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SUMMARY A dictionary attack against SSH is a common security
threat. Many methods rely on network traffic to detect SSH dictionary at-
tacks because the connections of remote login, file transfer, and TCP/IP for-
warding are visibly distinct from those of attacks. However, these methods
incorrectly judge the connections of automated operation tasks as those of
attacks due to their mutual similarities. In this paper, we propose a new ap-
proach to identify user authentication methods on SSH connections and to
remove connections that employ non-keystroke based authentication. This
approach is based on two perspectives: (1) an SSH dictionary attack tar-
gets a host that provides keystroke based authentication; and (2) automated
tasks through SSH need to support non-keystroke based authentication.
Keystroke based authentication relies on a character string that is input by
a human; in contrast, non-keystroke based authentication relies on infor-
mation other than a character string. We evaluated the effectiveness of our
approach through experiments on real network traffic at the edges in four
campus networks, and the experimental results showed that our approach
provides high identification accuracy with only a few errors.
key words: SSH dictionary attack, user authentication method, flow anal-
ysis, network operation

1. Introduction

Secure Shell (SSH) is one of the most important protocols
in network operations. SSH provides administrators with
various functions, such as remote login, file transfer, and
TCP/IP forwarding [1]. In addition, the protocol assists in
automating operation tasks. Examples of automated tasks
are remote execution of interactive and batch jobs [2], [3],
backup of valuable data from distributed hosts [4], [5], and
collection of logging messages via the Internet [6], [7].

The SysAdmin, Audit, Network, Security (SANS) In-
stitute [8], established in 1989 as a cooperative research and
education organization, has warned about dictionary attacks
against SSH. A dictionary attack is a login attempt to gain
fraudulent access by guessing a username and password
pair. Since even one successful attack causes serious prob-
lems, administrators must be prepared to cope with all at-
tacks.

Many published methods [9]–[12] rely on network traf-
fic to detect SSH dictionary attacks. This is because the con-
nections of remote login, file transfer, and TCP/IP forward-
ing are visibly distinct from those of attacks; however, these
methods do not deal with automated tasks through SSH. Un-
fortunately, these methods incorrectly judge the connections
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of automated tasks as those of attacks due to their mutual
similarities.

In this paper, we propose a new approach to iden-
tify user authentication methods on SSH connections and
to remove connections that employ non-keystroke based au-
thentication. This approach is based on two perspectives:
(1) an SSH dictionary attack targets a host that provides
keystroke based authentication; and (2) automated tasks
through SSH need to support non-keystroke based authenti-
cation. Keystroke based authentication relies on a character
string that is input by a human; in contrast, non-keystroke
based authentication relies on information other than a char-
acter string. For example, keystroke based authentication
includes password and challenge-response functions, and
non-keystroke based authentication includes public-key and
host-based functions. However, the confidentiality and flex-
ibility of the SSH protocol interfere with identification. We
resolve these problems by two key innovations: (1) use of
flow behaviors for identification; and (2) consideration of
reference points for flow behaviors.

We evaluated the effectiveness of our approach through
experiments on real network traffic at the edges in four cam-
pus networks, and the experimental results showed that our
approach provides high identification accuracy with only a
few errors. Our significant contribution is improved ways
for detecting SSH dictionary attacks.

This paper is organized as follows. Section 2 describes
the SSH protocol and summarizes the limitations of related
work on SSH dictionary attacks. Our findings from the
analyses of SSH connections at the flow level are given in
Sect. 3. On the basis of these analytical results, a new ap-
proach is proposed in Sect. 4, and our proposal is evaluated
in Sect. 5. We conclude our paper and state future work in
Sect. 6.

2. Background

In this section, we describe the details of SSH protocol spec-
ifications and user authentication methods. We then discuss
related work and their limitations regarding SSH dictionary
attacks.

2.1 SSH Protocol Specification

An SSH handshake consists of three major sub-protocols:
transport layer, user authentication, and connection proto-
cols [13]–[15].
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Table 1 Types of user authentication methods, cipher algorithms, MAC algorithms, and compression
algorithms.

