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SUMMARY We investigated client honeypots for detecting and cir-
cumstantially analyzing drive-by download attacks. A client honeypot re-
quires both improved inspection performance and in-depth analysis for in-
specting and discovering malicious websites. However, OS overhead in
recent client honeypot operation cannot be ignored when improving hon-
eypot multiplication performance. We propose a client honeypot system
that is a combination of multi-OS and multi-process honeypot approaches,
and we implemented this system to evaluate its performance. The process
sandbox mechanism, a security measure for our multi-process approach,
provides a virtually isolated environment for each web browser. It prevents
system alteration from a compromised browser process by I/O redirection
of file/registry access. To solve the inconsistency problem of file/registry
view by I/O redirection, our process sandbox mechanism enables the web
browser and corresponding plug-ins to share a virtual system view. There-
fore, it enables multiple processes to be run simultaneously without inter-
ference behavior of processes on a single OS. In a field trial, we confirmed
that the use of our multi-process approach was three or more times faster
than that of a single process, and our multi-OS approach linearly improved
system performance according to the number of honeypot instances. In
addition, our long-term investigation indicated that 72.3% of exploitations
target browser-helper processes. If a honeypot restricts all process cre-
ation events, it cannot identify an exploitation targeting a browser-helper
process. In contrast, our process sandbox mechanism permits the creation
of browser-helper processes, so it can identify these types of exploitations
without resulting in false negatives. Thus, our proposed system with these
multiplication approaches improves performance efficiency and enables in-
depth analysis on high interaction systems.
key words: client honeypot, drive-by download, web-based malware, pro-
cess sandbox, intrusion detection

1. Introduction

Web-browser-targeted attacks called drive-by download at-
tacks have recently become the main infection vector of
malware. Security researchers must discover malicious
websites hiding behind a large number of diverse websites
in web space to counter these attacks. Effective methods
for discovering suspicious websites have been proposed [2]–
[5], and we must conduct in-depth inspection on suspicious
URL candidates discovered with these methods. Moreover,
exploit techniques have become complicated. In particu-
lar, an exploit obfuscation technique interferes with signa-
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ture matching and makes it difficult to analyze the inside of
an obfuscated code. Security researchers need an advanced
tool to analyze and understand exploit techniques to counter
these concealment strategies of an adversary. A network in-
trusion detection system has been used to monitor and de-
tect intrusion incidents from the viewpoint of network-based
host behavior. However, it is not sufficient to observe the in-
ternal situation of a victim host and comprehend detailed
exploitation techniques. On the other hand, a honeypot as a
decoy system functioning as a vulnerable host can be used to
observe the internal situation of a victim host on an equiva-
lent environment as an actual victim host. Thus, a honeypot
is effective for grasping intrusion techniques and the behav-
ior of compromised victim hosts in depth.

Honeypots that receive drive-by download attacks,
called client honeypots, have been proposed. They must
discover malicious websites in a large web space, which re-
quires high-performance crawling. We also regard the ac-
curacy of collected information as important for consider-
ing actual enforceable countermeasures such as filtering and
take-down. There are two types of honeypots: low interac-
tion [6]–[8], which use emulators, and high interaction [9]–
[11], which use an actual system. The former emulates
vulnerable hosts and simplifies detailed processing. It ex-
hibits high performance but collects less information than
that with an actual system. The latter uses an actual vul-
nerable host attached to a monitoring module for observing
internal system behavior; therefore, the honeypot’s perfor-
mance is on the same level or less than that of an actual sys-
tem. A low interaction system is suitable for surface analysis
by high-speed crawling; however, a simplified rendering en-
gine is an obstacle in conducting in-depth analysis of exploit
techniques.

To solve the above conventional client honeypot prob-
lems of observability and performance, we propose a system
that is a combination of multi-OS and multi-process honey-
pot multiplication approaches based on virtual isolation. We
designed an advanced client honeypot as generic schema
with Windows OS and implemented it based on our pro-
posed system to confirm its feasibility. Our implemented
client honeypot is based on a high interaction system in
consideration of the above-mentioned advantages because
such honeypots have higher detection accuracy and obtain
richer information than low interaction honeypots. Our pro-
cess sandbox mechanism, a security measure for our multi-
process approach, provides a virtually isolated environment
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for each web browser. In a field trial, we confirmed that the
use of our multi-process approach was three or more times
faster than that of a single process, and our multi-OS ap-
proach linearly improved system performance according to
the number of honeypot instances.

The remainder of this paper is organized as follows. In
accordance with the strategy for honeypot multiplication de-
scribed in Sect. 2, we propose a client honeypot system that
uses our multiplication approaches in Sect. 3. In Sect. 4, we
discuss the evaluation of our client honeypot system in both
an experimental environment and in actual web space. Dis-
cussion and related work are given in Sects. 5 and 6, respec-
tively, and Sect. 7 concludes the paper.

2. Basic Strategy Toward High Performance with Pre-
cise Information Gathering

In this section, we discuss the basic strategy to improve the
inspection performance of a client honeypot with precise in-
formation gathering. First, we introduce OS multiplication,
which is a normal honeypot operation, to improve perfor-
mance. Next, we consider process multiplication as a new
operation for web-browser-based honeypots. On the basis of
the discussion and the assumed attack model, we enumerate
the requirements for process multiplication.

2.1 OS Multiplication

A conventional honeypot running on a high interaction sys-
tem is separated by an OS boundary to prevent secondary
infection from another host and limit the damage inside a
compromised OS. A typical operation of a honeypot that
improves its performance is using many OSs simultane-
ously. A virtual machine monitor (VMM) is generally used
for this honeypot multiplication. A VMM provides a vir-
tually isolated execution environment for each OS as a vir-
tual machine (VM). The filesystem, registry†, and other pro-
cess on the honeypot OS are usually compromised when a
specific vulnerability of a honeypot is exploited, e.g., cre-
ate/delete an arbitrary entity of filesystem and registry or
create/terminate an arbitrary process. Therefore, the honey-
pot OS should be restored to the original clean OS image
after exploitation.

