
796
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

PAPER Special Section on Information and Communication System Security — Against Cyberattacks —

Efficient Data Possession Auditing for Real-World Cloud Storage
Environments

Da XIAO†a), Lvyin YANG†, Nonmembers, Chuanyi LIU††, Member, Bin SUN†,
and Shihui ZHENG†, Nonmembers

SUMMARY Provable Data Possession (PDP) schemes enable users to
efficiently check the integrity of their data in the cloud. Support for massive
and dynamic sets of data and adaptability to third-party auditing are two
key factors that affect the practicality of existing PDP schemes. We pro-
pose a secure and efficient PDP system called IDPA-MF-PDP, by exploit-
ing the characteristics of real-world cloud storage environments. The cost
of auditing massive and dynamic sets of data is dramatically reduced by
utilizing a multiple-file PDP scheme (MF-PDP), based on the data update
patterns of cloud storage. Deployment and operational costs of third-party
auditing and information leakage risks are reduced by an auditing frame-
work based on integrated data possession auditors (DPAs), instantiated by
trusted hardware and tamper-evident audit logs. The interaction protocols
between the user, the cloud server, and the DPA integrate MF-PDP with
the auditing framework. Analytical and experimental results demonstrate
that IDPA-MF-PDP provides the same level of security as the original PDP
scheme while reducing computation and communication overhead on the
DPA, from linear the size of data to near constant. The performance of the
system is bounded by disk I/O capacity.
key words: provable data possession, third-party audit, tamper-evident
audit logs, trusted hardware

1. Introduction

Cloud storage enables users to store large amounts of data
at low costs on remote hardware, hosted by Storage Service
Providers (SSPs). Despite its benefits and popularity, this
new data hosting paradigm introduces additional security
challenges [16]. Users are frequently concerned that their
outsourced data may become damaged or lost for various
reasons; they may also be concerned that SSPs might at-
tempt to conceal data loss incidents caused by administra-
tive errors in order to preserve their reputations, or discard
data that are rarely accessed.

As a potential solution to the above issues, Provable
Data Possession (PDP) [1] enables users to verify if their
outsourced data is being kept intact, without downloading
all of their data from the cloud. Though numerous PDP
schemes have been proposed in recent years [2]–[6], [12]–
[14], there is still considerable room of improvement to

Manuscript received May 26, 2014.
Manuscript revised September 30, 2014.
Manuscript publicized December 4, 2014.
†The authors are with School of Computer Science, Beijing

University of Posts and Telecommunications, Beijing, 100876,
China.
††The author is with School of Software Engineering, Beijing

University of Posts and Telecommunications, Beijing, 100876,
China.

a) E-mail: xiaoda99@gmail.com
DOI: 10.1587/transinf.2014ICP0016

apply these theoretical schemes to actual cloud storage en-
vironments. Two issues seriously affect the practicality of
PDP schemes. First, data stored in the cloud is massive
and dynamic in nature, making the original PDP scheme [1]
for a single static file unsuitable. Later schemes that sup-
port dynamic data updates [2]–[6] often introduce compli-
cated authenticated data structures, which add significant
overhead to the schemes. Moreover, when naively extend-
ing these single-file schemes to apply to a large number of
files, which is a common scenario in cloud storage, the over-
head becomes prohibitively larger. Second, to alleviate the
burden on users, a number of schemes advocate the use of
Trusted Third Parties (TTPs) to perform data possession au-
diting on behalf of users [5], [12]–[14]. However, they do
not explicitly propose how to implement such a TTP in ac-
tual cloud storage environments. Conventionally, TTPs are
instantiated by independent organizations. This introduces
the problem of potential sensitive information leakage to the
TTP [5], as well as increased system deployment and oper-
ational costs. Alternatively, the TTP can be integrated with
the cloud storage service. However, it may be difficult to
convince users that the audit results produced in such a set-
ting are trustworthy.

In this paper, we improve the practicality of data pos-
session auditing by tackling the above two issues from a dif-
ferent perspective. While most existing schemes are built
upon generalized assumptions about usage patterns and se-
curity model of an idealized outsourced storage model, we
demonstrate that it is possible to construct more efficient so-
lutions by identifying and leveraging some important char-
acteristics of real-world cloud storage environments and ap-
plications. We make contributions in the following aspects:

1) To efficiently audit massive and dynamic sets of
data, we identify the specific data update pattern for cloud
storage and propose a group-based update model. Based
on this observation, we define a new PDP model called
Multiple-File PDP (MF-PDP) and construct a secure and ef-
ficient MF-PDP scheme. The overhead of auditing massive
and dynamic sets of data is reduced by checking a group of
files aggregately.