User Auth. Method password, challenge-response, public-key (rsa, dsa, ecdsa), host-based (rsa, dsa, ecdsa)

Cipher Algorithm
aes128-ctr, aes192-ctr, aes256-ctr, arcfour256, arcfour128, aes128-cbc, 3des-cbc, blowfish-cbc,
cast128-cbc, aes192-cbc, aes256-cbc, arcfour, rijndael-cbc@lysator.liu.se

MAC Algorithm
hmac-md5, hmac-sha1, hmac-md5-96, hmac-sha1-96, hmac-ripemd160,
umac-64@openssh.com, hmac-ripemd160@openssh.com

Compression Algorithm none, zlib

The transport layer protocol negotiates cipher, message
authentication code (MAC), and compression algorithms to
establish a secure connection between a client and a server.
For example, as shown in Table 1, cipher algorithms include
aes-cbc and 3des-cbc, and MAC algorithms include hmac-
md5 and hmac-sha1. Note that the cipher, MAC, and com-
pression algorithms are immediately applied after finishing
the transport layer protocol. Then, the SSH handshake shifts
to the user authentication protocol. The user authentication
protocol assumes responsibility for authenticating the client
to the server by the user authentication method described
in Sect. 2.2. Finally, the connection protocol performs var-
ious functions such as remote login, file transfer, TCP/IP
forwarding, and so on.

The SSH protocol has two notable properties: confi-
dentiality and flexibility. Confidentiality means establish-
ing a secure connection by cipher, MAC, and compression
algorithms. Flexibility means varying these algorithms in
accordance with circumstances. For example, these algo-
rithms are independently negotiated for each host, so each
host chooses its own algorithms.

2.2 User Authentication Method

The user authentication method determines whether a user
should be allowed to establish a connection via SSH.
OpenSSH [16] and Tectia [17] are general implementations
of SSH. The implementations employ four user authen-
tication methods: (1) password, (2) challenge-response,
(3) public-key, and (4) host-based. Password authentication
is a traditional method. During this authentication, a client
transmits a password to a server over an encrypted connec-
tion, and then the server checks that the given password
is acceptable for the target user. In addition to establish-
ing a secure connection, challenge-response authentication
encrypts the password itself to prevent man-in-the-middle
attacks [18]. Public-key authentication verifies the user’s
identity by holding the private counterpart of an authorized
public key. Host-based authentication allows a connection
between hosts without validation if both hosts have a trust
relationship with each other.

User authentication methods are categorized as two
types: keystroke and non-keystroke. Keystroke based au-
thentication relies on a character string that is input by a hu-
man. This authentication is employed for remote login, file
transfer, and TCP/IP forwarding. In contrast, non-keystroke
based authentication relies on information other than a char-
acter string to avoid prompting by a human. This authen-

tication enables administrators to automate operation tasks
through SSH. Specifically, keystroke based authentication
includes password and challenge-response functions; non-
keystroke based includes public-key and host-based func-
tions.

2.3 Related Work and Limitations

The activities of SSH dictionary attacks were explored in
[19], [20]. On the basis of these reports, numerous studies
have been published, and their methods have been catego-
rized into two types.

The first type focused on the importance of log files
that record login attempts. Many tools [21]–[25] could read
through log files and keep track of unsuccessful login at-
tempts against SSH servers. Further connections from a
client were denied by dynamically adding a rule, if the num-
ber of unsuccessful login attempts exceeded a pre-defined
threshold. Thames et al. [26] outlined a new architecture
for preventing SSH dictionary attacks. In this architec-
ture, trustworthy servers gathered, analyzed, and distributed
information about malicious clients through collaboration.
However, these methods do not scale well in large networks.
Since these methods must be applied on all hosts in each
large network, they impose heavy maintenance costs on the
administrators.