2.2 Process Multiplication

A web-browser-based honeypot (i.e., a client honeypot)
should use many browser processes simultaneously because
a client honeypot requires only web browsing functionali-
ties. In addition, a web browser is not always busy because
it asynchronously sends requests and receives replies from
websites. A web browser cannot start rendering web content
and remains idle when it is receiving reply web content from
a website. In particular, the idle time of the web browser

†A database that stores configuration information of Windows
system.

Fig. 1 OS and process boundary operation.

tends to be long when the web content is complicated and
has many transactions when the round trip time of a web-
site is long. Thus, a client honeypot can improve inspec-
tion performance efficiency by launching other browser pro-
cesses when the currently running browser process is idle.
Therefore, a client honeypot should simultaneously launch
browser processes on the same OS to reduce OS overhead.

2.3 Process Boundary Operation for Process Multiplica-
tion

Process multiplication can resolve the above-mentioned OS
overhead problem in a client honeypot. We should consider
how a client honeypot can provide a process isolation mech-
anism for preventing interference by a compromised process
because a compromised process can negatively affect other
processes or can target the entire system. For example, a
compromised process usually installs a rootkit to invade the
kernel layer of a target system, terminates other processes to
interfere with monitoring systems (e.g., anti-virus and hon-
eypot systems), compromises other processes running on the
same OS by using code injection API, or indirectly injects
malicious code by replacing system dynamic link libraries
(DLLs).

It is difficult to precisely determine which browser pro-
cess is exploited from the simultaneously running processes
when many browser processes run without a process iso-
lation mechanism on the OS. Therefore, a critical issue
is how to separate the processing boundary for honeypots
to achieve process multiplication. A comparison between
OS boundary operation and process boundary operation is
shown in Fig. 1.

A mechanism of process isolation has been proposed
that involves redirecting the input/output (I/O) on a high in-
teraction client honeypot [11]. A file created by the web
browser is redirected to a temporarily provided disk space,
but a web browser can transparently access the correspond-
ing file. When a compromised web browser attempts to cre-
ate a file and execute it (i.e., a malware file), the I/O redi-
rection mechanism can prevent the original files from being
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altered, and the client honeypot can detect a newly created
file as a malware file. Moreover, the client honeypot does
not have to restore the OS image.

2.4 Attack Model

Drive-by downloads [12] target vulnerabilities of client ap-
plications related to web browsing and force the victim
host to download/install malware executables. Conventional
drive-by downloads target vulnerabilities contained only in
the main components of a web browser (e.g., HTML parser,
JavaScript engine). However, as the technology of the web
and of developed plug-in applications evolves, these at-
tacks also target vulnerabilities of plug-in applications. An
exploit-kit is a toolkit for constructing malicious websites
that conduct drive-by downloads. Known exploit-kits con-
tain exploit codes targeting various applications [13], [14].
Since plug-in applications (e.g., Flash, Acrobat and JRE)
can be installed in various web browsers, drive-by down-
loads target both browser-specific and plug-in vulnerabili-
ties.

There are two types of plug-ins: those running inside
and outside a browser. The former is loaded as a rendering
engine by a web browser when launching the web browser
or receiving specific web content. For example, render-
ing engines of Flash and QuickTime are loaded by a web
browser into its process memory. If a loaded rendering en-
gine has a vulnerability, a browser process is at risk of being
compromised. The latter runs outside a web browser. When
a web browser receives specific web content (e.g., a PDF
file), it creates a browser-helper process and delegates ren-
dering. If a rendering engine of the browser-helper process
has a vulnerability, the browser-helper process is at risk of
being compromised.

2.5 Requirements for Process Multiplication

The objective of this study was to analyze process behaviors
by per-process sandboxing in order to reduce OS overhead.
There are three requirements for improving performance of
a client honeypot with precise information gathering accord-
ing to the above-mentioned typical honeypot operation and
an attack model.

1. Virtual isolation of process execution
A vulnerable process, which runs a target victim ap-
plication, should run independently of other processes
and be accurately compromised. After being compro-
mised, it should be prevented from negatively affecting
other processes or the OS.

2. Adaptive process creation control
(A) Restrict process behavior after exploitation
A hijacked process becomes a stepping-stone in com-
promising an entire target system or intruding into the
kernel layer. Thus, a honeypot should restrict process
behavior to some extent; otherwise, the system will be

completely hijacked. Therefore, we investigated how
to prevent the hijacking of our system by malware.

(B) Enable rendering delegation
A web browser delegates the rendering of certain web
content to browser-helper processes such as the plug-
in process. If the process sandbox restricts process
creation, web content rendering is stopped and cannot
be completed to inspect an exploitation. The result of
over-restriction of process creation is that an exploita-
tion will not succeed on the honeypot system. There-
fore, the process sandbox should permit the browser-
helper process and inject sandbox functions into it.

3. Consistency of virtual system view between related
processes
When sandboxing each process, the filesystem and reg-
istry views are different for each process. In cross pro-
cess rendering, view inconsistency occurs. For exam-
ple, the browser-helper process cannot read a file for a
plug-in downloaded by the browser process without file
view consistency. Therefore, related processes should
share common file and registry views.

According to the above requirements, we designed and
implemented an original client honeypot.

3. Design and Implementation

We describe the basic design and implementation of our
client honeypot system according to the following strategy;
1) OS multiplication: using a single-manager multi-agent
for launching autonomous honeypot-agents and 2) process
multiplication: process isolation and interprocess coopera-
tion for running web browsers simultaneously on the same
environment. First, we introduce the basic building blocks
of a typical client honeypot, next we give an overview
and explain the procedure of our developed client honey-
pot. Then, we explain our proposed system for satisfy-
ing the requirements mentioned in Sect. 2.5. Finally, we
describe multi-process creation/termination and dynamic
timeout control procedures.