2) To address concerns about third-party auditing, we
adopt the semi-trusted SSP assumption and propose a data
possession auditing framework based on integrated TTPs,
which are tamper-resistant hardware devices bundled with
cloud servers that act as data possession auditors (DPAs).
The semi-trusted SSP interacts with the DPA to produce

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers



XIAO et al.: EFFICIENT DATA POSSESSION AUDITING FOR REAL-WORLD CLOUD STORAGE ENVIRONMENTS
797

tamper-evident logs, providing trustworthy audit results to
users. In this manner, third-party auditing costs are reduced,
and the risk of information leakage to auditors is minimized.

3) To integrate MF-PDP with the auditing framework,
we design the interaction protocols between the user, the
SSP and the DPA, which constitutes IDPA-MF-PDP. The
protocols impose minimal processing and storage require-
ments on the DPA, making hardware-based implementation
feasible.

4) We have implemented a prototype IDPA-MF-PDP
system, and have conducted a theoretical analysis and ex-
perimental evaluation of its security and efficiency. Results
demonstrate that IDPA-MF-PDP provides the same level of
security as the original PDP scheme, while reducing com-
putational and communication overhead on the DPA from
linear in the size of the file group to near constant. The
tamper-evident audit log provides a trustworthy record of
audit results. The performance of the system is bounded by
disk I/O, rather than cryptographic computation.

2. Multiple-File Prove Data Possession

2.1 Data Update Model

We observed that, in contrast to data update patterns for
traditional storage systems (e.g., a file system), file objects
written to cloud are rarely updated. For example, in backup
and archiving, which are currently the dominant cloud stor-
age applications, the data written to cloud are typically file
system snapshots or archival objects, which are static in na-
ture. The data operation interfaces provided by primary
cloud storage providers also reflect this pattern. For ex-
ample, Amazon S3 provides a simple object interface that
supports read, write, list, and delete operations for an entire
object [7]. In addition, delete operations for cloud data are
relatively rare events and tend to occur in a batch manner,
such as when an archive of documents exceeds its retention
period.

Based on the above observations, we propose a data
update model for cloud storage using file groups as the
basic update units. It consists of three update operations:
1) create group: an empty file group is created; 2) add file:
a new file is added to the group, after which it cannot be
modified or removed; 3) remove group: the file group is re-
moved, along with all of the files in the group. Note that
update operations for an existing file can be indirectly sup-
ported by adding a new version of the file while retaining
the old version, similar to the versioning feature in the S3
interface [8].

2.2 MF-PDP Scheme

A MF-PDP scheme is a collection of five polynomial-time
algorithms:

KeyGen() → (pk, sk) is a probabilistic key generation al-
gorithm run by both the user and the DPA. It produces

a pair of matching public and secret keys. We use
(pk, sk) to denote the user’s key pair.

Add(sk, F, α,GID) → (F′,M, α′) is an algorithm run by
the user to add a file to a file group. It encodes the file,
generates the verification metadata for it and updates a
persistent state, which is maintained for each file group
by the DPA. It accepts as inputs the user’s secret key sk,
a file F, the persistent state α and the group identifier
GID, and produces the encoded file F’, the verification
metadata M and the updated persistent state α′.

Challenge(α) → chal is a probabilistic algorithm run by
the DPA to generate a challenge of the current file
group. It accepts as input the persistent state α, and
produces a challenge chal.

Prove(pk, chal, F′,M, α) → P is run by the SSP to gener-
ate a proof for a challenge. It accepts as input the user’s
public key pk, the challenge chal, a group of file blocks
F’, their corresponding verification metadata M, and
the persistent state α. It produces a proof P.

Fig. 1 Algorithms of MF-PDP scheme.



798
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

Verify(pk, chal, P, α) → {0, 1} is run by the DPA to vali-
date a proof. It accepts as input the user’s public key
pk, the challenge chal, the proof P and the persistent
state α. It returns a ‘1’ bit if the verification succeeds,
and ‘0’ otherwise.

A naive MF-PDP scheme can be obtained by check-
ing each file separately, using some single-file PDP scheme
(e.g. [1]). Obviously, the complexity of such a scheme is
O(n), where n is the number of files in the group. Here we
describe a more efficient scheme that aggregates challenges
proposed in [11]. The primary idea is to consider a file group
as a single virtual file; new files are added to the group by
appending them to the end of the virtual file. By checking
the virtual file in one challenge, all files in the group are
checked. Every block in the group has a virtual index, i.e.,
its index in the virtual file, which is used to compute homo-
morphic authenticators.