The requirement of the second type is to capture net-
work traffic at only a few observation points and thereby
limits the above costs. Vykopal et al. [9] deemed a rapid
increase in connections to an SSH server to be dictionary
attacks, and blocked the connections. Hellemons et al. [10]
showed that such attacks typically consist of three phases,
and the authors represented their behaviors at the flow level
by using a hidden Markov model. Takemori et al. [11] dis-
covered a significant upsurge in the number of pointer (PTR)
resource records in DNS traffic while attacks were under-
way. To resolve the problems of these studies, we proposed
a new approach [12] that detects dictionary attacks and their
success or failure. This approach relied on two perspectives:
(1) for an SSH connection, a username and password pair is
manually entered through the user’s keystrokes, while for an
SSH dictionary attack, the pair is automatically entered by
one’s dictionary; and (2) for a successful attack, the connec-
tion protocol appears in the flow, while for an unsuccessful
attack, this protocol does not appear.

These studies demonstrated that the connections of re-
mote login, file transfer, and TCP/IP forwarding are visibly
distinct from those of dictionary attacks; however, they did
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not account for automated tasks through SSH. The connec-
tions of automated tasks have the following similarities with
those of attacks: (1) massive and brief connections are ob-
served during a short period; and (2) an unattended authen-
tication process is automatically run on each connection.
The similarities give rise to the detection errors of dictio-
nary attacks. Specifically, our previous work [27] reported
this problem through some experiments; the technique of
Javed et al. [28] ignored the connections of automated tasks
based on the logging messages of SSH daemon. It should
be pointed out that for traffic-based methods no studies re-
garding this problem have appeared in the literature.

3. Analysis

The challenge in this paper is to exclude the connections of
automated tasks, which are non-keystroke based and there-
fore erroneously detected as dictionary attacks, from all con-
nections. Figure 1 shows the overview of our proposal with
dictionary attack detection. Our approach first identifies the
user authentication methods on the connections, and then re-
moves the traffic of connections that employ non-keystroke
based authentication. Dictionary attacks are finally detected
from only the connections of keystroke based authentica-
tion. Note that one of the advantages is the ability to replace
the detection function with a new one.

However, the confidentiality and flexibility of the SSH
protocol interfere with identification. Confidentiality is tra-
ditionally employed to establish a secure connection by ci-
pher, MAC, and compression algorithms and to avoid direct
packet inspection. Our first key innovation is to use flow be-
haviors [29] for identifying user authentication methods. A
flow consists of bi-directional packet exchanges between a
client and a server with the same five-tuple, where the five-
tuple is the source IP address, destination IP address, source

Fig. 1 Overview of our proposal with SSH dictionary attack detection.

port number, destination port number, and protocol number.
Its behaviors are statistical patterns in terms of, for example,
packet size, packet direction, and packet order, in externally
observable packets taken from a flow. The reasons for us-
ing flow behaviors are as follows: (1) flow behaviors are
observable without direct packet inspection; and (2) flow
behaviors differ depending on the type of user authentica-
tion methods. Flexibility is employed by varying the cipher,
MAC, and compression algorithms in accordance with the
circumstances. These algorithms affect flow behaviors. Our
second key innovation is to consider reference points, which
can mitigate the impact of these algorithms on flow behav-
iors.

In this paper, we extend our previous work [30] in sev-
eral ways. First, we provide a framework for our proposal
by formalizing it as pattern-recognition problem. Second,
we expand the tests to verify its effectiveness in detecting
dictionary attacks, and we also discuss contributions other
than detection.

The first part of this section deals with the datasets used
in our analyses. In the second part we analyze flow behav-
iors and verify their effectiveness for identifying user au-
thentication methods. On the basis of the analytical results,
our approach is then proposed in Sect. 4.

3.1 Analysis Datasets

Table 2 summarizes the two analysis datasets. The datasets
were captured at a gigabit ethernet link between two hosts
running OpenSSH. We manually generated both D1 and D2
by combinations of all user authentication methods, cipher
algorithms, MAC algorithms, and compression algorithms
shown in Table 1. The difference between D1 and D2 was
their success or failure in authentication.

For pre-processing in the analyses, we first extracted
SSH flows with the same five-tuple from each dataset. Sec-
ond, the flows were given corresponding labels in accor-
dance with their user authentication methods. Finally, we
removed TCP control packets (e.g., SYN, FIN, or ACK flags
with no payload) from the flows because such packet ex-
changes are application-independent.