3.1 Basic Building Blocks of Client Honeypot

The principal functionalities of a client honeypot are URL
collecting, browsing, and attack detecting. We have already
proposed these functionalities [5], [15]. We re-introduce
their abstraction below. For URL collecting, many re-
searchers use commercial search engines and public black-
lists. In addition, for effectively discovering malicious
URLs in a large web space, we proposed a method for
structurally discovering potentially malicious URLs among
neighboring known malicious URLs [5].

Attack detectors and a DOM inspector are also impor-
tant basic building blocks of our client honeypot system.
The main purposes of DOM inspection are extracting link-
age URLs and tracking malware distribution networks. The
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Fig. 2 Multi-OS and multi-process approaches.

DOM inspector obtains the object pointer of the DOM via
the web browser control interface and extracts attributes of
HTML tags from the DOM tree. In many cases, JavaScript
often interacts with the DOM after rendering using Dynamic
HTML for providing rich content. In the same way, mali-
cious obfuscated JavaScript also uses Dynamic HTML for
hiding the redirect-destination (i.e., URL strings). Our pro-
posed client honeypot system parses the DOM to extract
URLs set into attributions of linkage HTML tags, such as
a, script, iframe, and meta, after completing web con-
tent mapping into the DOM. Therefore, we can extract redi-
rection relationships, even if they are obfuscated. We de-
termined that an automatically accessed URL is a result of
using a kind of redirection method (e.g., iframe tag) when
a BeforeNavigate, a callback event via the IWebBrowser2
interface before the browser accesses a URL, occurs.

To improve detection coverage, our client honeypot
system performs stepwise detection focusing on the exploit
phases; preparation phase, exploitation phase, and post-
exploitation phase. Our system is equipped with the fol-
lowing detectors; scripting engine behavior anomaly (e.g.,
heap spraying detection), dataflow violation toward vul-
nerable functions (e.g., memory corruption detection), and
file/registry/process event anomaly respective to the above
phases.

3.2 Toward High Performance

We use both process and OS multiplication approaches;
multi-OS contributes to achieving high scalability, and
multi-process contributes to reducing OS overhead with
high performance. Our designed honeypot system is
composed of the honeypot-manager and honeypot-agents.
The overview and workflow are illustrated in Fig. 2.
The honeypot-manager simultaneously controls honeypot-
agents. A honeypot-agent is VM as honeypot instance for
URL inspection. The honeypot-manager first activates the
honeypot-agent as the initialization procedure of honeypot
instance. On an activated honeypot-agent, an agent pro-
cess launches numerous web browsers. After activation,
the honeypot-agent automatically refers to the honeypot-
manager’s database to obtain the seed URLs and dispatches
them to web browsers for inspection. The web browsers

then start inspecting them. The honeypot-agent reports
the results to the honeypot-manager and retrieves the next
seed URLs from the honeypot-manager for inspection again
when it finishes inspecting the current seed URLs. The
seed URL list and its status are stored in the honeypot-
manager. When the honeypot-agent retrieves some URLs
from the honeypot-manager, it changes the URL status
to fetched. When the honeypot-agent finishes inspecting
a fetched URL, it changes the URL status to finished.
When a web browser finishes inspecting the input URL,
the honeypot-agent sends inspection logs to the honeypot-
manager. A bottleneck occurs when a single honeypot-
manager controls many honeypot-agents simultaneously, so
communication concentrates on the honeypot-manager side.
Thus, the honeypot-manager can control honeypot-agents
until it reaches that peak.

3.3 Process Sandbox for Process Multiplication

File/registry system alteration caused by a hijacked process
seriously affects other processes on the same OS. To pre-
vent direct/indirect interference between hijacked and nor-
mal processes, a honeypot should provide a virtual isola-
tion environment for each process. We try to sandbox each
process (process sandbox) by using both stealthy API hook-
ing and filesystem/registry I/O redirection. As mentioned in
Sect. 2.4, there are also exploitations targeting the browser-
helper process. For detecting these types of exploitations
we should enable cooperative behavior between related pro-
cesses such as rendering delegation. We explain the ba-
sic mechanisms of API hooking and I/O redirection in this
subsection for achieving virtual isolation of process execu-
tion. We then describe process creation control and sandbox
propagation for restricting behavior after exploitation and
enabling cooperative behavior between related processes.

3.3.1 Stealthy API Hooking

Event monitoring in the kernel layer can basically monitor
all events. However, due to capturing all system call events
of both related and unrelated processes, event monitoring in
the kernel layer has a large amount of overhead. Therefore,
we consider API hooking per target process. Generally, API
hooking in user-land is easily detectable by malicious codes.
Therefore, we must consider stealthy-hooking APIs.

To control file/registry access, we used API hooking for
Win32 APIs. API hooking is used to intercept a target API
procedure and alter it. When a process uses a specific API,
it loads a DLL and calls an API contained in the DLL. The
general API hooking strategy injects a jump code into the
head instruction of the target API for altering the API pro-
cedure and jumping to a hook function. The hook function
generally logs arguments of the hooked API and conducts
other procedures. It then returns an instruction pointer to
the original API.

Detours [16] is the most standard API hook using the
jmp instruction. It hooks by overwriting the first six bytes
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of a target function with a jmp instruction to a hook function.
The overwriting code and hook function are loaded into the
target process using any code injection method (e.g., DLL
injection using CreateRemoteThread API). Some exploit
codes attempt to determine if the target APIs are hooked
by using security tools. If a hooked API is exposed by an
exploit code, the exploit code stops running or attempts to
prevent API hooking. We confirmed the above exploit code
containing hook-prevention functionality in the wild.

