, we can describe the specification in an ap-
propriate specification language; then, we derive the behav-
iors of the design from the higher-level specification by ap-
plying refinement functionality in Event-B [1]. We tried ap-
plying this approach to verify operating systems (OS). The
behaviors appearing in the OS design are described based on
complex data structures, e.g., a record type for TASK includ-
ing elements such as priority, state, type, etc., and an
array for queue. In Event-B, each element of the record type
must be defined as a relation, e.g. priority € TASK — N,
and state € TASK — STATE. Also, queue is defined
as a set, i.e. queue C TASK and the order of items in
queue must be defined using relations, e.g., queueltem €
1..queuesize — queue. For each relation in Event-B, a lot
of proof obligations are generated. Moreover, the OS design

Copyright © 2015 The Institute of Electronics, Information and Communication Engineers

1138

contains not only TASK and queue but also many other com-
plex data structures. In Promela, such data structures could
be easily described. In addition, the OS design may contain
sequential actions, which are straightforwardly described in
Promela but not in Event-B because actions in Event-B are
performed in parallel. In this case, one usually has to intro-
duce more elaborate control structures to derive efficient se-
quential behaviors from event-based specifications in Event-
B[1],[5]. Consequently, deriving the highly optimized be-
haviors of the design from the highly abstracted specifica-
tion in Event-B results a lot of proof obligations. This re-
quires much interactive proof to show the consistency be-
tween high-level and low-level descriptions. Therefore, this
approach is not appropriate to verify the systems with com-
plex data structures and highly optimized behaviors like the
operating systems. Our idea is to use appropriate specifica-
tion languages to describe the specification and the design,
e.g. Event-B for the specification and Promela for the de-
sign. We propose a method to verify designs against their
formal specifications where the specifications and the de-
signs are described in different specification languages. We
adopt Event-B for the specification and Promela/Spin for the
design and commonly use LTS to interpret them. Our ap-
proach to check the design against the specification is based
on simulation relation [13], [15] between their LTSs. Firstly,
we formally describe the specification in Event-B to remove
ambiguity and inconsistency in the specification [23]. Then,
we generate execution sequences from this formal specifi-
cation. Execution sequences are represented as an LTS, and
from each state, verification conditions which must be met
by the corresponding state of the design are generated. Fi-
nally, we apply model checking [3] to the design in combi-
nation with the execution sequences to check the verification
conditions. In this way, we can check the correspondence of
state transitions, or simulation relation, between the execu-
tion sequences and the design. This ensures that the design
conforms to the specification. There is a possibility that this
approach is applicable not only for Event-B and Promela but
also the other specification languages as long as we could
interpret them as LTSs.

This paper presents our framework and its applications
to verify practical systems. This is an extension of our work
originally reported in [24]. In particular, we add more de-
tails to present the specification versus the design in the
early parts of Sect.2. The algorithm to generate the LTS
from the specification is added in Sect. 3. A description of
our own generator is also added in the last part of Sect. 3. In
addition, a case study on vending machines is used in this
paper as a simple example of reactive systems for readabil-
ity.

The paper is organized as follows: In Sect.2, we
present definitions of specifications and designs of reactive
systems. In Sect.3, we present the definition of our verifi-
cation framework. In Sects. 4 and 5, we present two case
studies with the results of several experiments and discuss
the practicality of our framework. In the last sections, we
present related works and conclusions.

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.6 JUNE 2015

2. Specification and Design of Reactive System

Specifications generally describe the desirable properties
and the external behaviors of the systems based on the math-
ematical data structures using notions of set, relation, and
function. Designs must be close to the implementation. The
mathematical data structures must be replaced by the data
structures implementable on a computer and underspeci-
fied design decisions must be introduced. Generally, de-
signs of reactive systems describe implementation of func-
tions which realize the observable behaviors appearing in
the specifications. We can see that there exists a gap be-
tween the specification and the design: the specification de-
fines results of functions based on abstract data structures;
however, the design defines details of how to make the re-
sults based on implementable data structures. For such a
gap, we intendedly use different languages to facilitate de-
scribing the specification and the design. In this framework,
we adopt Event-B for the specification and Promela for the
design. This section presents the specifications and the de-
signs of reactive systems described in Event-B and Promela,
respectively, as well as their formal semantics. To verify the
design of reactive systems, environment models are impor-
tant; they describe possible entities and behaviors in com-
munication with the target system. In this section, we also
present the environment of reactive systems. We use a sim-
ple example, a vending machine, to demonstrate the speci-
fications, the designs, and the environments of reactive sys-
tems.

2.1 Specifications in Event-B

A vending machine is a machine which dispenses items
such as snacks, beverages, cigarettes, lottery tickets, etc.
to customers automatically, after the customer inserts cur-
rency or credit into the machine. The specification of vend-
ing machines describes their external behaviors including
(SF1) switching the machine on, (SF2) switching the ma-
chine off, (SF3) inserting credit into the machine, (SF4) re-
turning credit, (SF5) restocking an item, and (SF6) dispens-
ing an item. Each of them is a so-called service function.
The essential properties of the vending machine refer to pre-
conditions and post-conditions of the service functions. We
demonstrate some of them as follows:

e Pushing a button shall vend a soda of the type cor-
responding to that button

e The machine shall retain exactly item cost for each
item vended

e The machine shall return all deposited money in ex-
cess of item cost

e The machine shall flash the light for a selected item
while vending is in progress to indicate acceptance
of a selection to the buyer

The properties above could be defined in the LTL for-
mulas and checked by Promela/Spin; however, the LTL

VU et al.: A FRAMEWORK FOR VERIFYING THE CONFORMANCE OF DESIGN TO ITS FORMAL SPECIFICATIONS

VARIABLES INVARIANTS INITIALISATION
avail availc PRODUCT avail:= {}
cred credeN cred:=0
state statee{0,1} state:=0
card cardeN card:=0

switchon= switchoff= insert= any cr

when state=0 when state=1 where state=1
then state:=1|| then state:=0|| then cred:=cred+cr

restock= any item dispense= any item
when itemePRODUCT when itemeavail
state=0 state= . .
card<MAX X then avail:=avail\{item}
then avail:=availu{item} cred:=cred-PRICE
card:=card+1 card:=card-1

Fig.1 Specification.

formulas have a tendency to be complicated. For exam-
ple, applying the patterns of [8] to define the last prop-
erty, the LTL formula may be defined in the following form:
<> dispense — (!dispense U (insert && !dispense

&& (\dispense U select)). This form of the LTL formula
is complicated and prone to mistakes. Our idea is to de-
scribe the specification of the vending machine in Event-B
and generate verification conditions from the Event-B spec-
ification, which represents desirable behaviors at a highly
abstracted level.

Formal specification described in Event-B is regarded
as a highly abstracted level description of the systems. This
description mainly consists of state variables, operations
(events) on the variables, and state invariants. The vari-
ables are typed using set theoretic constructs such as sets,
relations, and functions. The events are defined with their
guard conditions and substitutions (so-called before and af-
ter predicates), which allow both deterministic and non-
deterministic state transitions.