3.2 Analysis on Packet Exchanges in Each Sub-Protocol

As a first step towards identifying user authentication meth-
ods, we analyze packet exchanges in each sub-protocol.

First, we randomly chose either D1 or D2 as the type
of flow. Then we investigated all packets in each flow and
clarified the relations between packet size, packet direction,
and sub-protocol with respect to sequence number. To vi-
sualize these flows, we adopted the technique of Wright et
al. [31].

Table 2 Number of flows in analysis datasets.

password chal-resp public-key host-based
D1 182 182 546 546
D2 182 182 546 546
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Fig. 2 Packet exchanges in each sub-protocol.

The results are shown in Fig. 2. Each result is from
a typical instance of the flows. A packet is represented as
a symbol, and the symbol type indicates its sub-protocol.
The X-coordinate corresponds to the sequence number in
the individual flow, and the Y-coordinate corresponds to the
packet size and the packet direction. Positive and negative
Y values are the “incoming” and “outgoing” directions, re-
spectively, where “incoming” means transmission from a
client to a server and “outgoing” means transmission from
a server to a client. In either case, the magnitude of the Y-
coordinate gives the packet size in bytes. For example, a
symbol at (10,−500) means that an outgoing packet that is
500 bytes in length was the 10-th to arrive after the start of
a flow. Furthermore, the arrows and their labels denote the
following: (A) the initial applied packet of cipher, MAC,
and compression algorithms, and (B) the notified packet
of an authentication result. Note that the multiple notified
packets denote authentication failure.

Figure 2 (a) shows that the notified packet of authen-
tication success appears before shifting to the next sub-
protocol, and Fig. 2 (b) shows that the last notified packet
of authentication failure appears before finishing the flow.
In addition, these results indicate that the cipher, MAC, and
compression algorithms are immediately applied after fin-

ishing the transport layer protocol and that the user authen-
tication protocol repeats the request and response packets.

3.3 Analysis on Flow Behaviors of Each User Authentica-
tion Method

As the next step, we clarify the difference in the flow behav-
iors of each user authentication method.

We define two terms: sub-flow and delta length. First,
a sub-flow is some consecutive packets in a flow. The sub-
flow xi: j, taken from the i-th to j-th packets, is represented
by the ( j − i + 1)-tuple:

xi: j = [ pi(x), pi+1(x), · · · , p j(x) ].

Here pi(x) and p j(x) denote the i-th and j-th packets in flow
x. Second, delta length is one of the newly defined flow
behaviors. The delta length δi(x) of the i-th packet in flow x
is written in the following equation:

δi(x) =

⎧⎪⎪⎨⎪⎪⎩
si(x) − sμ(x) (di(x) = incoming),

si(x) − sμ+1(x) (di(x) = outgoing).

Here, si(x) and di(x) denote the i-th packet size and its di-
rection, respectively. The μ-th and (μ + 1)-th packets are
the initial request and response in the user authentication
protocol, respectively. We consider the μ-th and (μ + 1)-th
packets as reference points that can mitigate the impact of
each algorithm on the flow behaviors. The rationale is as
follows: both i-th and μ-th packets contain the same fields
added by the cipher, MAC, and compression algorithms; the
payload of the μ-th packet, expected to have a field added by
these algorithms, has a fixed length in all flows because its
remaining field is a message about the start of the user au-
thentication protocol; thus, the difference between these two
packets convey the message contained in the i-th packet.

The analytical procedure is as follows. First, all sub-
flows xK−2:K located at the end of the user authentication
protocol are selected in D1 and D2, where the constant K
means the sequence number of the last notified packet in
each flow. Let us assume, for example, that sub-flows, x21:23

and x23:25, can be found in Figs. 2 (a) and 2 (b), respectively.
Then, the delta length of each packet in the sub-flows is vi-
sualized for comparison of the user authentication methods
by cumulative probability distributions.