; eax is stored address of target function

cmp byte ptr [eax], 0E9h ; hook check (jmp)

jnz short LABEL

cmp dward ptr [eax+5], 90909090h ; thunk check

jz short LABEL

; make prolog and skip first instruction

push ebp

mv ebp, esp

lea eax, [eax+5]

LABEL:

jmp eax

Before calling the target API, this code determines whether
the first instruction of the target API is jmp. The code then
determines that the API is hooked and skips the first instruc-
tion to prevent hooking, except that this code determines
jmp + nop as thunk. API hook prevention causes a breakout
of process sandboxing and enables the exploit code to hijack
the target system. Therefore, to counter API hook preven-
tion, we should develop a function to make it difficult to
determine whether the head instruction of the target API is
replaced with the jump instruction pointing toward the hook
function. We developed a stealthy API hooking procedure
using a combination of adjustment and conditional-jump in-
structions. The conditional-jump instruction jumps to an ar-
bitrary address when specific values of the EFLAGS register
satisfy the condition indicated by the type of conditional-
jump instruction. The EFLAGS register stores the current
state of the processer. For example, four flags; carry flag
(CF), zero flag (ZF), sign flag (SF), and overflow flag (OF),
are set to 0 or 1 according to the arithmetic results of the in-
struction. An example hook instruction is when jz enables
the instruction pointer to jump an arbitrary address set in the
operand of jz instruction if ZF is set to 0. Then, when the
typical instruction sequence example,

cmp eax, eax

jz hook-func-addr

is executed, an instruction pointer can jump an arbitrary ad-
dress (i.e., hook-func-addr) because ZF is set to 0 and a
condition of jz instruction is always satisfied. We can gen-
erate various combinations of adjustment and conditional-
jump instructions because there are various kinds of flag
registers and conditional-jump instructions. Therefore, we
can generate numerous instruction patterns for our stealthy
API hooking procedure. From the viewpoint of adversaries,

however, it is difficult to recognize whether the target API is
hooked before it executes the head instruction, i.e., adjust-
ment and conditional-jump instruction sequence, because it
requires processor emulation for detecting the register state,
which is the conditional-jump instruction before it executes
them. Due to the difficulty in creating a specific signature
pattern, an exploit code cannot detect this stealthy API hook.

3.3.2 Filesystem and Registry I/O Redirection

To prevent internal alteration in a system, we developed an
isolation mechanism in which a system virtually accesses re-
sources in each process. The alteration actions affecting sys-
tem behavior are filesystem, registry-system, and process-
access events. We use an I/O redirection mechanism for
file and registry access in each process. Each process can
transparently access target file/registry entities. The process
sandbox mechanism provides a virtual filesystem (VFS) for
each process. A VFS conducts I/O redirection and stores
the correspondence relationship between the actual target
file path and redirected file path into a lookup table, called a
VFS table. A VFS table has three tuples (real file path, vir-
tual file path, and state). The real file path is a target file path
actually input in the API argument. The virtual file path is a
redirected file path, which is called a random string such as
a universal unique identifier (UUID) string, and a file entity
is actually in this file path. State denotes the accessibility
of file entities. If a web browser calls the DeleteFile API
to delete RealFilePath A, the I/O redirector sets the delete
flag to the corresponding VFS entry, and the web browser
cannot look this entry up afterwards. A process executing a
specific API cannot recognize the I/O redirection due to the
transparent execution of I/O redirection. Because that ex-
ploit code cannot detect the actual redirected VFS path and
I/O redirection is transparent, the exploit code cannot recog-
nize the I/O redirection. Even if the exploit code attempts to
alter the target system, I/O redirection can suppress filesys-
tem and registry alteration on a specific process and prevent
it in other processes. Figure 3 shows the I/O redirection pro-
cedure. A benign web browser usually accesses cache direc-
tories of the browser; thus, the VFS should exclude them.

Registry is a database that stores system configuration
information such as profiles for each computer user and in-
formation about system hardware, installed programs, and
property settings, and continually references this informa-
tion by using the OS or applications. Therefore, we should
also adapt I/O redirection to the registry system because
registry system alternation seriously affects the system en-
vironment. We confirmed that the following procedure al-
teration fatally affects the system; create a shortcut file of
an arbitrary program in the StartUp directory, register an
arbitrary process to the RunKey, and set an arbitrary URL
(it is often a malicious website) into the StartPage of the
browser. We also designed a virtual registry system (VRS)
by using I/O redirection. When create, read, or delete reg-
istry key events occur, the I/O redirector looks up a VRS
table and redirects registry I/O in the same way as the VFS
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Fig. 3 I/O redirection procedure.

procedure. Thus, the VRS also should exclude registry ac-
cess events in a benign browser setup procedure. The VFS
and VRS should manage entity states. The I/O redirec-
tor ensures consistency of the state transition of file and
registry entities. We give concrete examples of VFS en-
try changing in move/copy/delete events. When a move
event moves RealFilePath A to RealFilePath B, the VFS en-
try (RealFilePath A, VirtualFilePath A) is changed to (Real-
FilePath B, VirtualFilePath A). When a copy event copies
RealFilePath A to RealFilePath B, an additional VFS en-
try (RealFilePath B, VirtualFilePath A) is created. When
a delete event deletes RealFilePath A, a VFS entry (Re-
alFilePath A, VirtualFilePath A) sets the “delete” flag and
cannot be looked up, and the entity of VirtualFilePath A is
not actually deleted.

An entity of a created file is actually in a special work-
ing directory for the VFS, which also includes malware ex-
ecutables. This entity cannot be deleted and is saved to in-
spection logs. Once a file is created, it cannot be deleted,
even if a delete file event occurs, because the VFS entry sets
the “delete” flag as inaccessible to the target process.

3.3.3 Process Creation Control

When exploitation is successful, an exploit code attempts
to execute malware executables on the compromised target
system. To make matters worse, the system allows malware
to intrude into the kernel layer when permitting arbitrary
process creation. Therefore, the process sandbox should
monitor an API that is able to create a process in order to
restrict behavior affecting other processes (e.g., process ter-
mination and code injection). Some malware executables
function as a downloader, which has only download func-
tionality, and download main malware components from the
Internet. Consequently, if the process sandbox restricts the
creation of a malware process, the honeypot system cannot
obtain the main malware components. However, we can
solve the latter problem by using malware sandbox systems
that have permeable internet accessibility [17]. These sys-
tems retrieve and analyze secondary executables.