Event-B is appropriate to describe the specification of
the vending machine. Service functions are specified in
terms of events with high-level operational definition of
state changes by guarded substitutions. An event is made
of two elements: (1) a guard that states the necessary condi-
tions for the event to occur, and (2) a substitution that defines
the state transition associated with the event. The seman-
tics of the events define the overall results of the executions;
therefore, represent pre-conditions and post-conditions of
the service functions. Figure 1 demonstrates a specification
of the vending machine in Event-B. Variable avail defines
a set of items that are currently available to be dispensed. It
has an abstract data type namely PRODUCT. Variable cred
defines the total of money deposited so far and available to
make a purchase. Variable state defines the state of the
vending machine. Variable card defines the size of avail.
External behaviors are specified in terms of events in Event-
B namely switchon, switchoff, insert, restock, and
dispense. Set operations (e.g. union, set minus) are used to
describe what the system behaves when an item is restocked
or dispensed. A mechanism to add an item into set avail
and remove the corresponding item from the set has not been
described. Also, the specification describes what happens
when the customers insert cash or credit; however, how to
recognize them and compute the total deposited money is
postponed to describing the design.

1139

. | Coin_out
Coin_in | | (actuator)

(sensor) _Button_Light
Controller (actuator)

Ll Vend

Button_item | | (actuator)
(sensor) |, VendMotor
(actuator)

Fig.2 Architecture design.

The specification could be also described in VDM or Z
because they also provide rich notions like set, relation, and
function. In this paper, we adopt Event-B because Event-B
models are event-driven models, which are close to reactive
systems.

2.2 Designs in Promela

Figure 2 shows an architecture design of the vending ma-
chine. The system consists of two sensors Coin_in sensor
and Button_item sensor, a controller, and four actuators in-
cluding Coin_out, Button_Light, Vend and VendMotor. The
internal behaviors of the vending machine are as follows.
When a coin is inserted, the Coin_in sensor detects the coin
to be inserted and then sends an appropriate electrical signal
to the Controller. The Controller computes the total of de-
posited money based on the inserted coin evaluation. When
an item is selected, the Button_item sensor detects the item
to be selected and then sends a corresponding signal to the
Controller. The Controller commands the Button_Light to
flash. The Controller compares the item cost with the total
of the deposited money. If the item cost is less than the total,
the Controller commands the VendMotor and Vend to re-
move the corresponding item from the set of available items
and dispense it. The Controller commands the Button_Light
to stop flashing and commands the Coin_out to return the
correct change.

Designs of the vending machine can be straightfor-
wardly described in Promela. The abstract data structures
are replaced by the implementable data structures, e.g. array,
record type. The behaviors are described using statements of
Promela, e.g. expressions, assignment statements. The exe-
cution of the statement may change the value of variables.
Additional variables and constants may be introduced to ex-
plicitly describe statements that must be performed to detect
cash and credit for computing the total deposited money.
Figure 3 demonstrates a detailed design of the vending ma-
chine. In the example, variables having abstract types, e.g.
avail C PRODUCT, are replaced by variables having con-
crete types, e.g. ITEM avail[1000]. New constants are
introduced, e.g. CENT is used in the case that a one cent coin
is inserted. Design decisions for how to add a new item into
the order set and to remove one from the corresponding po-
sition are explicitly described based on the implementable
data structures and the control structures, e.g. loop and se-
lection structures.

We can see a gap between the specifications and the designs.
The observable behaviors appearing in the specifications are

1140

#tdefine CENT 1;

#tdefine

typedef ITEM {gyte id, pr,

#define x 10; 7* number of vend slots */
#define MAZO, /* number of availabe items in each slot */

..}; ITEM avail[1e00];

inline insert(coin){

~
*

s= detect(coin);

detecting coins to be inserted */

/= computlng the total money deposited so far */

if :: s== ¢ -> credit=credit+CENT;
i1 s==n -> credit= cred1t+NICKEL,
- 1 s==q -> credit=credit+QUARTER;
1;
¥

inline dispense(b)
s= detect(b);

remove(s);

credit=crédit- avail[s].pr;

/* detectin button to be pressed */

7 dlspendlng the corresponding item */

1n11ne remove(s
i=s*y + 1; /*
j= i; /* remove the 1st

avall [3]
)3

7 r‘epeatln until j reaches
ava1 8] =avail[j+1]; J++; }

t é 1st item in slot s */
item in slot s */

)*x)

Fig.3

Design in promela.

(typedef ITEM{byte id, pr,...}
ITEM ava11[1000],

inline switchon(){

(typedef Iteminfor { }
Iteminfor T10,M18,C5,M25,B6;

#define CENT 1 switchon();
#define DIME 10 restock(T10);
inline insert(coin) { } restock(M18);
inline dispense(b) { } restock(C5);
inline add(s) { } restock(M25);
inline remove(s) { insert(CENT);
inline return() { } insert(DIME);

insert(QUARTER);
dispense(M18);

}
inline restock(b) { }
}
H

inline switchoff(){ return();

Fig.4 Design and environment in promela.

realized by the optimized behaviors appearing in the de-
signs. The specifications can be described in a declarative
manner whereas the design can be described in an impera-
tive manner. Our objective is to verify the conformance be-
tween such specifications and designs by using a simulation
relation between them.

2.3 Communication of System and Environment

Figure 4 illustrates the overall structure of the design (left)
and the environment (right) of the reactive systems. The de-
sign defines data structures and a collection of inline func-
tions; it cannot operate by itself. To operate it, we need an
environment which calls the functions of the target system.
Essentially, the reactive systems need to be verified in the
combination with their environments. The environment de-
fines entities such as items, coins and a sequence of function
calls to the target system. By combining the design and the
environment, we can make a closed system which can oper-
ate by itself. We call this a combination model. In terms of
Promela, a combination model can be obtained by including
the Promela code of the design into that of the environment.
As explained later, the environment is constructed from the
specification, and input to Spin to check the simulation rela-
tion.

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.6 JUNE 2015

2.4 Formal Semantics

We first present a model of specifications based on Event-
B. V is the set of variables. D is the domain, which is the
set of values. Exp is the set of expressions in the specifica-
tions. An expression may contain variables in V, values in
D, arithmetic operators, logical operators, and set operators.
BExp is the set of boolean expressions (BExp c Exp). A
substitution a : V — Exp is a mapping from V to Exp. We
note that value assignments are also substitutions because
D < Exp. ACT is the set of substitutions for specifications.
A guard is a boolean expression. GRD is the set of guards.
An event is a pair (g, a) of a guard g and a substitution a. E1is
the set of events. If e = (g, a) then we write grd(e) = g and
act(e) = a. A state is a value assignment. [exp], denotes
the interpretation of the value of an expression exp in a state
o. We say a guard g holds in a state o iff [g], = #. Initis
the set of special initialization events that have no guard.

We denote - —s ¢’ for an event e = (g, a) and states o and
o’ if o(g) holds and 0’ = {v — [a(V)], | v € V}.

Definition 1: (Specification models). A specification
model is a tuple S = (Vs, Dy, Zs, Initg, Inv) where Vg C
V is the set of variables used in S, Dg C D is the domain,
Xs C & is the set of events, Initg € Init is the initializa-
tion of S, and Inv € BExp is the invariant of S. An LTS
derived from the specification model S is defined as Mg =
(Qs,X5,05,1s) where Qg = {o | 0 : Vg — Dy} is a non-
empty set of states, ds = {o SN | o0’ € Qg, e € Xg}is
a transition relation, and Is = {act(e) | e € Initg} is a set of
initial states.

In Event-B, a substitution can be deterministic or non-
deterministic. We regard a non-deterministic substitution as
multiple deterministic substitutions. Therefore, we assume
that the LTS is deterministic.