Our MF-PDP scheme is described in Fig. 1, which is a
simplified version of the scheme proposed in [11]. Similar
to single-file PDP schemes, in the challenge phase of MF-
PDP, the DPA asks the SSP for proof of c file blocks des-
ignated by virtual indices. SSP returns an aggregate block
and an aggregate authenticator for these blocks, which are
verified by the DPA. The c blocks are randomly distributed
among all the blocks in the group. We utilize two cryp-
tographic primitives: a cryptographic hash function H for
generating authenticators, and a family of pseudo-random
permutations (PRP) π[T] for generating the random virtual
indices of the sampled blocks. The persistent state α com-
prises the size of the current file group, denoted by B, and is
initialized to zero when the group is created. Refer to [11]
for more details.

3. Auditing Framework with Integrated DPA

As an auditing framework-independent and concrete PDP
scheme, MF-PDP enhances the efficiency of checking a
group of files. To further reduce the overhead of the en-
tire audit workflow and alleviate the burden on users, we
propose an auditing framework based on integrated DPAs.
This section describes the framework itself. The interaction
protocols that integrate MF-PDP with the framework will be
discussed in the following section.

3.1 Security Model and Auditing Framework

Our framework’s security model has three roles: User, Ser-
vice Storage Provider (SSP), and Data Possession Auditor
(DPA). The user is trusted. The SSP is semi-trusted, i.e.,
it will comply with the protocols most of the time, unless
it attempts to conceal data corruption. Similar to the eco-
nomically rational adversary SSP model [17], this reflects
the fact that an SSP’s main incentive is not to corrupt users’
data, but to avoid reputational and economic loss. The DPA,
as the trusted entity, executes data possession auditing in-
dependently and will not conspire with any malicious party.

Fig. 2 Interaction process in the auditing framework.

The user only trusts the audit results generated by the DPA.
To reduce the deployment and operational costs of third

party auditing, and minimize information leakage risks, the
DPA is integrated with cloud servers in our auditing frame-
work. The DPA executes possession auditing by periodi-
cally interacting with the SSP, and generates logs that record
audit results. The logs are stored by the SSP and can be
verified by any party holding the DPA’s public key. Users
can remain off-line most of the time, and check the audit
results by examining the log whenever necessary. The in-
teractions between the user, SSP and DPA are displayed in
Fig. 2. (Step 1 and Step 2 also require interactions between
the SSP and the DPA, which are not displayed to maintain
clarity. Steps 2 and 3.1 through 3.4 can be interwoven and
executed repeatedly.) We emphasize that the integrated DPA
is a passively responding entity, unlike a conventional TTP.
Auditing operations are initiated by the SSP and audit re-
sults are stored by the SSP. This reduces the processing and
storage requirements for the DPA, making hardware-based
implementation feasible.

Since the DPA is integrated with the untrusted cloud
servers, it is imperative to specify how to bootstrap the trust
of users on DPAs. In our design, an independent third party
(called DPA provider) provides DPAs to different SSPs. The
DPA provider maintains a mapping between SSPs and theirs
DPAs’ public keys. When a user uses an SSP’s service, he
retrieves the public keys of DPAs on this SSP from the DPA
provider. As the user does not get DPA’s public key from
the SSP, the case that the SSP gives a forged DPA public
key to the user is avoided. The above is only a high-level
description of the DPA deployment process. More detailed
design is omitted due to space limitations. Note that the
DPA provider does not take part in the interaction process
of auditing and thus will not become a bottleneck.

3.2 Implementation of DPA

We propose implementing the DPA with a piece of tamper-
resistant, trusted hardware having the following properties:
1) No entities can rewrite its state and pre-loaded programs,
or access any of its secret key information; 2) When a phys-
ical attack is detected, it will destroy itself by resetting the
memory area containing all critical secret data. Existing



XIAO et al.: EFFICIENT DATA POSSESSION AUDITING FOR REAL-WORLD CLOUD STORAGE ENVIRONMENTS
799

secure coprocessor products, such as the IBM 4764 [15], can
satisfy the requirements listed above. Because the DPA is at-
tached to the cloud servers, e.g., in the form of a PCI card,
the SSP should guarantee that the DPA will be functioning
properly and will not be attacked in either a physical or log-
ical manner. If the audit log becomes unverifiable because
of the damage to the DPA, the SSP will be held accountable.

In real-world cloud storage environments, there are
typically a large number of file groups owned by a large
number of users. Because of the limited processing capac-
ity of a single DPA, multiple DPAs should work collabora-
tively to audit a large number of file groups. These DPAs
could form a cluster or a virtual cloud [18] in the SSP’s in-
tranet. The simplicity of the functionality and internal state
of the DPA, discussed in Sect. 4, ensures the scalability of
the DPA cluster, e.g., each DPA may be responsible for file
groups owned by a subset of users. The detailed design of
multiple DPAs is beyond the scope of this paper.