These distributions are shown in Fig. 3, where the X-
coordinate corresponds to the delta length of each packet,
and the Y-coordinate corresponds to the cumulative prob-
ability. In Fig. 3 (a), δK(x) has a value of −16 when the
authentication is a success; δK(x) has a value between 16
and 32 when the authentication is a failure. It is evident
from Fig. 3 (a) that the delta length of the last packet de-
pends only on its authentication result. In Fig. 3 (b), δK−1(x)
of password and challenge-response authentication methods
is 96 and 32, respectively, whereas δK−1(x) of public-key
and host-based overlaps in the range from 256 to 640. In
Fig. 3 (c), δK−2(x) of public-key ranges from 112 to 432,
while δK−2(x) of host-based has a value of 16. As shown
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Fig. 3 Cumulative probability distributions of delta length of each
packet.

in Figs. 3 (b) and 3 (c), these results indicate that the delta
length of the first and middle packets in the sub-flow, located
at the end of the user authentication protocol, are effective
for identifying the user authentication methods.

3.4 Discussion

The analytical results indicated that the delta length has the
ability to identify the user authentication methods employed
in SSH connections. Two types of packets play an impor-
tant role in identification. One is the initial applied packet
of cipher, MAC, and compression algorithms. This packet

Fig. 4 Overview of our approach to identify user authentication methods
on SSH connections.

is necessary for calculating the delta length. An effective
means for finding this packet from a flow would be a di-
rect payload inspection, because its previous packets are not
encrypted. The other type is the last notified packet of an
authentication result. This packet is necessary for determin-
ing the sub-flow located at the end of the user authentication
protocol. Our analysis clarified the following consideration
that assists in finding this packet: (1) the delta length de-
rived from this packet depends only on its authentication
result; (2) the exchanges after accepting this packet vary be-
tween authentication success and failure; (3) the two packets
in front of this packet are the incoming and outgoing direc-
tions.

4. Proposal

We already illustrated the overview of our proposal in Fig. 1.
The first part of our proposal identifies user authentication
methods on SSH connections, and the second part removes
connections if their user authentication methods are deemed
as non-keystroke. In this section, we address realization of
the first part based on the analytical results. The part consists
of the three functions given in Fig. 4: (1) reference point se-
lection; (2) flow behavior calculation; and (3) user authenti-
cation method identification.

4.1 Reference Point Selection Function

This function inspects the payload of each packet in new
flow x to find the initial applied packet of cipher, MAC,
and compression algorithms. Then, two packets next to
the applied packet are selected as reference points. Specifi-
cally, the reference points are pμ+1(x) and pμ(x) when meet-
ing both of the following conditions: (1) cμ+1(x) and cμ(x)
are true; (2) cμ−1(x), cμ−2(x), · · · , and c1(x) are false. Here,
pμ(x) is the μ-th packet in flow x, and cμ(x) indicates
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whether the μ-th packet is encrypted by SSH.

4.2 Flow Behavior Calculation Function

This function has three steps: the first is to detect sub-flows
based on packet direction in flow x; the second is to deter-
mine the sub-flow located at the end of the user authenti-
cation protocol; the third is to calculate the delta length of
initial and middle packets of the sub-flow to identify the user
authentication method employed in flow x.

In the first step, this function extracts a repetition of
request and response by investigating the direction of each
packet from the initial point of the user authentication proto-
col: xi−2:i is detected when the repetition is di(x) = outgoing,
di−1(x) = incoming, and di−2(x) = outgoing. Here, di(x) and
xi−2:i denote the i-th packet direction and the sub-flow, re-
spectively. The sub-flow xi−2:i consists of three consecutive
packets from (i − 2)-th to i-th.

Next, this function determines whether the sub-flow
is located at the end of the user authentication proto-
col. This function proceeds to the last step when δi(x)
meets either condition: (1) δi(x) ∈ Zs; or (2) δi(x) ∈
Z f and ∀ j ¬x j−2: j s.t. i < j. Here, δi(x) is the delta length
of the last packet in sub-flow xi−2:i; Zs and Z f are the range
of δi(x) in the case of an authentication success and failure,
respectively. Simply put, the first condition is used for se-
lecting the sub-flow that includes the notified packet of an
authentication success; the second is used for selecting the
sub-flow that includes the notified packet of an authentica-
tion failure and is the last in the flow.