We now define model of designs in Promela. # is the
set of parameters (function arguments). In the design, an ex-
pression may contain constants, variables, parameters and
arithmetic operators, therefore, a so-called parameterized
expression. The set of parameterized expressions is denoted
as PExp. A function body is defined as a substitution. The
substitution may contain the parameterized expressions. We
use p-substitution to denote the substitution in the design.
p-substitution is a mapping from V to PExp. The set of p-
substitutions is denoted as PSubst. Id is the set of identifiers
(used as function names). For the simplicity, we assume that
functions have only one parameter. The design also includes
an initialization function which assigns the initial values for
the variables. Design models are defined as follows.

Definition 2: (Design model). A design model is a tuple
D ={(Vp,Dp,Pp,F, Zp,Ip) where Vp C V is the set of
variables used in D, Dp C D is the domain of D, Pp C P
is a finite set of parameters for D, F is a set of function
signatures defined as F = {id(p) | id € 1d,p € Pp}, Zp
is a relation such that £p C F X PSubst, and Ip is a set

VU et al.: A FRAMEWORK FOR VERIFYING THE CONFORMANCE OF DESIGN TO ITS FORMAL SPECIFICATIONS

of value assignments of the initialization function such that
IDQ{O' | O'Z(VD—>ﬂD}.

We assume that the functions in the design are deter-
ministic to have a unique successor state for each current
state and each called function. This assumption is realistic
for the implementation of the reactive systems like the au-
tomotive operating systems. On the other hand, it is gener-
ally non-deterministic to select a function applicable in each
state. This is described in environment models. Environ-
ment models are defined as follows.

Definition 3: (Environment model). An environment
model for a design model D is a tuple E = (Vg, Dg, Zg, Ig)
where Vi C YV is a set of variables used in E, Dr = Dp is
the domain, Xg is a set of invocations to D such that g C
{id(v) | id € Id,v € V}, and I is a set of value assignments
from Vg to Dp.

A combination of a design and an environment de-
scribes the execution of the design according to the environ-
ment. An expression in the combination contains constants
from D, variables in V, and arithmetic operators. The set of
expressions in combinations is denoted as Exp’. A substi-
tution for combinations is a mapping from V to Exp’. The
set of substitutions for combinations is denoted as SubstDE.
For a mapping 7 from # to V and a parameterized expres-
sion pexp € PExp, pexp, is the result of replacing each pa-
rameter p appearing in pexp by n(p). In other words, if a(v)
is an expression in D then a(v), is an expression in the com-
bination obtained by replacing each parameter p appearing
in a(v) by n(p). Combination models are defined as LTSs as
follows.

Definition 4: (Combination model). Let D = (Vp, Dp,
Pp, F,Zp, Ip) be a design model and E = (Vg, Dg, X, Ig)
an environment model.

1. We denote o ﬂl o’ for an invocation id(v) € Xg
and states o and o if there exist (id(p),a) € Zp and
a mapping 7 : Pp — Vg such that n(p) = v and
o' ={ve [aWils | veVpUVg]L

2. The combination model of D and E (denoted as D-E)
is an LTS <QD~E’ ZD-E, 6D-E7 IDE> where QD»E = {0'| [

VpUVE — Dplis aset of states, Zp.p = X, Op.g =
id(v)
{c — 0’| 0,0 € Qp.E,id(v) € Xg} is a transition

relation, and Ip.p = Ip U I is a set of initial states of D
and E.

3. Verification Framework

This section presents a framework to verify designs in
Promela against specifications in Event-B. Our approach
is based on a simulation relation between the specification
and the design. As demonstrated in Fig. 1, the specification
defines state variables, invariants and events which trigger
state transitions. Formally, the execution of the specifica-
tion is represented as an LTS. Also, Fig.3 describes vari-
ables and functions appearing in the design in Promela. The

1141

[cred=c1] [cred=c1] [cred=c1+c2]

e

R(cred)=credit,

R(cred)=credit,
C(c1)=25

Clc1)=25

| R(cred)=credit,
C(c1)=25, C(c2)=10

[credit=25] [credit=25]) [credit=35]

Fig.5 Simulation relation.

variables represent information about the system (states) at
certain moments. The execution of statements changes the
values of variables. Therefore, the design can be interpreted
as an LTS if we consider that the variables are states and
each function call is a label to make transitions on the states.

3.1 Preliminary

We now present the simulation relation between two LTSs.
Supposing that M1 and M2 be two LTSs. We define M2
simulating M1 based on semantics of LTSs by extending
the given relation on the states. The states are value assign-
ments which are mappings from the variables to the values.
Therefore, the relation on states of M1 and those of M2 are
established based on mappings R and C where R is the map-
ping from variables of M1 to those in M2, C is the mapping
from values in M1 to those in M2. Figure 5 (left) shows a re-
lation between state p of M1 and state g of M2. p relates to g
based on R and C because cred = cl in state p corresponds
to credit = 25 in state g with mappings R(cred) = credit and
C(cl) = 25. M2 simulates M1 if for each transition in M1
from state p to state p’ and p relates to state g of M2, there
exists state ¢’ and a corresponding transition in M2 from ¢
to ¢’ such that p’ relates to ¢’. In Fig. 5 (right), a line arrow
connecting p to p’ represents a one-step transition from p to
p’, and a dashed arrow connecting g to ¢’ represents an n-
step transition from ¢ to ¢’. To check whether M2 simulates
M1, we check if there exists a reachable state ¢’ from ¢ such
that credit = 35 corresponding to cred = c1 + ¢2 in p’ with
mappings R(cred) = credit, C(cl) = 25, and C(c2) = 10.
This definition of the simulation relation is similar to
the refinement of [13] and the simulation of [15], [20]; how-
ever, in our definition, a one-step transition in M| may cor-
respond to an n-step transition in M,. This is appropriate
for a simulation from a specification to its design because
the behaviors in the design are usually more concrete than
those in the specification. Considering bi-simulation in [15],
a bi-simulation S between M| and M, requires that M, sim-
ulates M, by S and M, simulates M, by the reverse of S. In
this framework, we check one direction of simulation, that is
checking whether the design simulates the specification. We
considered that this is sufficient to detect bugs in the design
when we apply model checking. This is an important objec-
tive of our framework. Considering refinement in Event-B,
the refinement in Event-B focuses on the reverse direction,
that is verifying whether the specification simulates the de-
sign. Verifying whether the specification simulates the de-
sign is sufficient to show there is no extra behavior added
into the design with respect to the specification; on the other
hand, its reverse is sufficient to show every behavior in the

1142

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.6 JUNE 2015

a-> M1 s0: if
. :: restock(T2) -> goto s1;
—I s0:(off,{a,b,c,d},0) | 2:))"[1\‘/[12 c0 =5 :: switchon() -> goto s2;
fi;
restock(e) switchon () d-B1 c2—->10 | si:
y v ti
e—>T2 cl1—=25 | s2:if
| s1:(off,{a,b,c,d,e},0) | | s2:(on,{a,b,c,d},0) | = insert(QUARTER) -> goto s3;
l Translation into Promela code fsié i
insert(c2) insert(c1) > :: insert(DIME) -> goto s4;
s4:(on,{a,b,c,d}, : :: dispense(T1) -> goto s5;
| cl+c2) s3:(on.fa,b,c,djcl) cred— credit 24
] R: s
dispense(a) l dispensefc) state state 55:.: 1éispense(Ml) -> goto s6;
| s6:(on,{b,d},c1- ¢ s5:(on,{a,b,d},c1- | avail— avail fi;
PRICE-PRICE) PRICE) s6:
(@) (b)
Fig.7 Generation of environment from LTS.
Bounds _ Mappings ual event to evaluate the guard of that event. If the guard
Specification Execution Environments, . .
in Event-B sequences Assertions holds in the given state, the explorer computes the effect of
T e
| the event based on substitution of that event. When new
m’%ﬁfﬁé& > states are generated, we repeat this process to these states
o))) - until no new states are generated.
Fig.6 Checking simulation of design and its specification.

specification are actually realized in the design.
3.2 Overview

Figure 6 shows the steps to verify the simulation relation
between a specification and a design using the Spin model
checker. Firstly, we give bounds for the verification and ex-
plore execution sequences from the Event-B specification
within the bounds. From these execution sequences, we
generate environments of the target system and assertions
based on the given mappings between elements of the spec-
ification and those of the design. Finally, we check the sim-
ulation relation in Spin.