3.3 Tamper-Evident Audit Logs

Audit logs, which are structured on-disk data, are generated
by the DPA to record audit results (Fig. 3). A Log Entry
(LE) records the result of one audit operation. LEs for one
file group are linked into a list. By consulting the list, a user
can check the audit history of that file group. An LE con-
tains five fields: result is the result of this audit operation,
equaling ‘1’ for intactness and ‘0’ otherwise; time is the
timestamp indicating when the LE was generated; thus, it
ensures the freshness and non-reproducibility of an LE; eid
is the unique identifier of an LE in the log; prev eid is the
eid of the last LE auditing the same file group, and is used to
link the list; sig is the RSA signature generated by the DPA
using its secret key dsk based on the aforementioned four
fields.

Every file group has an Entry reference (ER), which
contains five fields: UID is the identifier of the user and
GID is the identifier of the file group; time is the timestamp
indicating when the ER was created or modified; sig is an
RSA signature generated by the DPA using dsk based on
the aforementioned four fields. ER has the same eid as the
last LE of the group. If the file group has not been audited
yet, i.e., there is no LE, the ER’s eid is NULL. An ER is
generated when the file group is created, and acts as the head
node of the list.

Fig. 3 Audit log of a file group.

An example of the audit log of a file group is shown in
Fig. 3. Notice that when multiple file groups coexist, their
LEs may be physically stored in a interwoven way, though
logically separable by the prev eid field.

As the tamper-evident audit logs are signed by the DPA
and can be publicly verified, they can be seen as impartial
evidence. Thus, neither the User nor the SSP can cheat in
this audit framework for its own sake.

4. Interaction Protocols

Assume that User has obtained DPA’s public key from the
DPA provider, as described in Sect. 3.1. In order to integrate
MF-PDP with the audit framework, in this section we de-
scribe the interaction protocols between User, DPA and SSP.
It encompasses the registration step in DPA, the procedures
of challenge-response in MF-PDP and trustworthy audit re-
sults creation and retention, forming the complete IDPA-
MF-PDP system. The key design principle is to minimize
the computation and storage requirement on DPA while en-
suring security. To achieve this goal, special attention is paid
to the fact that the integrated DPA, different from a conven-
tional TTP, is a passively responding device who has direct
communication channel only with the SSP.

In all the protocols, (pk, sk) stands for the user’s key
pair generated by method MF-PDP.KeyGen (see Sect. 2.2),
and (dpk, dsk) for the DPA’s key pair. CHECK() is run by
DPA to verify the validity of the inputs. It is unlikely that
CHECK() fails. If it does, CHECK() terminates the inter-
action by returning an error message to SSP. Then SSP can
correct the mistake and resend a request to DPA to continue
the protocol. SIGN MSGsk(M) is a function run by DPA
to produce a signed message from M using private key sk
and VERIFY MSGpk(M) is used to verify a singed M using
public key pk.

4.1 Protocol for Registering User to DPA

As the initialization step of the interaction, Fig. 4 explains

Fig. 4 Protocol for registering User to DPA.



800
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

Fig. 5 Protocol for creating a file group.

how DPA gets new users’ information. User first generates
its key pair and sends the public key pk to SSP. SSP gen-
erates a UID for this User, and passes UID and pk to DPA
for storage. DPA generates a signed message userInfo using
its secret key dsk on (UID, pk), and passes userInfo to User
through SSP. By verifying userInfo, User can know whether
DPA has saved and matched its information or not, and save
UID locally for future use.

4.2 Protocol for Creating a File Group

Figure 5 shows the interactions of creating a file group. As-
sume DPA has a list of UIDs for which it is responsible.
DPA preserves a persistent state α for each file group owned
by these users.

User sends a request to SSP asking for creating a file
group. SSP passes this request and User’s UID to DPA. DPA
first verifies if the UID exists in his list, then generates a
GID for the new group and sets its α to 0. After that, DPA
generates an ER for this file group and initializes its fields.
DPA returns ER to SSP along with signed msg produced by
method SIGN MSG on fields GID and α. SSP extracts GID,
α and ER from signed msg for storage and passes it to User.
User verifies signed msg and saves GID and α locally.

4.3 Protocol for Adding a File to a File Group

Figure 6 shows the interactions of add file operation. User
invokes MF-PDP.Add method, and sends the encoded file
F’, the homomorphic authenticator M, the number of blocks
t and GID of the target group to SSP, requesting for adding
a file. SSP passes UID, GID and t to DPA. On receiving
the request, DPA updates the file group’s persistent state α
and returns a signed message of GID and the modified α to
SSP. SSP saves F’, M and α, and returns the signed message
to User for verification of the successful execution of the
operation by DPA.

Fig. 6 Protocol for adding a file to a file group.