Finally, this function calculates the delta length from
the first and middle packets in sub-flow xi−2:i. These values,
δi−1(x) and δi−2(x), are input to the next function for identi-
fying the user authentication method employed in flow x.

4.3 User Authentication Method Identification Function

This function identifies the user authentication method in
flow x. We show the relationship between conditions and re-
sults in Table 3, where each set denotes the range of the delta
length in each user authentication method. This function
outputs the result corresponding to the condition in which
δi−1(x) and δi−2(x) meet. For example, this function deems
the method employed in flow x to be public-key if both
δi−1(x) ∈ Zhk and δi−2(x) ∈ Zk are true. It should also be
pointed out that an “unknown” result means a method that
was not identifiable by our approach.

Table 3 Relationship between conditions and results.

Condition Result
δi−1(x) ∈ Zp password
δi−1(x) ∈ Zc challenge-response
δi−1(x) ∈ Zhk and δi−2(x) ∈ Zk public-key
δi−1(x) ∈ Zhk and δi−2(x) ∈ Zh host-based
otherwise unknown

5. Evaluation

In this section, we evaluate the effectiveness of our approach
through experiments on six datasets. The evaluation points
are mainly given for (1) the identification accuracy of user
authentication methods, and (2) the detection accuracy of
SSH dictionary attacks. The accuracy is calculated from two
metrics: true positive and false positive.

5.1 Testing and Training Datasets

The four datasets in Table 4 were used as a “testing dataset”
to assess the validity of our approach. D3, D4, D5, and D6
were the sets of flows captured at each edge in four cam-
pus networks. The prefix length of the first two networks
was 16, and the prefix length of the other networks was 20.
Each network connected to the Internet by a 10 Gbps link.
The two datasets, D1 and D2 in Table 2, were used as a
“training dataset” to determine the parameters relevant to
our approach, and their details were described in Sect. 3.1.
As expected, TCP control packets were removed from the
training and testing datasets.

As shown in Table 4, the flows in each dataset are cat-
egorized according to two labels. The first label is the type
of user authentication method employed in the flow, and the
second is whether the flow is a dictionary attack. The two
labels, corresponding to the individual flows, are determined
by means of the following: (1) log file investigation at SSH
servers, (2) collation of source and destination addresses in
white and black lists, (3) scan of allowed user authentication
methods on SSH servers [32], [33], and (4) comparison with
known flows.

5.2 Metrics

A common way to characterize the identification and detec-
tion accuracy is through two metrics known as true posi-
tive and false positive [34]. True positive is the proportion
of flows given correct labels, and false positive is the pro-
portion of flows given incorrect labels. These metrics are
described as follows:

T (DL) =
∑

x∈DL

φ( f (x), L)
|DL|

, F (DL) =
∑

x∈D̄L

φ( f (x), L)

|D̄L|
.

Here, DL and D̄L are the set of flows given the label L and
the set of the other flows in the testing dataset D, respec-
tively. The absolute values of DL and D̄L are the number of
elements in each set. As an example, for a label L of pass-
word authentication, |D3L| in Table 4 is 34013 from the sum
of flows of the normal connections and dictionary attacks;
and |D̄3L| is 18285 from the between of |D3| and |D3L|. In
addition, f (x) denotes the predicted label of the flow x by
our approach, and φ is an indicator function: φ(a, b) = 1 if
a = b, and φ(a, b) = 0 if a � b.
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Table 4 Number of flows in testing datasets.

Normal Connection Dictionary Attack
Total

password chal-resp public-key host-based password chal-resp
D3 192 110 848 0 33821 17327 52298
D4 286 164 119 0 28005 12508 41082
D5 135 97 72 0 7818 3447 11569
D6 149 52 516 125 3594 963 5399

Table 5 Identification accuracy of user authentication methods.

password chal-resp public-key host-based
T F T F T F T F

D3 0.991 0.000 0.993 0.000 0.984 0.000 — 0.000
D4 0.988 0.000 0.995 0.000 0.924 0.000 — 0.000
D5 0.993 0.000 0.979 0.000 1.000 0.000 — 0.000
D6 0.983 0.000 0.985 0.000 0.996 0.000 0.976 0.000

Table 6 Number of flows in testing datasets after removal by our approach.