Bounds. Model checking does an exhaustive check of the
system. It needs a representation of the system as a finite set
of all possible states. Firstly, abstract types in Event-B must
be replaced by concrete types. Also, types having infinite
ranges of values like Int and Nat must be restricted as small
ranges. Then, by studying the properties of interest, we can
restrict the behaviors will be checked. Such restrictions are
to reduce the size of execution sequences explored from the
Event-B specification and produce a finite LTS associated
to the restricted specification. We define such restrictions as
bounds of the verification.

Exploring Execution Sequences. In order to explore the
execution sequences, or LTS, from the specification and
bounds, the execution sequence explorer computes all pos-
sible transitions and reachable states. Every value used in
the computation must be within the bounds. Starting at
the initialization, the explorer enumerates all possible val-
ues for the constants and variables of the specification that
satisfy the initialization to compute the set of initial states.
To compute all possible transitions from a state, the explorer
finds all possible values for event parameters of an individ-

Generating Environments and Assertions. The environ-
ments trigger specific behaviors of the target system; there-
fore, it is essential to construct such comprehensive environ-
ments that representing all possible behaviors in the specifi-
cation. In the previous step, we explored the execution se-
quences as an LTS of the specification. In this step, we gen-
erate the environment by translating the LTS into Promela
such that the enabled events in LTS are translated to the cor-
responding function calls in Promela.

Figure 7 (a) illustrates an LTS associated to the spec-
ification. Here, the rectangles represent the states and
the labeled arrows represent the events that are enabled
in each states. For example, two events restock(e),
switchon() are enabled in state sO. In our framework,
the states are defined as the value assignments; however,
we show them here as values for readability. For exam-
ple, s2: (on, {a,b,c,d},) describes that the machine
is on; there are 4 items a, b, ¢, and d available for buy-
ing; and the currently deposited money is 0, in state labeled
s2. The LTS is translated into Promela to generate the en-
vironment (Fig.7 (b)). For this generation, we give a map-
ping from the enabled events in the LTS to the function calls
in the environment. In general, it is a one-to-many map-
ping. In the sample case of the figure, it is a one-to-one
mapping. For example, event restock(e) in the LTS is
mapped to function call restock(T2) in the environment.
The states and transitions in the LTS are represented by la-
bels and if-statements in the environment. There may be
more than one function call applicable in each state. For
example, insert (DIME) and dispense(T1) are applica-
ble in state s3; which function call actually applied is non-
deterministic. The environment is combined with the design
to make a combination model.

Verification conditions represent constraints on the
simulation relation between the specification and the design.
They are encoded as assertions in Promela/Spin. For gener-
ation of assertions, we define mappings R and C from the

VU et al.: A FRAMEWORK FOR VERIFYING THE CONFORMANCE OF DESIGN TO ITS FORMAL SPECIFICATIONS

variables, the values in the specification to those in the de-
sign. Figure 7 demonstrates some mappings used in verifi-
cation of vending machines: R(cred) = credit, C(a) = M1,
C(c) =T1, C(cl) = 25, C(c2) = 10, etc. From each state
of the LTS, an assertion, which must be met by the corre-
sponding states of the designs, is generated. In Fig.5, for
example, from state p” where cred = c1 + c2 of the top with
mappings R(cred) = credit, C(cl) = 25 and C(c2) = 10, the
generator outputs an assertion credit = 35 to check state ¢’
of the bottom.

Checking of simulation relation. In the last step, we input
the combination model and the assertions to Spin to check
the simulation relation of the specification and the design.
Even though there exists a gap between the specification and
the design, our framework can verify the correspondence be-
tween state transitions, or simulation relation, of the speci-
fication and the design. Specifically, each state transition in
the specification leads to a function call, which in turn trig-
gers multiple state transitions in the design; after these state
transitions, the design reaches a state where the verification
conditions are asserted. If no counter-example is found, we
say the design conforms to the formal specification within
the input bounds.

3.3 Formalization

We now give formal definitions of the relation between
states, the bound, the simulation relation of two LT'Ss within
the given bound, and steps in the framework.

Definition 5: (Relation between states). Let S
(Vs,Ds,Zg, Initg, Inv) be a specification model, Mg
(Qs,Zs,0s,1s) the LTS derived from S, D = (Vp,Dp,
Pp, F,Xp,Ip) a design model, E = (Vg,Dg,Xg, Ig) an
environment model, and D-E = {Qp.g, Zp.r,Op.E, Ip.g) the
combination model of D and E. We say a state op.g € Op.g
relates to a state os € Qg based on mappings R : Vs — Vp
and C : Dy — Dp (denoted o5 <pc opE), if for any x €
Vs andy € Vp, R(x) =y implies C(os(x)) = op.(y).

We omit R, C from <g ¢ if they are clear from the context.

As we mentioned, the bounds are introduced to obtain a fi-
nite LTS from the Event-B specification. A finite LTS is ob-
tained from an infinite LTS when we restrict the state space
and the set of actions that trigger the state transitions. The
bounds are defined as follows:

Definition 6: (Bounds). Bounds for LTS {Q, X, 6, I) are de-
fined as a pair B = (G, H) of mappings G and H where G :
20 - 29 G(Q) C Q,and Q' C Q" implies G(Q") € G(Q")
and H : QXX — {#t, ff} and for any state p € Q, there exist
finitely many actions a € X such that H(p, a) = tt.

Definition 7: (Bounded LTS). An LTS obtained by re-
stricting an LTS M = (Q, %, 6, I) within bounds B = (G, H)
is defined as Mlg = (0,%,5,1), where O = G(Q), £ =
{a|Vp € Qa € S, H(pa) = 1), = {p — p €
S| H(p,a) = tt},and T = G(I).

1143

To implement the bounds for LTS associated to the
Event-B specification, we restrict the range of the variable
values. When every range of the variable values has been
restricted, the state space and the set of actions of the LTS
become finite. The restriction is represented by a mapping

X from ’yariables to finite sets of values, i.e. X : Vg — 205,
where Dy is the restricted range for the variable values. For
example, Figure 9 illustrates bounds to be used for veri-
fication of vending machines where values of cred is re-
stricted to [1..100]. Formally, this restriction is defined as
X(cred) = [1..100]. ESx(o) is used to denote the set of
events which are applicable to state o and satisfy restric-
tions defined by X.

Suppose S = (Vs, Dgs, Xg, Initg, Inv) be a specifica-
tion model and (Qs,Xs, ds,Is) an LTS derived from S.
With the mapping X, we define mappings G and H as fol-
lows: G(Qs) = {0 € Qs | Yv € Vs.ov) € X(v)},
G(Is) € G(Qs), and H(o, e) = ttiff e € ESx(0).