Fig. 7 Protocol for deleting a file group.

4.4 Protocol for Deleting a File Group

Figure 7 shows the interactions of deleting a file group. User
sends the target GID and a request for deletion to SSP. SSP
passes this request to DPA. DPA deletes the information
about the group and returns a signed message of GID and
a flag of deletion to SSP. SSP then deletes all the data about
this file group and returns the signed message to User for
verification.

4.5 Protocol for Auditing a File Group

Figure 8 shows the interactions of auditing a file group. Au-
dit process is launched by SSP periodically. The time in-
terval between two consecutive audits is called an epoch.
On receiving an audit request, DPA first checks UID and
GID, then sends a challenge chal to SSP. SSP calculates a
proof P and returns it together with the ER of this file group.
DPA verifies ER and generates a new LE, then renews the
fields of ER and resigns it. If it is the first time that this file
group is audited, the current ER.eid is NULL, so the prev id



XIAO et al.: EFFICIENT DATA POSSESSION AUDITING FOR REAL-WORLD CLOUD STORAGE ENVIRONMENTS
801

field of this LE is also NULL. If verification of ER fails,
DPA terminates the interaction without generating any LE.
Finally, DPA sends the new LE and the renewed ER to SSP
for storage. We emphasize that though it is expected that
SSP should interact with DPA to generate an LE in each
epoch, in our protocols it is not an error if no LE is gener-
ated in some epoch. The audit log only faithfully represents
the audit history. It should be judged by User whether SSP
has behaved improperly or not.

4.6 Protocol for Checking the Audit Log

Figure 9 shows the interactions of checking the audit log
by User. User sends the file group’s GID to SSP requesting
a log list l (with ER), or a section of it corresponding to a
specific time period. Upon receiving l and ER, User first
verifies the ER, then verifies each LE along the log list until
the prev id field of the last LE points to NULL or the time
field reaches the boundary of the time period. Note that this
protocol only ensures the trustworthiness of the audit log. To
know if the file group has undergone any corruption during
the period, User needs to examine the result field of each log
entry.

Fig. 8 Protocol for auditing a file group.

Fig. 9 Protocol for checking the audit log.

5. Security and Complexity Analysis

5.1 Security Analysis

We decompose data possession auditing with IDPA-MF-
PDP into two parts: audit result generation and audit result
retention, and use three theorems to characterize its secu-
rity properties. We assume that the DPA is trusted, i.e., no
motivated parties can modify the critical secret data in the
DPA, such as the secret key, the internal clock, or the pre-
loaded programs (see Sect. 3.2). We formulate the security
of IDPA-MF-PDP as three theorems, the proofs of which are
given in Appendix.

THEOREM 1. Suppose the DPA correctly holds the
persistent state of a file group. Given the same number of
corrupted blocks to detect and the same number of blocks to
sample from the group, the detection probability of MF-PDP
asymptotically equals that of PDP when the total number of
blocks to check possession is sufficiently large, compared to
the number of sampled blocks.

THEOREM 2. Throughout the life cycle of a file group
consisting of normal interactions defined in Sect. 4, DPA
correctly holds the persistent state of the group.

Theorem 1 and Theorem 2 ensure the correctness of the
result generated during each audit. The equation P ≈ ce/t
derived in the proof of Theorem 1 implies that to achieve a
fixed detection probability P for a fixed number of corrupted
blocks e, the number of sampled blocks c is asymptotically
proportional to the file group’s size t. Figure 10 illustrates
how c grows with t under different e values for a detection
probability of 0.99.

Before stating Theorem 3, we first provide three defi-
nitions.

DEFINITION 1 (Verifiability of Entry Reference). ER
is verifiable iff :

1) Its signature can be verified by the DPA’s public key

Fig. 10 Number of sampled blocks under different number of total
blocks and different number of corrupted blocks (e) for detection proba-
bility of 0.99.



802
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

dpk;
2) ER.time falls within the latest epoch.
DEFINITION 2 (Verifiability of Log Entry). LE is ver-

ifiable iff the LE’s signature can be verified by the DPA’s
public key dpk.

DEFINITION 3 (The Consistency of audit history).
The audit history h of file group G is consistent iff :

1) ER is verifiable;
2) If ER.eid is not NULL, the LE pointed to by ER.eid

must exist and be verifiable;
3) For any LE in the LE chain, if LE.prev id is not

NULL, the LE it points to must exist and be verifiable.
THEOREM 3. The audit history of a file group can

only make transitions between consistent states by means
of interaction between the DPA and SSP, according to the
protocol described in Sect. 4.6.

Theorem 3 ensures the trustworthiness of the audit log.
In practice, a user can conveniently check the consistency
of a file group’s whole or recent audit history as stated in
Sect. 4.6.