Normal Connection Dictionary Attack
Total

password chal-resp public-key host-based password chal-resp
D3∗ 192 110 13 0 33821 17327 51463
D4∗ 286 164 9 0 28005 12508 40972
D5∗ 135 97 0 0 7818 3447 11497
D6∗ 149 52 2 3 3594 963 4763

5.3 Identification Accuracy of User Authentication Meth-
ods

The purpose of the experiments is to verify the identification
performance of our approach. The experimental procedures
consist of training and testing phases. In the training phase,
the ranges of delta length of sub-flows for each user authen-
tication method were derived from the analysis of the train-
ing datasets, and the ranges were set as the parameters of our
approach: Zs = [−16], Z f = [16, 32], Zp = [96], Zc = [32],
Zkh = [256, 640], Zk = [112, 432], and Zh = [16]. The de-
tails are described in Sects. 3.3 and 4.3. In the testing phase,
the user authentication method of each flow in the testing
datasets was identified by our approach, and the output was
compared to the label given to the flow. Then, we quantified
the comparison as true positive or false positive. Note that
our approach output “unknown” when the user authentica-
tion method was not identifiable for a flow.

Table 5 shows the identification accuracy of user au-
thentication methods. Although a few errors occurred, our
approach kept the accuracy high even in the worst case of
each user authentication method: (1) the true positives of
password, challenge-response, public-key, and host-based
authentication took values of 0.983, 0.979, 0.924, and 0.976,
respectively; and (2) the false positives of all cases were
equal to zero in the experiments because our approach
recorded an unknown response instead of an incorrect label
for the user authentication methods. The experimental re-
sults imply that our approach correctly removed more than
98% of the total flows of non-keystroke based authentication
that are not due to dictionary attacks, and thus our approach
represents a breakthrough in improving practical detection.

The causes of the errors were mainly in four categories.

In the first category, the errors were attributed to packet loss
and packet retransmission. By massive connections travers-
ing an observation point, packet loss occurred in bursts at
the capture machine, and this led to changes of flow behav-
iors. For this reason, a total of 727 flows were incorrectly
identified. In the second category, the errors were attributed
to padding flows. The SSH specification allows variable
amounts of padding to be added to packets before encryp-
tion, and thus the padding option complicated the traffic
analysis. For this reason, a total of 191 flows were incor-
rectly identified. In the third category, the errors were at-
tributed to dictionary attacks against the old version of the
SSH protocol. The old version had no sub-protocols, that is,
no transport layer, user authentication, and connection sub-
protocols, and accordingly, the flow behaviors of the old ver-
sion were quite different from those of the current version.
For this reason, a total of 69 flows were incorrectly identi-
fied. In the fourth category, the cause of a few errors could
not be specified. For this reason, a total of 17 flows were
incorrectly identified.

5.4 Detection Accuracy of SSH Dictionary Attacks

The purpose of the experiments is to verify improvement
of the detection performance by our approach. First, as de-
scribed in Sect. 5.3, the flows of non-keystroke based au-
thentication were removed from the testing datasets. Table 6
shows the testing datasets after removing the unnecessary
flows. Then, dictionary attacks were detected by two imple-
mentations, based on the techniques of [9] and [12], in the
testing datasets before and after the removal. The first im-
plementation detected the aggregated flows, for which the
number from one source exceeded a pre-defined threshold
during a given time interval. Here, we set the threshold
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Table 7 Detection accuracy of SSH dictionary attacks by the implementation of [9].