We now define a simulation relation between two LT'Ss.
In general, a transition step in the specification is followed
by a n-step transition in the design. In the definition, X*

denotes the set of non-empty strings of X, 6* denotes a n-
ajas...a,
—

step transition relation, and p p’ € 6" denotes a n-

step transition from state p to state p’.

Definition 8: (Simulation relation). Let M; = (Qi,%,
(S],I]) and M2 = <Q2, 22,52,12> be LTSS, andf : 2] - 2; a
function from X; to XJ. Suppose a relation <C Q; X Q>
is given. M2 simulates M1 with respect to < if for all
q1,q9; € 01, @2 € O, a € Xy such that q; < ¢ and

Q1 5 q, € 61, there exist g5 € Q> such that ¢| < ¢} and

(a) . .
q> f—u> q, € 65. If M2 simulates M1 with respect to <, we
denote M1 < M2.

Definition 9: (Simulation relation of two LTSs within
bounds). Let M; and M, be two LTSs, and B be bounds.
The simulation relation of M; and M, within bounds B is
defined as M| <p M, if M |z < M,. If M| <p M, holds,
we say M, simulates M; within B.

Exploring Execution Sequences. The algorithm to com-
pute execution sequences from a specification model is pre-
sented in (Algorithm 1). Inputs of the algorithm are a spec-
ification model S = (Vg, Dy, Ly, Initg, Inv), and bound
B = (G, H) which is implemented by X. Output is a finite
LTS. The algorithm uses two data structures: QUEUE stor-
ing reachable states, and VIS IT ED storing visited states. It
uses two routines to access QUEUE: Push(QUEUE (o))
adds state o as an element into QUEUE, Pop(QUEUE)
returns the head of QUEUE. In each step of while loop,
one state is removed from QUEUE, and reachable states
from the state are computed. The algorithm terminates when
QUEUE becomes an empty set.

Generating Environments. The environment is gener-
ated from the LTS of the specification model. Let § =
(Vs,Ds, Zg, Initg, Inv) be a specification model and Mg =

1144

Algorithm 1 Generating S|z = <.’S’\,’2\,3\,/I\) from § =
(Vs,Ds, Xs, Initg, Inv) and X
1: QUEUE = empty

2: VISITED = empty
3:85=%=6=1= empty

4: for each o € {act(e) | e € Initg} do
5. if Vv e Vg,o0(v) € X(v) then

6: Push(QUEUE, {07))

7: § =S Ufoo}

8: 1 =1U{oo}

9: endif

10: end for

11: while QUEUE # empty do

12: (o) =Pop(QUEUE)

13: VISITED = VISITED U {c}
14: E={e|eecESx(0))

15: if E # empty then

16: for each event e = (g,a) € E do

17: o’ ={v i [(act(e))(V)] v € Vs}
18: if o’ ¢ VISITED then

19: Push(QUEUE ("))

20: S=Sufo)

21: end if

22: T=ZUle)

23: 5=0U{r S0

24: end for

25: end if

26: end while
27: return S |

(Qs,Xs,0s,1s) be the LTS derived from S. Based on the
given mapping f : L5 — X} . from the events in the LTS to
the function calls in the environment, mapping R’ : Vg —
Vg and mapping C : Dg — Dp, the environment model
E ={(Vg,Dg,2g, Ig) with Dp = Dp is generated such that
Te=(f(e) | e€Xg)and Iz = (f(e) | €€ Is).

Generating Assertions. The relation on states between the
LTS of the specification model and the combination model is
given based on the mappings R : Vs — Vpand C : Dy —
Dp. Verification conditions are generated as follows:

e For initialization of the combination, the assertion is:
A (0 () = C(@2 (1)),

xeVs,yeVp,y=R(x)
e For all (reachable) states os, 0 € Qs and op.g, 07, €

e fle)
Op.r such that oy —> O’fg € 55@, OpE —

" .
Opp € O0hp and os =gc opk, the assertion is

A (0.5 = Clog ().
x€Vs,yeVp,y=R(x)

After this step, the assertions are input to the model checker.
During the execution of the combination, the model checker
will verify the reachable states of the combination against
conditions in the assertions. At the end of the verification,
one can conclude that, within the bounds, for each reach-
able state og of the specification, there exists a reachable
state op.g of the combination such that oy <gc op.g. As a
result, the verification of simulation between the design and
the specification has completed within the bounds.

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.6 JUNE 2015

spec.mch Emulator | variables, | emulator.hpp
(Event-B code) Generator [“events, ... (C++ code)

Explorer
(Algorithm1)

env.pml
(Promela code)

assert.pml
(Promela code)

Execution

Sequences
€<?LTS]

Fig.8 Architecture of generator.

PRODUCT {al,b2,c1,d3,el,k4,d2,x5,u7,e3,p9,s1}
nitem 200
cred [1..100]

Fig.9 Bounds used in verification of vending machines (“bounds.txt”).

3.4 Generator

We implemented a generator that produces the environments
and the assertions from the specification. The architecture of
our tool is shown in Fig. 8. The core of our tool consists of
three modules: Emulator Generator, Explorer and Transla-
tor. They are all implemented in the C++ programming lan-
guage. The initial input is the specification in Event-B. The
emulator generator performs the lexical and syntactic anal-
ysis to emulate the behaviors of the specification in C++.
The explorer implements (Algorithm 1); it invokes func-
tions which emulate events in Event-B and use the given
bounds to outputs the execution sequences of the specifica-
tion within the bounds. The execution sequences are repre-
sented as an LTS of the specification. The enabled events
appearing in the LTS are sources to generate sequences of
invocations in the environments. The states appearing in
the LTS are used to generate the assertions. The translator
uses mappings between elements of the Event-B specifica-
tion and those of the Promela design to output the environ-
ments and the assertions in Promela code.

Inputs are provided by users. Inputs produced by the users
include:

e The Event-B specification file with “.mch” extension,
as shown in Fig. 1

e The bounds described in the file with “.txt”. The
bounds of vending machines are demonstrated in
Fig.9.

e The mappings (from elements in the Event-B specifi-
cation to those in the Promela design) described in the
file with “.txt”. Each correspondence from the source
to the target is presented in a distinct row; the source is
separated from the target by a tab character, as shown
in Fig. 10.

Generating Description of Specification in C++. The em-
ulator generator analyzes syntactic structures of the Event-
B specification. They are variables, types, events, guards,
substitutions, expressions, set operators, arithmetic opera-
tor, etc. These structures are translated into C++ by follow-
ing the correspondences presented in Table 1.

VU et al.: A FRAMEWORK FOR VERIFYING THE CONFORMANCE OF DESIGN TO ITS FORMAL SPECIFICATIONS

Variables Variables
state state
R: card card
cred credit
L avail avail;

Values Values
a M1

b M2

C T1

d Bl

C: e T2

c3 NICKEL
c2 DIME
cl QUARTER
off @

on 1

— Enabeld events Invocations
restock(a) restock(M1)
restock(b) restock(M2)

f’ restock(c) restock(T1)

’ restock(d) restock(B1)
restock(e) restock(T2)
insert(cl) insert(QUARTER)
insert(c2) insert(DIME)
dispense(c) dispense(T1)

- dispense(a) dispense(M1)

Fig.10 Mappings used in verification of vending machines (“mapp.txt”).
Table1 From Event-B to C++.
Event-B C++
Variable Variable
Enumerated types Enumerated types
Initialization Function namely init ()
Events Functions
Event parameters Arguments of function
Guards Conditional structures
Substitutions Assignment statements
Arithmetic operators Arithmetic operators
Set operators (e.g., U,\) | Library functions
(e.g., add, remove)

int switch_on(){
if(state ==0){

state=1;

return 1;

int switch_off(){
if(state ==1){
state=0;
return 1;

int state;

int card;

int credit;

int nitem;

int avail[1e00];

else return 0; else return 0;

} }
int restock(int i) int add(a,i){
{ .) a[i]=1;
if(state==0 && card<nitem){ return 1;
card=card+1; }
add(avail,i); . .
return 1; int remove(a,i){
a[i]=e;
else return 0; return 1;

¥

Fig.11 Behaviors of specification of vending machine are emulated in
C++ (“emulator.hpp”).