5.2 Complexities

In this section, we analytically quantify the complexities of
I/O, computation, communication and storage overhead of
IDPA-MF-PDP. The complexities are quantified against the
number of files n in a file group, irrespective of the size of
each file.
I/O Overhead The SSP’s I/O overhead is caused by reading
sampled blocks from the disk. As analyzed in Sect. 5.1, for
a fixed number of corrupted blocks to detect and fixed detec-
tion probability, SSP is required to read c sampled blocks,
where c is proportional to the file group’s size. The I/O com-
plexity is O(n).
Computation Overhead In the Prove algorithm, the SSP
computes A = A[i1] · . . . · A[ic] mod N, which contains
c multiplications. The complexity is O(n). In the Verify
algorithm, the DPA computes τ1 = Ae mod N and τ2 =

H(GID ‖ i1) · . . . · H(GID ‖ ic) · gF mod N which contains c
multiplications and 2 exponentiations. The computational
overhead is dominated by exponentiations; therefore, the
complexity is O(1). Note that although the Prove algorithm
has greater complexity than Verify, its absolute overhead is
substantially smaller. This is displayed in the experimental
results in Sect. 6.2.
Communication Overhead The communication overhead
is the number of bits sent between the SSP and the DPA in
the audit protocol. DPA sends a challenge chal = (c, k) to
the SSP, then the SSP sends a proof P = (A, F) with the
current ER to the DPA; finally, the DPA sends the new ER
and LE to the SSP. The lengths of all these messages are
independent of the file group size. The complexity is O(1).
DPA storage overhead The DPA storage overhead is the
size of the keys and states that are stored locally by the DPA.
In IDPA-MF-PDP, the DPA stores the RSA key pairs (n, e, d)
and the persistent state α = (B). The complexity is O(1).

Table 1 Overheads of PDP, HMAC-PDP and IDPA-MF-PDP.

Table 1 summarizes the asymptotic complexities of
IDPA-MF-PDP including their formations, and compares
them with two baselines. One is the naive MF-PDP scheme
based on RSA single-file PDP scheme [1] (denoted as PDP).
The other is a light-weight keyed hash based MF-PDP
scheme (denoted as HMAC-PDP) constructed as follows:
The authenticators in HMAC-PDP are computed as keyed
hashes (e.g. HMAC-SHA1) over the concatenation of block
index and block content. In prove phase, the sampled blocks
are returned by the SSP along with their authenticators.
They are verified by recomputing the keyed hashes and com-
paring with the returned ones. The hash key is shared by the
user and the verifier, which can be instantiated either by a
traditional TTP or by an integrated DPA. The other aspects
of the scheme are the same as those in Fig. 1. Though a ma-
jor drawback of such a hash based MF-PDP scheme is the
lack of public verifiability, it has the advantage of avoiding
any expensive exponential computation. So we include it as
a very strong baseline for evaluating auditing efficiency. As
shown in the table, the reduction in computation and storage
overhead on the DPA from O(n) to O(1) is crucial for the im-
plementation of the integrated DPA using trusted hardware.

Note that the complexities of PDP are also quantified
against n files. A simple PDP has less complexities of I/O,
computation, and communication compared to IDPA-MF-
PDP in checking a single file. Although it is unnecessary for
PDP scheme to check multiple files, most users may like to
check the integrity of all files which he/she owns, so Table 1
is an appropriate comparison for real-world applications.

6. Implementation and Experimental Evaluation

6.1 Implementation and Experimental Setup

We have implemented a prototype system of IDPA-MF-PDP
to test its efficiency. For comparison, we have also imple-
mented the single-file-based naive MF-PDP scheme (PDP)
and the keyed hash based MF-PDP scheme described in
Sect. 5.2 (HMAC-PDP). For both baselines, third party au-
diting is instantiated either by the integrated DPA auditing
framework or by the traditional TTP, the first of which is de-
noted by an “IDPA-” prefix. This results in a total of four
baseline schemes, denoted respectively as PDP, IDPA-PDP,
HMAC-PDP and IDPA-HMAC-PDP. The code was written
in C on Linux. All cryptographic operations use the crypto
library of OpenSSL version 0.9.8o (OpenSSL, 1998) [9].