3.3.4 Sandbox Propagation

General client honeypot implementation only monitors
file/registry/process events; it does not restrict them. Conse-
quently, malware can completely hijack a honeypot system.
A honeypot system cleans the VM image of a honeypot and
rolls it back to the primary VM image if it is compromised
by malware. In other words, VM-rollback overhead cannot
be prevented. Moreover, the risk of a compromised system
attacking other systems until VM rollback is a serious limi-
tation of high interaction honeypots.

A Web browser delegates plug-in applications for
rendering specific web content. There are two types
of rendering delegations: in-browser processing and out-
browser processing. Flash.ocx, which is a Flash plug-
in loaded in the browser process, renders Flash con-
tent inside the browser process. On the other hand,
AcroRd32.dll, which is an Acrobat plug-in loaded in
the browser process, launches new browser-helper processes
such as AcroRd32.exe for rendering a PDF file. In the
same way, javaw.exe, which renders JAR files, is launched
by a browser-helper object of JRE. Many exploit codes tar-
get out-process rendering engines such as Acrobat and JRE.
Therefore, the process sandbox should permit the launching
of a specific rendering process to execute seamless process-
ing of web content. When process creation occurs, the pro-
cess restrictor determines whether to create or restrict the
process according to a process restriction table. The process
sandbox injects sandbox functionalities (i.e., I/O redirector
and process restrictor) to related browser-helper processes
when it is launched. Additionally, a browser-helper process
always continues to run after delegated rendering of web
content. Therefore, a parent process, which is a browser
process, terminates a child process, which is also a browser-
helper process, after rendering of web content. The above
process creation control and sandbox propagation mecha-
nism is shown in Fig. 4.
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Fig. 4 Process creation control and sandbox propagation.

Fig. 5 Sharing virtual filesystem.

3.3.5 Sharing Virtual System View

Related processes can refer to the same files using the same
VFS table. A child process is launched and its behaviors are
controlled in the same sandbox space as the browser process
(parent process). The above-mentioned sandbox propaga-
tion, therefore, enables the sharing of the same file/registry
system view as the parent process and its child process by
referring to common VFS/VRS tables (Fig. 5). For sharing
VFS/VRS, a parent process (i.e., browser process) notifies
a child process (i.e., browser-helper process) of the shared
memory address of the VFS/VRS tables when it is launched.
Our client honeypot system determines that the web browser
process and its child process are the same crawling unit.

3.4 Multi-Process Launch/Termination Control

We describe the launch browser control and dynamic time-
out control procedures. The web browser process is peri-
odically launched to inspect URLs; in other words, web
browsers sequentially access inspection candidate URLs.
The web browser process terminates when the browser
finishes inspection, and a honeypot-agent asynchronously
launches another browser process to inspect the next inspec-

Algorithm 1 Launch browser control procedure
Number of processes limit Plimit ⇐ LimitNumProcValue;
Interval time T interval ⇐ IntervalTimeValue;

while
Pcurrent ⇐ number of running browser processes;
if Pcurrent < Plimit then
if system is not overloaded then
launch new browser process;
end if

end if
sleep (T interval);
end while

Algorithm 2 Dynamic timeout control procedure
Default WatchDog timeout T timeout ⇐ DefaltTimeOutValue;
Max. timeout T max ⇐MaxTimeOutValue;
Additional time T add ⇐ AdditionalTimeValue;
Elapsed time from launching browser T elapse;

DynamicTimeoutControl()
#DocumentComplete and WatchDog call this function
while T elapse < T max

if T elapse < T timeout then
if no established HTTP session then finish;
end if
else if established HTTP sessions exist then
T timeout = T timeout + T add

else finish inspecting;
end if

end while timeout and finish inspecting;
return;

tion candidate URL. Unlimited launching of processes con-
sumes a large amount of memory and processor resources,
which destabilizes a system. Therefore, we set a limit to the
number of running processes and overload conditions such
as memory usage, number of TCP sessions, and Disk I/O.
A honeypot-agent launches new browser process when the
number of current process (Pcurrent) is below the number of
processes limit and the system is not overloaded. This pro-
cess launch procedure is repeatedly conducted at constant
intervals (T interval).

In the dynamic timeout control procedure, we set a de-
fault timeout value and dynamically extend it according to
the communication situation between browser and website
in order to completely collect web content without interrupt-
ing communication. When the elapsed time is over the de-
fault timeout value and there are communication sessions,
timeout is extended. If the elapsed time is over the maxi-
mum timeout, the browser is terminated regardless of con-
tinuing sessions. This dynamical timeout setup enables a
web browser to completely download and inspect web con-
tent. To understand a browser’s internal state, our imple-
mentation uses IWebBrowser2 [18], a common web browser
control interface for Internet Explorer. The Document-
Complete event notifies the DOM of received web-content-
mapping completion, in other words, rendering of web con-
tent is finished, except for event-driven actions. WatchDog
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Table 1 Hooked APIs for I/O redirection and process restriction.

Category functionality DLL API example

File operate file kernel32.dll CreateFile(A|W), MoveFileWithProgressW, CopyFileExW, DeleteFile(A|W)
find file kernel32.dll FindFirstFileExW, GetFileAttributes(W|ExW)

Registry operate registry advapi32.dll RegCreateKeyEx(A|W), RegOpenKeyEx(A|W), RegSetValueEx(A|W), RegDeleteKey
ntdll.dll ZwCreateKey, ZwOpenKey

Process launch process kernel32.dll WinExec, CreateProcess(A|W)
ntdll.dll ZwCreateProcess(|Ex)

shell32.dll ShellExecuteExW

terminate kernel32.dll ExitProcess

process ntdll.dll ZwTerminateProcess

inject code kernel32.dll CreateRemoteThread

is an interruption timer that triggers certain corrective ac-
tions for the target program. These events simultaneously
and asynchronously occur.