The emulator generator outputs C++ codes in the tar-
geted file with “.hpp” extension, which simulates the behav-
iors of the specification in the form of functions (Fig. 11). It
is in turn included in the source code of the Explorer. The
Explorer invokes the functions of the specification to exe-
cute the specification and generate the LTS associated to the

1145

specification.
4. Case Studies

The purpose of the case studies is to evaluate the generality
and the applicability of our framework to verify practical
systems. The target systems used in case studies range from
simple systems, e.g. vending machines, controlling cars on a
bridge, to large or complex systems, e.g. operating systems
used in automotive systems. We applied the framework to
verify whether the designs of the target systems conform to
their specifications. In this paper, we present the experiment
results of two case studies.

Vending machine. We have illustrated the specifi-
cation and the design of the vending machine partially in
Figs. 1 and 3. In the framework, bounds are set for the veri-
fication by introducing finite ranges of variable values in the
Event-B specification. In practical applications of the vend-
ing machines, the maximum number of available items is
given for each machine. In the specification, variable card
defines the number of available items; range of values for
card must be restricted to a finite set such that the highest
value of the range must be less than or equal the maximum
number to be given. Bounds are introduced to define such
restriction. The mappings between elements of the specifi-
cation and the design are illustrated in Fig. 7. For example,
a is mapped to M1 and cred is mapped to credit.

Operating system. We applied the framework to
verify the design of an operating system compliant with
OSEK/VDX standard [19] (OSEK OS, for short). OSEK
OS is the operating system which is widely used in the auto-
motive systems. External behaviors of OSEK OS are classi-
fied into groups of service functions. They are task manage-
ment, interrupt handling, resource management, and event
control. Tasks are the basic building blocks of an applica-
tion program running on the operating system. The spec-
ification of OSEK OS in Event-B [23] describes variables
tasks, res, evt, and inr which define entities managed
by OSEK OS such as tasks, resources, events, and inter-
rupt routines; variable pri defines the priority assigned to
tasks, resources, and interrupt routines. The specification
also describes 12 service functions observable from the out-
side, e.g. ActivateTask activates a task. The whole spec-
ification is described in 400 code lines in Event-B. The
design of OSEK OS is described in about 2800 lines of
Promela code, according to the approach in [2]. It first de-
fines data structures such as task, res, and ready which
represent an array of tasks, an array of resources, and ready
queues, respectively. Following these data structures, a set
of functions is defined. For example, _ActivateTask and
_TerminateTask are the functions to perform activation
and termination of tasks, respectively. Bounds are set for
the verification by introducing finite ranges of values for the
variables appearing in the specification. In the experiments,
by using various bounds, we can separate the cases that deal
with distinct groups of service functions from which check

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.6 JUNE 2015

1146
Table 2 Experiment outputs.

Target System Bounds: size of ranges LTS Generation Model Checking
Vending Machine card #State | #Trans | Time (s) | Memory (Mb) | Time (s) Result
No.1 50 151 252 1.2 129.2 1.0 N
No.2 200 604 1004 50.2 130.4 5.0 v
Operating System | tasks | pri | res | evt | inr | #State | #Trans | Time (s) | Memory (Mb) | Time (s) Result
No.3 5 3 0 0 0 32 320 1.2 130.6 49 Y
No.4 8 3 0 0 0 256 5632 2.1 382.8 99.2 N
No.5 9 3 0 0 0 512 13824 3.0 430.8 362.1 YV
No.6 10 3 0 0 0 1024 92160 22 not completed
No.7 2 1 1 0 0 8 22 1.1 130.1 7.6 N
No.8 2 1 0 1 0 10 27 1.1 129.2 4.7 YV
No.9 3 6 1 0 2 80 520 1.2 129.2 8.3 v
No.10 3 6 1 1 2 152 1036 2.0 132.3 14.1 YV
No.11 5 7 0 0 2 128 1536 2.0 133.1 17.5 N
No.12 8 6 1 1 2 1052 93600 26 not completed

the relation between different groups. This helps us to avoid
the state explosion and keep important behaviors of the tar-
get system we want to verify in the cases.

All experiments are conducted on an Intel (R) Core
(TM) 17 Processor at 2.67GHz running Linux. Verification
results outputted by Spin are shown in Table 2. Here, values
in column “Size of Ranges” express bounds of the verifica-
tion. Column “LTS Generation” shows statistics of the exe-
cution sequence generator. Columns “#State”, and “#Trans”
present the number of distinct states and that of transitions
appearing in the execution sequences, each transition corre-
sponds to a function call; column “Time” present the time
taken (s) for the generation. Column “Model Checking”
presents statistics of the model checker including total ac-
tual memory usage, the time taken (s), and the verification
result in which +/ indicates the verification has been com-
pleted.

In verification of the vending machine, case No.I is
conducted with number of available items ranging in [0..50];
this allows to restock 10 slots of products and 5 products in
each slot. Case No.2 corresponds 20 slots and 10 products
in each slot. These ranges are appropriate in practical ap-
plications of the vending machines. When we describe the
specification of vending machines, we consider two view-
points. Firstly, we focus on number of products available
in vending machines to be bought; secondly, we focus on
type of those products. Reachable states of the LTS are
computed by assigning all possible values for variables in
the Event-B specification within bounds. Following the first
viewpoint, we specify the number of products but not type
of products; therefore, “#State” depends on ranges of values
for variables: cred, state, and card (number of products).
Following the second viewpoint, we additionally specify the
type of products, e.g., tea, coffee, and milk. Products of
the same type are put in the same slot of vending machines.
In this case, “#State” depends on not only ranges of values
for variables cred, state, card but also #slot (number of
slots). If value of card is m and #slot is n then “#State”
is around (m/n)". Our main purpose when we show results
of case studies is to demonstrate that our framework could
be straightforwardly applied to verify reactive systems; we

use the specification of vending machines according to the
first viewpoint. In Table 2, we presented results of No.l
where we focus on only the number of products and we use
restricted ranges: cred {0,2}, state {on,off}, and card
[0..50]. Therefore, “#State” in No.l represents a combina-
tion of values in {0, 2}, {on,off}, and [0..50]. Similarly,
“#State” in No.2 represents a combination of values in {0, 2},
{on,of f}, and [0..200].