All experiments were conducted on three servers with
the same configuration: Intel Xeon Core 4 processor



XIAO et al.: EFFICIENT DATA POSSESSION AUDITING FOR REAL-WORLD CLOUD STORAGE ENVIRONMENTS
803

Fig. 11 Prove time of IDPA-MF-PDP and PDP/IDPA-PDP.

running at 2.27 GHz, 8GB RAM, and a 10000 RPM 146GB
SAS drive with an 16MB buffer. The three servers act as
the SSP, the integrated DPA and the traditional TTP. Since
mainstream secure coprocessors have weaker compute ca-
pability than server CPUs, we use a slowdown factor on the
DPA server to simulate the performance of a real integrated
DPA. IBM 4764 can generate 1024-bit RSA key pairs at a
speed of 2.16 per second [14]. By comparing this with the
results obtained on our server (14.92/s), we set the slow-
down factor to be 2.16/14.92 = 0.145.

The file sizes are randomly distributed among the in-
terval [0.5GB, 1GB]. The block size is 4KB. For IDPA-MF-
PDP, the number of corrupted blocks e to detect is a fixed
number regardless of the file group size. The number is set
to be 1% of the average file size, i.e. 0.75GB/4KB * 1% =
1875. The number of sampled blocks c is chosen so as to de-
tect corruption of e blocks with fixed detection probability
of 0.99. All reported results represent the mean of 5 trials.
As the results varied little across trials, the confidence inter-
vals are not presented.

6.2 Results

We tested the performance of auditing a file group (Sect. 4.5)
as it is the most frequently executed operation. The time of
an audit operation consists of four parts: I/O time of reading
sampled blocks from the disk by the SSP, computation time
of generating a proof by the SSP, computation time of veri-
fying a proof by the DPA, and communication time between
the SSP and the DPA.

Figure 11 shows the computation time of prove time of
IDPA-MF-PDP, PDP and IDPA-PDP. The computation time
of prove is determined by the number of sampled blocks. So
for both IDPA-MF-PDP and PDP/IDPA-PDP the prove time
show linear growth with the number of files. Nevertheless,
the prove time of IDPA-MF-PDP is still a little shorter than
that of PDP and IDPA-PDP due to only one modulus opera-
tion. For HMAC-PDP and IDPA-HMAC-PDP, the SSP does
not do any computation when generating a proof, leading to
a prove time of zero which is not shown in the figure.

Fig. 12 Verify time of IDPA-MF-PDP, HMAC-PDP, IDPA-HMAC-PDP,
PDP and IDPA-PDP.

Table 2 Overheads of IDPA-MF-PDP, IDPA-HMAC-PDP, IDPA-PDP
and PDP.

Figure 12 shows the verify time of the five schemes.
The verify time of IDPA-MF-PDP remains almost constant
while those of the other four grow linearly as the number
of files increases. When there are 40 files in the group,
compared with IDPA-MF-PDP’s verify time, IDPA-PDP’s
time is 29.5 times longer. This is because IDPA-MF-DPA
needs to do 2 exponentiations in verify phase while PDP
and IDPA-PDP needs to do 2n exponentiations, where n is
the number of files. Compared with IDPA-MF-PDP, IDPA-
HMAC-PDP’s verify time is about 4 times longer than that
of IDPA-MF-PDP when audit 40 files. Although IDPA-
HMAC-PDP does not do any exponentiation computation
in verify, the number of keyed hashes of blocks it needs to
check grows linearly with the number of files. The reduced
verify computation on DPA is crucial for trusted hardware-
based implementation.

Table 2 summarizes the overall overhead and its com-
positions of IDPA-MF-PDP compared with IDPA-HMAC-
PDP and IDPA-PDP when there are 100 files to audit.
To measure communication overhead, we limit the band-
width between the SSP and DPA server to 100Mbps. As
shown in the table, the verify, communication and log gen-
eration overheads of IDPA-MF-PDP are much lower than
those of the other two. This result is remarkable espe-
cially when considering that IDPA-MF-PDP uses RSA ex-
ponential computation while IDPA-HMAC-PDP uses very
light-weight keyed hash functions. We can also see that
the I/O time constitutes most (99.16%) of the overall over-
head of IDPA-MF-PDP, indicating that the performance of
the system is I/O bounded rather than computation bounded.



804
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

Although IDPA-HMAC-PDP has zero computation time in
Prove compared to IDPA-MF-PDP, its total prove cost (I/O
plus computation) is still close.

7. Related Works

Formal definitions for Provable Data Possession (PDP) and
Proof of Retrievability (POR) schemes were first provided
by Ateniese et al. [1] and Juels and Kaliski [10]. Ateniese
et al. [1] define the PDP model and propose efficient con-
structions of the scheme. In their schemes, random sam-
pling is used to reduce the overhead of verification. RSA-
based homomorphic tags are utilized for verifying the sam-
pled blocks aggregately, thus public verifiability is also pro-
vided. Homomorphic authenticators and random sampling
are also building blocks of our scheme.