Normal Connection Dictionary Attack Normal Connection Dictionary Attack
T F T F T F T F

D3 0.331 0.024 0.975 0.668 D3∗ 1.000 0.024 0.975 0.000
D4 0.834 0.019 0.980 0.165 D4∗ 1.000 0.019 0.980 0.000
D5 1.000 0.009 0.990 0.000 D5∗ 1.000 0.009 0.990 0.000
D6 0.301 0.018 0.981 0.698 D6∗ 1.000 0.018 0.981 0.000

Table 8 Detection accuracy of SSH dictionary attacks by the implementation of [12].

Normal Connection Dictionary Attack Normal Connection Dictionary Attack
T F T F T F T F

D3 0.262 0.003 0.996 0.737 D3∗ 0.958 0.003 0.996 0.041
D4 0.790 0.005 0.994 0.209 D4∗ 0.980 0.005 0.994 0.019
D5 0.763 0.001 0.998 0.236 D5∗ 1.000 0.001 0.998 0.000
D6 0.238 0.000 1.000 0.761 D6∗ 0.975 0.000 1.000 0.024

and the time interval as 20 flows and 60 seconds, respec-
tively. The second implementation detected the individual
flows, for which the input time of a username and password
pair exceeded a pre-defined threshold. Here, we set the in-
put time as 1.5 seconds. The reason for selecting them is
that major detection methods cover the two granularities of
flows. Finally, the true positives and false positives were
calculated from the detection results.

The detection accuracy by the first implementation is
shown in Table 7. For the testing datasets before the removal
of unnecessary flows, some detection errors occurred in the
normal connections of D3, D4, and D6. The errors were
caused by the flows of automated tasks, which employed
non-keystroke based authentication; obviously, the reason
for the true positive of 1.000 in D5 was that the dataset did
not include the flows of automated tasks. Specifically, 1451
flows in total were incorrectly deemed to be dictionary at-
tacks. The detection accuracy by the second implementa-
tion is shown in Table 8. For the testing datasets before the
removal of unnecessary flows, the true positives of dictio-
nary attacks in Table 8 were superior to those in Table 7
whereas the true positives of normal connections in Table 8
were inferior to those in Table 7. The decrease in the ac-
curacy was attributed to not only the flows of automated
tasks, but also all flows with non-keystroke based authen-
tication. Specifically, 1680 flows in total were incorrectly
deemed to be dictionary attacks. For the testing datasets af-
ter the removal in Tables 7 and 8, the true positives of normal
connections exceeded 0.950 in all cases; the true positives
of dictionary attacks remained the high values, which were
equal to those before removing the unnecessary flows; thus
our approach increased their detection accuracy without a
drawback. Consequently, the experimental results show that
our approach improves the performance of major detection
methods against SSH dictionary attacks.

We then discuss the computational complexity. The
complexity is negligible in theory because our approach out-
puts one identification result only by the following: (1) ex-
traction of a few flow behaviors; and (2) comparison of sev-
eral times. This supports the possibility of identifying user
authentication methods on the fly. Thus our approach can
be applied to real-time detection methods by assuming opti-

mized implementation.
In addition to dictionary attack detection, our approach

is useful in several situations. Dusi et al. [35] proposed a
technique to detect SSH tunnels because they represented
a significant security threat for any networks protected by
firewalls. The authors lessened the problem of SSH tunnel
detection by assuming that the user authentication method
of an SSH connection was given. Thus, our approach will
support practical SSH tunnel detection. Another example
is controlling and blocking flows according to institutional
policies. Our approach will contribute to realizing secure
networks which only permit flows of public-key authentica-
tion.

6. Conclusion

In this paper, we proposed a new approach to identify user
authentication methods by analyzing SSH connections at the
flow level. This approach has two key innovations, the use
of flow behaviors for identification and the consideration
of reference points for flow behaviors, to resolve the prob-
lems caused by the confidentiality and flexibility of the SSH
protocol. We evaluated the effectiveness of our approach
through experiments on real network traffic at the edges
in campus networks, and the experimental results showed
that our approach provides high identification accuracy with
only a few errors.

In our future work, we will experiment further on var-
ious SSH connections collected from enterprise or campus
networks. From the results, we intend to continue improving
our approach with the ultimate goal of being able to enable
secure networks.
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