In verification of OSEK OS, experiments No.3-No.6
are performed to check the task management independently
from the other groups of service functions. In these cases,
we show ranges for tasks and pri. Experiments No.7-
No.12 are performed to check combination between task
management, resource management, event mechanism, and
interruption management; therefore, we show ranges for
tasks, pri, res, evt, and inr. In the table, two cases of
our verification, No.6 and No.12, have not completed due to
out of memory condition. When we extend the bounds, the
size of LTS becomes larger. The total number of invocations
increases according to the total number of enabled events
appearing the LTS, which is indicated in column “#Trans”.
Using our machine (memory capacity: 8 gigabytes), Spin
can use around 430 megabytes for total memory usage, in
which around 230 megabytes is used to store states. This al-
lows to store around 400,000 states; therefore, it allows the
size of LTS to reach 25,000 transitions. From the statistics
of LTS Generation, we can see that the total memory re-
quired to store states in cases No.6 and No.12 is over the to-
tal memory Spin can use. Therefore, the verification has not
completed in these cases. In order to avoid out of memory
condition, we could use reasonable range for the variables
as shown in No.3-5. Also, we could check small groups of
service functions; each of these groups represents an essen-
tial behavior of OSEK OS. For example, No.7 checks com-
bination between task management and resource manage-
ment; No.8 checks combination between task management
and event mechanism.

From results of case studies, we found that the frame-
work could be straightforwardly applied to verify various
reactive systems where the designs described in Promela
and their formal specifications described in Event-B. Even

VU et al.: A FRAMEWORK FOR VERIFYING THE CONFORMANCE OF DESIGN TO ITS FORMAL SPECIFICATIONS

though this framework has a limitation of the model check-
ing; we considered that essential behaviors of the OS
could be still verified successfully when we use reasonable
bounds. This shows applicability of our framework in veri-
fication of reactive systems.

5. Discussion

Generality of the Framework. Our framework was applied
to verify the designs of practical systems. The framework
directly checks the designs against their formal specifica-
tions. Although we show the experiments, when our frame-
work is applied to the vending machine and the operating
system, it is not limited to these applications. In the frame-
work, the simulation relation is defined based on semantic
of LTS. In models, the states are interpreted as value assign-
ments. The design is described as a collection of functions
which update the value assignments. The environment is
described as a collection of invocations. This style of mod-
els is adopted not only for operating systems but also other
reactive systems.

In our case studies, Promela is used as a specification
language to describe the design and the environment; how-
ever, our framework can be applied for the designs described
in not only Promela but also other languages as long as they
can deal with a collection of functions for the design and
sequences of invocations for the environment.

Notion of Bounds. We introduce a formal definition of the
bounds for verifying the simulation relation of the design
and its formal specification. The bounds are used to obtain
a finite LTS associated to Event-B model. This bound can
be applied generally to any design and its formal specifica-
tion as long as the formal models of the inputs are defined as
LTSs. In Sect. 3, we present the interpretation of the bound
in a concrete model, that is, Event-B model. In the first
step of interpreting the bounds in the specification, we in-
troduce finite ranges of variable values in the specification.
Next, we regard the typical bugs that can be found in the
verification with a large value domain. The typical bugs are
bugs that could be easily added into the design of practi-
cal systems. For finding such bugs of the target system, in
addition to restrict the range of values, one can restrict ser-
vice functions of the target system. The intention of such
additional restriction is to exclude transitions not relevant
to the bugs and to reduce size of model for which model
checking is feasible. In this approach, we intend to lead
the verification to focus on partial behaviors instead of all
at one. We could distribute partial behaviors in variations
of the environment. In our idea, partial behaviors are de-
cided according to the properties and the bugs of the tar-
get systems to be checked. For example, one important
property of the OS is that “An extended task in the
waiting state must be released to the ready

state if at least one event for which the task
is waiting has occurred”. In order to check this prop-
erty, we need use two tasks, one event, and three ser-

1147

vice function including ActivateTask, WaitEvent, and
SetEvent. We found that one could avoid the state ex-
plosion if we use reasonable ranges for data elements and
service functions.

Comprehensiveness of Environment. The behaviors of the
target systems depend on patterns of function calls from
their environments. For the comprehensive verification of
reactive systems, we need to use the environments that cover
all possible patterns of invocations. Accordingly, an advan-
tage of our framework is that it is able to systematically gen-
erate all possible patterns of invocations from the execution
sequences of the specification in Event-B. This is essential
to generate the environments for the comprehensiveness of
verification with respect to the specification.

6. Related Works

Verification of systems using model checking. [7] presents
a case study on checking the operating systems compliant
with OSEK/VDX. The authors describe the specification in
temporal logic formulas. Separately, we describe the speci-
fication in Event-B. This improves the consistency of prop-
erties extracted from the specification and provides general
environments for comprehensive verifications.

Verification of systems based on simulation relation.
FDR [6] is a refinement checker for the process algebra CSP.
Inputs of FDR are the specifications and the implementa-
tions written in the same language. Our framework ac-
cepts the inputs written in different languages. [10] and [11]
present approaches to verify the OS kernels based on theo-
rem proving. Theorem proving can be used to verify the in-
finite systems; however, it generally requires a lot of interac-
tive proofs. In our framework, we use model checking com-
bining with prover tools of Event-B. Although, ranges are
bounded due to the limitation of model checking; however,
we are able to improve quality of the properties checked and
get completely automatic verification. Therefore, we have a
high degree of confidence in the verification results.

Generation of LTS from Event-B model. [12] presents the
ProB tool which supports interactively animating B models.
Using ProB, users can visualize the current state and the en-
abled operations in each state. Users also can set an upper
limit on the number of ways that the same operation can be
executed. However, ProB requires some interactions with
the users. In our work, we firstly set finite ranges for types;
for complex systems like operating systems, we may restrict
the functionalites. Then, we explore all possible sequences
of state transitions within defined ranges. Our work does
not support visualizing the LTS; however, the generation of
the LTS is completely automatic. [4] defines the semantic
of Event-B model as labeled transition systems to reason
about behavioral aspects of specifications in Event-B. We
formally define the framework from scratch. We precisely
define finite ranges of variable values in Event-B specifica-
tion as bounds of our verification; then, we generate all pos-
sible behaviors from Event-B specification within defined

1148

ranges.

Construction of the environment of the operating system. In
previous works, we verified the OSEK OS by constructing
a general model of the environment from scratch. The en-
vironment model is firstly described using UML [25] then
translated into Promela. In the current work, we generate
the environment from the specification in Event-B. Since
the correctness of the specification is guaranteed by tools
of Event-B, the quality of the environment is improved as
well.

Combination of Event-B model and model checking. For
combination of Event-B and model checking, tools such as
ProB [12] and Eboc [14] work as model checkers for Event-
B. In these approaches, the target models are described in
Event-B. ProB and Eboc directly check the target models
against the internal consistency. We use tools of Event-B to
ensure the internal consistency. We use our own tool to gen-
erate the LTS of the Event-B specification. As another ap-
proach, [17] translates Event-B model into Promela model
and use Spin to check the model. We have not directly trans-
lated Event-B code into Promela but translate LTS of the
Event-B specification and assertions into Promela. Then, we
use Spin to check the simulation between the design model
and LTS of the specification in Promela.