3.5 Implementation

Our implementation of our client honeypot system is based
on Internet Explorer (IE) 6 and a Windows XP SP2 plat-
form. Additionally, vulnerable versions of plug-in applica-
tions (e.g., Adobe, Flash, JRE, WinZip, and QuickTime)
were installed on the system. The web browser and OS ver-
sions include various exploitable vulnerabilities, almost all
of which can be attacked by many exploit packs, so they are
suitable as the basis of a honeypot system. We implemented
our system with a specific type of web browser. However,
our system is applicable to various types of browsers be-
cause IE 7 and later versions and other browsers such as
Firefox provide a browser control interface.

We indicate that the hooking APIs listed in Table 1
enable our proposed client honeypot system to effectively
monitor and control the target process, e.g., web browser
or browser-helper process. We confirmed that hooked
APIs performed as expected. Functionalities that should be
hooked are file operation, file finding, registry operation,
process creation, process termination, and code injection.
To implement our process sandbox, we confirmed that it
was accurate and consistent in a preliminary investigation
on web space and malicious websites.

We implemented honeypot-manager and honeypot-
agent programs by mainly using C++, except API hook
functionality, and an inline assembler. We used a DELL
PowerEdge1955 Xeon 2.66 GHz with 4 core processors and
8-GB memory. Each honeypot-agent VM was assigned 1
core processor and 2 GB of memory.

4. Evaluation

Our system combines two approaches, multi-OS and multi-
process, to improve our system’s performance. We evalu-
ated our system from the viewpoints of micro and macro
benchmarks. In addition, we surveyed recent actual ex-
ploitation patterns detected with our system.

A client honeypot is generally used for understanding
recent exploitation techniques, discovering unknown mali-
cious websites for building blacklists, and conducting health

Table 2 URL status trend.

URL category DNS error or HTTP error HTTP
connect fail (40x or 50x) success

(%) (%) (%)

Blacklisted websites 67.8 14.1 18.0
Benign websites 2.2 0.5 97.2

The results of the public blacklist and benign websites were obtained on
September 1, 2011 and October 2, 2011, respectively.

checks for benign websites. Regarding the above utilities,
we used two types of URL lists for our evaluation; pub-
lic blacklist of URLs and popular site URLs (i.e., the latest
lists of malwaredomainlist.com [19] and Alexa top sites [20]
were on July 30th and September 29th, 2011, respectively).
A public blacklist potentially includes malicious URLs;
however, many malicious URLs are unstable and have al-
ready vanished, and the percentage of active URLs is only
18% (Table 2). On the other hand, almost all benign web-
sites are stably accessible.

4.1 Performance

4.1.1 API Hooking and I/O Redirection Overhead

We evaluated the overhead of API hooking and I/O redirec-
tion by using 5,000 benign websites and 2,699 exploit sam-
ples obtained from periodical inspections of a public black-
list for almost four months (2011.08.07 - 2011.11.26). The
VFS entries were created in only 10.8% of the benign web-
sites. In these cases, VFS entries corresponded to access
events of plug-in applications, such as Acrobat, Flash, and
JRE. For example, when rendering flash content, a browser-
helper object inside the browser accesses the plug-in’s work-
ing directory (i.e., plug-in’s content cache and configuration
files). During the rest of the inspections, file access events
are only of the default cache directory of the web browser.
VFS entries were also created in only 5.7% of the blacklist
websites. On the contrary, 96.9% (2,618/2,699) of the de-
tected inspection results had one or more VFS entries. VFS
entries are usually created by an exploit code because such
codes create files downloaded as malware. The reason no
VFS entry was created during detected inspection is due to
failure to exploit the target system or download malware ex-
ecutables. The entry numbers of the VFS table are shown
in Fig. 6. As mentioned above, created VFS entries were
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Fig. 6 Distribution of VFS entry numbers.

at most only about 10%; moreover, VFS during the inspec-
tions of benign and blacklist websites had fewer than 20 en-
tries in 94.6% and 92.2% of the results, respectively. Even if
VFS lookup occurs, almost all VFSs contain fewer than ten
entries. In addition, there is no increase in I/O redirection
overhead in proportion to file size because the I/O redirector
only replaces the destination file path with another file path.
Thus, we believe that VFS lookup exhibits negligible low
overhead.

4.1.2 Inspection Performance

In a client honeypot, the web browser must wait during the
sending of a request and receiving a reply. On the same OS
multiplexing applications, our system processes other ap-
plications while specific processes are idle. Therefore, we
evaluated how many processes our system launches simul-
taneously and how long time inspection takes.

We discuss how much idle time the browser process re-
quires. Process running time (T run) is the difference between
the process-launch and process-terminate timestamps. The
amount of time it takes for the process to be executed in the
kernel and user modes are represented as T kernel and T user,
respectively. Idle time (T idle), which mainly includes I/O
waiting time, is represented as T run−(T kernel+T user). We can
conduct effective inspection when there are many processes
running simultaneously. We obtained T kernel and T user by
using the GetProcessTimes API when each browser pro-
cess is terminated. The idle time of the browser process
in actual inspections is shown in Fig. 7. The average per-
centages of the total inspection completion time of the pub-
lic blacklist and benign websites taken up by idle time
( 1

N

∑N
n=1

T idle

T run ) were 91.2% and 86.3%, respectively. Con-
sequently, we characterize inspection completion time ten-
dency such that idle times of both URL lists occupy most of
the total inspection completion time.

Due to the fact that many blacklisted websites have
already vanished, inspection finishes immediately after re-
ceiving a DNS error or server error. Benign websites con-
tain various types of web content and cause many sessions

Fig. 7 Idle times of browser process. Inspection completion times de-
fined as summations of running and idle time are arranged from highest to
lowest. We randomly picked 500 inspection samples.