7. Conclusion

We proposed an approach to verify designs against their for-
mal specifications which are described in different specifi-
cation languages respectively. Two main contributions in-
cluded in this approach: a new combination between Event-
B and Promela/Spin for verification of reactive systems; and
filling the gap between the specification and the design so
that we can check the conformance between them systemat-
ically. An advantage of the approach is to make it possible to
describe the specification and the design in appropriate lan-
guages for a verification of the design. Formal specification
languages are intended to facilitate describing the specifi-
cations. Promela is intended to analyze the designs. Our
approach follows these intentions faithfully. In fact, as men-
tioned in Sect. 1, it is natural for reactive systems like oper-
ating systems to describe the designs in the imperative spec-
ification languages. On the other hand, describing their de-
tailed properties in temporal logic is hard. It is easy to imag-
ine that the temporal logic formulas representing the speci-
fication shown in the case studies become very complex and
prone to mistakes. Instead of the temporal logic, we provide
a way to represent the specification in a formal specifica-
tion language Event-B and check the design against it with
the Spin model checker. Event-B is appropriate to represent
the specification because it has rich notions such as sets and
relations. In addition, Event-B allows us to ensure the con-
sistency and the correctness of the specification by its veri-
fication facilities such as discharging proof obligations and
refinement. That is, we can check the design against such
consistent and correct specification. This would drastically

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.6 JUNE 2015

improve the reliability of model checking results because
the specification is reliable. We plan to extend the verifica-
tion framework to accept the additional choice of the spec-
ification languages. There is a possibility that our approach
is applicable not only for Event-B and Promela but also the
other specification languages. The framework could accept
the other languages for the specification such as Z, VDM, as
long as it is possible to generate LTS from the description of
the specification in those languages. In addition, languages
for the design must deal with collection of functions.

References

[1] J.R. Abrial, Modeling in Event-B: System and software engineering,
Cambridge University Press, 2010.

[2] T. Aoki, “Model checking multi-task software on real-time operating
systems,” 11th IEEE International Symposium on Object Oriented
Real-Time Distributed Computing, pp.551-555, 2008.

[3] C. Baier and J.P. Katoen, Principles of Model Checking (Represen-
tation and Mind Series), The MIT Press, 2008.

[4] D.Bert, M.L. Potet, and N. Stouls, “Genesyst: A tool to reason about
behavioral aspects of B Event specifications. Application to security
properties,” CoRR, vol.abs/1004.1472, 2010.

[5] P. Bostrom, “Creating sequential programs from Event-B models,”
Proc. 8th International Conference on Integrated Formal Methods,
IFM ’10, Berlin, Heidelberg, pp.74-88, 2010.

[6] PJ. Broadfoot and A.W. Roscoe, “Tutorial on FDR and its applica-
tions,” Proc. 7th International SPIN Workshop, pp.322-322, 2000.

[7]1 Y. Choi, “Model checking trampoline OS: A case study on safety
analysis for automotive software,” Softw. Test., Verif. Reliab.,
vol.24, no.1, pp.38-60, 2014.

[8] M.B. Dwyer, G.S. Avrunin, and J.C. Corbett, “Patterns in property
specifications for finite-state verification,” Proc. 21st International
Conference on Software Engineering, ICSE "99, pp.411-420, 1999.

[9] G.J. Holzmann, The SPIN Model Checker - primer and reference
manual, Addison-Wesley, 2004.

[10] T. In der Rieden and S. Knapp, “An approach to the pervasive for-
mal specification and verification of an automotive system: Status
report,” Proc. 10th International Workshop on Formal Methods for
Industrial Critical Systems, FMICS °05, pp.115-124, 2005.

[11] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P.
Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T.
Sewell, H. Tuch, and S. Winwood, “sel.4: Formal verification of
an operating-system kernel,” Commun. ACM, vol.53, no.6, pp.107—
115, 2010.

[12] M. Leuschel and M. Butler, “ProB: An automated analysis toolset
for the B method,” Int. J. Software Tools for Technology Transfer,
vol.10, no.2, pp.185-203, 2008.

[13] N. Lynch and F. Vaandrager, “Forward and backward simulations:
Untimed systems,” Inf. Comput., vol.121, no.2, pp.214-233, Sept.
1995.

[14] P. Matos, B. Fischer, and J. Marques-Silva, “A lazy unbounded
model checker for Event-B,” Formal Methods and Software Engi-
neering, Lect. Notes Comput. Sci., vol.5885, pp.485-503, 2009.

[15] R. Milner, Communication and concurrency, PHI Series in Com-
puter Science, Prentice Hall, 1989.

[16] A. Muller, “VDM - the vienna development method,” Bachelor the-
sis in Formal Methods in Software Engineering, Johannes Kepler
University Linz, 2009.

[17] T. Muller, “Formal methods, model-cheking and rodin plugin devel-
opment to link Event-B and Spin,” IEICE Technical Report, SS.,
vol.109, no.170, pp.43—48, 2009.

[18] G. O’Regan, “Z formal specification language,” in Mathematics in
Computing, pp.109-122, Springer London, 2013.

[19] OSEK/VDX Group, “OSEK/VDX operating system specification

VU et al.: A FRAMEWORK FOR VERIFYING THE CONFORMANCE OF DESIGN TO ITS FORMAL SPECIFICATIONS

[20]

[21]

[22]

[23]

[24]

[25]

2.2.3, http://portal.osek-vdx.org/.”

S. Reeves and D. Streader, “Guarded operations, refinement and
simulation,” Electron. Notes Theor. Comput. Sci., vol.259, pp.177-
191, 20009.

J. Rumbaugh, 1. Jacobson, and G. Booch, Unified Modeling Lan-
guage Reference Manual, 2nd ed., Pearson Higher Education, 2004.
M.Y. Vardi and P. Wolper, “An automata-theoretic approach to auto-
matic program verification,” Proc. st Annual Symposium on Logic
in Computer Science (LICS ’86), pp.332-344, 1986.

D.H. Vu and T. Aoki, “Faithfully formalizing OSEK/VDX operat-
ing system specification,” Proc. 3rd Symposium on Information and
Communication Technology, pp.13-20, 2012.

D.H. Vu, Y. Chiba, K. Yatake, and T. Aoki, “Checking confor-
mance of a Promela design to its formal specification in Event-B,”
Preliminary proceeding of the third International Workshop on For-
mal Techniques for Safety-Critical Systems (FTSCS), pp.188-203,
2014.

K. Yatake and T. Aoki, “Model checking of OSEK/VDX OS de-
sign model based on environment modeling,” Proc. 9th International
Colloquium on Theoretical Aspects of Computing (ICTAC ’12),
pp-183-197, 2012.

Dieu-Huong Vu received her B.S., M.S.
degrees from College of Technology, Vietnam
National University, Hanoi (2001, 2004). She
is currently a PhD candidate at JAIST (Japan
Advanced Institute of Science and Technology).
Her research interests include formal methods,
formal verification, theorem proving, model
checking, object-oriented design/analysis.

Yuki Chiba received his B.S., M.S., and
Ph.D. degrees from Tohoku University (2003,
2005, 2008). He is currently an assistant profes-
sor at JAIST (Japan Advanced Institute of Sci-
ence and Technology). His research interests
include program transformation, term rewriting
system, automated theorem proving, and model
checking.

Kenro Yatake received his B.S. degree from
Tokyo Institute of Technology (2000), M.S. and
Ph.D. degrees from Japan Advanced Institute of
Science and Technology (2002, 2006). He is
currently an assistant professor at JAIST (Japan
Advanced Institute of Science and Technology).
His research interests include formal method,
theorem proving, model checking.

1149

Toshiaki Aoki is an associate professor,
JAIST (Japan Advanced Institute of Science and
Technology). He received B.S. degree from
Science University of Tokyo (1994), M.S. and
Ph.D. degrees from (1996, 1999). He was an
associate at JAIST from 1999 to 2006, and a re-
searcher of PRESTO/JST from 2001-2005. His
research interests include formal methods, for-
mal verification, theorem proving, model check-
ing, object-oriented design/analysis, and em-
bedded software.