Fig. 8 Inspection completion time of each URL. T max was set to 360
seconds.

to cross to other websites; therefore, inspection sometimes
takes several minutes. We investigated the individual in-
spection completion times of benign and malicious websites
(Fig. 8). The average individual inspection completion time
of blacklisted websites was much lower than that of benign
websites, and 90% of the inspections finished within 25 and
154 seconds, respectively. On the contrary, individual in-
spection completion times of benign websites were widely
distributed due to the variety and complexity of the web con-
tent.

The number of simultaneously running processes is
shown in Fig. 9. Many simultaneously running processes
can conduct effective inspection. When inspecting a pub-
lic blacklist, the number of running processes cannot reach
the maximum process number and only about two or three
processes run simultaneously due to short inspection com-
pletion time caused by DNS error of vanished websites. On
the contrary, due to long inspection completion time caused
by multiple sessions during the same inspection, the num-
ber of running process can easily reach the maximum pro-
cess number during the inspections of benign websites. As
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Fig. 9 Distribution of number of simultaneously running processes.
Plimit was set to 20 processes, and T interval was set to 5 seconds.

mentioned in Sect. 3.4, the interval time of the launching
process (T interval) should be longer than the process setup
time (T setup), i.e., T interval > T setup. We found that the most
efficient T interval was 5 seconds in our inspection environ-
ment, although this strongly depends on hardware specifi-
cations. When we set a smaller T interval than that of the
above heuristic set, our client honeypot system exhibited an
extremely high average load. Due to processor and mem-
ory resource consumption of the browser setup procedure, a
system should not launch additional browser processes be-
fore the previous browser process is completely setup. Re-
garding the setup time of the browser process, we created
an interval between the launching of the browser processes.
The setup time is the process loading time and the time it
takes to inject sandbox functionalities into the target pro-
cess. Overlapping browser setup procedures easily causes
an extremely high average load on the system. The average
time of inspection completion is expressed as 1

N

∑N
n=1 T run

n .
We estimated that the maximum logically possible number
of running processes is P, satisfying the following formula:
PT interval ≤ 1

N

∑N
n=1 T run

n . If the average time of individual

inspection completion is less than T interval

P , the system is of-
ten saturated with running processes. If it tends to be more
than T interval

P , P cannot reach the Plimit. The number of current
running processes does not always reach the maximum pro-
cess number when the upper limit is increased. Due to the
fact that many public blacklists are DNS errors, the maxi-
mum number of processes cannot be reached. On the other
hand, since sessions are successful during inspection of be-
nign websites, multiple sessions easily occur and reach the
maximum number of processes.

The total inspection completion times in a single pro-
cess/multiple processes and a single OS/multiple OS are
listed in Table 3. When inspecting using a single browser
process, the summation of the above inspection completion
time nearly equals the total inspection completion time of
all the URLs on the list. When inspecting using multiple
browser processes, our system can reduce total inspection
completion time because it can conduct overlapped inspec-

Table 3 Total inspection completion times.

URL category Honeypot-agent Process (sec.)
Single process Multi-process

Blacklisted Single agent 18,565 5,123
websites 5 agents 3,686 1,097

10 agents 1,982 573

Benign Single agent 46,578 7,183
websites 5 agents 9,892 1,510

10 agents 4,759 566

Each list includes 1,000 URLs. Blacklisted websites’ URLs are the latest
registered URLs picked up excluding duplication of the FQDN or IP ad-
dress of URLs, and benign websites are the top 1,000 URLs from Alexa.
Maximum process number is limited to 20.

tions. Due to short individual inspection completion time for
public blacklist inspection, the number of current running
processes peaked at about five. According to the number
of running process, total inspection completion time peaked
for five processes and was three times faster than that of a
single process. On the other hand, there was a comparatively
long individual inspection completion time in benign web-
sites; there were over ten running processes. Therefore, the
total inspection completion time is about five or six times
faster than that of a single process depending on the number
of running processes. Total inspection completion times un-
der the multi-OS condition linearly decreased independent
of the properties of both lists. By combining both multi-OS
and multi-process conditions, our client honeypot performs
30 to 80 faster than that under the single-OS/single-process
condition. Although these specific values depend on hard-
ware specifications, we confirm that the performance of our
client honeypot system can be improved.

4.2 Exploit Pattern

We used 2,699 exploit samples obtained during four
months, similar to the experiment discussed in Sect. 4.1.1.
We confirmed that the patterns, in which the browser
launches a child process when they are exploited, are
Acrobat and JRE, as mentioned in Sect. 3.1. When a web
browser receives the MS06-001 exploit code, it launches
rundll32.exe and loads specific vulnerable components;
however, we did not observe this exploitation in our field
trial. We classified the seven exploitation patterns listed in
Table 4. Forty percent of exploit patterns targets a single
application (i.e., pattern A, B and C), and 60% of exploit
patterns (i.e., pattern D, E, F, and G) targets several applica-
tion. The patterns targeting in-process (i.e., patterns A, D,
E, and G) means that rendering objects inside the browser
process are exploited. These rendering objects are the origi-
nal browser’s rendering engines and browser-helper objects
such as Flash. In addition, 72.3% of exploit patterns (i.e.,
patterns B, C, D, E, F, and G) target browser-helper pro-
cesses or both browser-helper processes and web browser.
Moreover, 20.2% of exploit patterns only target browser-
helper processes (i.e., patterns B, C, and F). Patterns exclud-
ing in-process are not successful in exploitation unless a web
browser launches a browser-helper process. To increase the
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Table 4 Exploit pattern distribution.

Category Pattern Percentage
In-browser Out-browser

Acrobat JRE√
A 28.0√
B 8.9√
C 3.2√ √
D 2.1√ √
E 20.4√ √
F 8.1√ √ √
G 29.6

success rate of exploitation, many exploit codes are written
to exploit multiple vulnerabilities at once. The results show
that most exploitation patterns are both in-process and out-
process exploitation.

5. Discussion

5.1 Sequential Exploitations and Targeted Applications

It is a limitation of high interaction systems that only an
exploit code that targets a specific type of web browser ex-
pected with this honeypot implementation can be detected.
On the other hand, a browser’s plug-in exploitation is not af-
fected by browser type and version because vulnerabilities
of plug-ins are independent of those of a browser. As men-
tioned in Sect. 4.2, we confirmed that 72.0% of exploitations
target both a web browser and its plug-ins. Due to these se-
quential exploitations, even if browser exploitation failed,
a browser’s plug-in exploitation will be successful and also
detectable by a honeypot.

5.2 Office Document Exploitation

Vulnerability databases and many reports from security
venders indicate that Microsoft Office applications have
been targeted by recent attacks. Some of these attacks
are conducted via web browsers. SnapshotViewer is an
ActiveX object, which is an Office component that con-
tains vulnerabilities (CVE-2008-2463). A web browser per-
forms in-process rendering of this vulnerable ActiveX ob-
ject. However, some exploit codes targeting office vulner-
abilities require the launching of Microsoft Word or Excel
due to out-process rendering. On the other hand, we con-
firmed that there are few URLs that have directly accessed
Office document files (i.e., .doc, .xls) containing exploit
codes in our blacklist inspections. This type of exploitation
is out of the scope of this paper because it is usually used
for mail-based target attacks.

6. Related Work

6.1 Client Honeypot

The main issue with low interaction based client honey-
pots [6]–[8] is how to emulate rendering engines of the
browser and plug-ins. HoneyC [6] presents a basic model

of a low-interaction-based client honeypot and consists of a
queuer that collects inspection URLs, visitor that crawls the
URLs, and analysis engine that detects an exploitation. A
basic detection of low interaction is signature matching. For
example, HoneyC uses a snort signature. Recent drive-by
downloads have been using obfuscated malicious web con-
tent, so they can easily circumvent simple signature-based
detection methods. To counter content obfuscation, Phon-
eyC [7] and Thug [8] attempt to emulate basic rendering en-
gines (e.g., DOM and JavaScript) and vulnerable browser
functionalities.

High-interaction-based client honeypots have also been
reported [9]–[11]. HoneyMonkey [9] and Capture-HPC [10]
can use many VMs to improve their inspection performance.
They monitor a file/registry access and process control event
to detect an intrusion in the kernel layer. Monitoring in the
kernel layer does not depend on a specific browser imple-
mentation and can observe complete events and be com-
prehensively implemented. In addition, the current version
of Capture-HPC can support multi-browser processes and
discriminate which web browser is exploited based on a
mapping of the state changes (e.g., file/registry accesses,
process creations) to the process ID of the web browser.
BLADE [11] provides file I/O redirection and safely ex-
ecutes browser processes without modifying the original
files. The main differences between BLADE and our pro-
posed system are described in Sects. 3.3.3, 3.3.4 and 3.3.5.

6.2 Sandbox

There have also been many studies on sandboxes for isolat-
ing running programs, while not necessarily for honeypots.
Linux-VServer [21] is a chroot-based filesystem virtualiza-
tion/isolation mechanism on Linux OS, which creates in-
dividual containers that provide many independent virtual
private servers (VPS) used for web hosting services.

Tahoma [22] is a VM-based browser sandbox mech-
anism that uses VMs to provide sandboxes for each web
browser instance. This method is based on OS boundary
operation. Middlebox approaches are alternatives to the pre-
viously mentioned approaches on an end-host, for exam-
ple SpyProxy [23], BrowserShield [24] and WebShield [25]
are browser sandbox implementations performing as a Web-
proxy. The design goal of these middlebox approaches is to
block or sanitize web content transparently with low latency.

6.3 Versatility of Our Design

We designed a multi-OS and multi-process honeypot sys-
tem. The implementation for OS multiplication is just con-
trolling OSs from outside; therefore, it does not depend on
OS/browser architecture. We enumerated generic require-
ments for process multiplication in Sect. 2.5 and created
a process sandbox as a reference implementation on Win-
dows OS. Although our implemented process sandbox con-
trols Windows-specific APIs and other Windows/IE-specific
functionalities (i.e., registry, IWebBrowser2 interface), the
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basic requirements of process multiplication and the design
of the process sandbox are generic and essential. Our basic
design can be applicable to other web browser/OS such as
FireFox on Linux at least because other architectures also
have APIs and functionalities similar to Windows.

6.4 Restoration

OS boundary operation mentioned in Sect. 2.3 requires OS
image restoration, e.g., restoring filesystem/registry and re-
booting after that. In contrast, OS image restoration is not
necessarily a procedure in our system because our process
sandbox prevents the original objects (i.e., file and registry)
from being altered and redirects newly created objects to
VFS/VRS. In addition, deleting VFS entries is not neces-
sarily a procedure because VFS entries are not accessible
by other process and they do not affect other inspections.
As we described in Sect. 4.1.1, VFS entries were created in
only 5.7% – 10.8% of websites. Moreover, VFS during the
inspections had fewer than 20 entries in 92.2% – 94.6% of
the above results. There were few VFS entries created per
inspection, although the number of VFS entries increased
while the honeypot system was running.

7. Conclusion

We proposed a client honeypot system designed for achiev-
ing honeypot multiplication and implemented it in a field
trial to evaluate its effectiveness. Our system uses our multi-
OS and multi-process approaches. In particular, our process
sandbox mechanism solved problems of process multiplica-
tion by providing a virtually isolated execution environment.
In a field trial, inspection performance under the multi-OS
condition linearly increases, and inspection performance un-
der the multi-process condition is about three to six times
faster than that of a single process. Consequently, our pro-
posed client honeypot system substantially improved in per-
formance. Our long-term observation of malicious websites
indicated that 72% of exploitations target browser-helper
processes. Our process sandbox enabling cooperative be-
havior between a browser and its helper process on our hon-
eypot system contributes to successful exploitations and de-
tection.
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