The original PDP scheme [1] only supports checking
of a static file. In their subsequent work, Ateniese et al.
proposed a dynamic version of their PDP scheme. Their
idea is to predefine all future challenges during setup and
store pre-computed proofs as metadata. As a result, the
number of challenges a verifier can perform is fixed. Fur-
thermore, each update requires re-creating all the remain-
ing challenges, which is problematic for large files. Wang
et al. considered dynamic data storage in distributed sys-
tems [4]. The proposed scheme can determine the data cor-
rectness and locate possible errors. In another work, Wang
et al. constructed a scheme that integrates data dynamics
with public verifiability by TTP [5]. Fully dynamic data op-
erations, especially block insertions, are supported by ma-
nipulating the Merkle hash tree constructed for block tag
authentication. Erway et al. proposed another fully dynamic
PDP construction [3]. They extended the PDP model of
Ateniese et al. [1] to support provable updates to stored files
using rank-based authenticated skip lists. However, the ef-
ficiency of update operations remains in question. Li et al.
proposed the support of block insertions using SN-BN ta-
bles [6], which match the logical indices of blocks with their
actual positions. Though the support for insertion in these
dynamic PDP schemes is much like the add operation on
file groups in our scheme, we emphasize that the overhead
of preserving such complicated data structures is nonnegli-
gible. Additionally, these data structures may introduce new
problems to PDP schemes, such as the balance of the Merkle
hash tree adopted in [5].

All the aforementioned dynamic PDP schemes are de-
signed mainly for single file updating and have high updat-
ing and verification overhead, especially when naively ex-
tended to deal with multiple files (O(n)). Only [3] consid-
ered the problem of verifying multiple files in an extension.
The verification metadata is organized into a tree structure,
mimicking the file system hierarchy. The complexities of
updating and checking are both O(d · log2 n), where d is the
depth of the tree and n is the maximum number of leaves in
each skip list. The MF-PDP scheme proposed in this paper
leverages the specific data update pattern of cloud storage.
While being simple, it significantly reduces the overhead of

multiple-file checking (O(1)).
Based on the work of Wang et al. [5], a few researchers

have considered the practical issues of deploying third-
party-auditing-based PDP schemes in real-world cloud stor-
age environments, and proposed solutions. Their works are
mostly concentrated on multiple-SSPs support and scalabil-
ity. Zhu et al. [12] considered the situation where multi-
ple SSPs cooperate to provide storage service. They con-
structed a cooperative PDP scheme based on a multiprover
zero-knowledge proof system. The dynamic PDP scheme
proposed by Yang et al. [13] supports batch auditing for
multiple owners and multiple SSPs. The key idea of using
batch auditing to increase efficiency is similar to MF-PDP,
but they did not consider batch auditing for multiple files.
Wang et al. [14] constructed an identity-based PDP scheme
for distributed multi-cloud storage, to increase the scalabil-
ity of the system.

All these third party auditing schemes assume the exis-
tence of a TTP, without mentioning explicitly how to imple-
ment and deploy such a TTP in a secure and cost-effective
manner. In contrast, we propose a concrete implementation
of TTP with an integrated DPA, and an auditing framework
based on it. The framework is general and can be easily
integrated with various PDP schemes (e.g. MF-PDP).

8. Conclusion

In this article, we analyze the key factors that affect the
practicality of existing PDP schemes and provide a solution
based on characteristics of real-world cloud storage envi-
ronments. Theoretical analysis shows that IDPA-MF-PDP
has the same security property as the original PDP scheme,
and the audit results recorded in the tamper-evident audit
logs are trustworthy. IDPA-MF-PDP is secure. Complexity
analysis and experiments demonstrate that the communica-
tion and computation overhead on the DPA is reduced from
linear in the size of the data to near constant, and its perfor-
mance is bounded by disk I/O. IDPA-MF-PDP is efficient.
Our work opens the door to the practical application of PDP
schemes in real-world cloud storage environments.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (61202082, 61472048, 61402058),
the Beijing Natural Science Foundation (4152038), the
China Postdoctoral Science Foundation funded project
(2014M561826).

References

[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.
Peterson, and D. Song, “Provable data possession at untrusted
stores,” ACM CCS’07, pp.598–609, VA, USA, Oct. 2007.

[2] G. Ateniese, RD. Pietro, LV. Mancini, and G. Tsudik, “Scalable
and efficient provable data possession,” Conference Securecomm08
Fourth International Conference On Security on Privacy for commu-
nication Networks, Article no. 9, Istanbul, Turkey, Sept. 2008.



XIAO et al.: EFFICIENT DATA POSSESSION AUDITING FOR REAL-WORLD CLOUD STORAGE ENVIRONMENTS
805

[3] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” ACM CCS’09, pp.213–222, IL, USA,
Nov. 2009.

[4] C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring data storage se-
curity in cloud computing,” 17th International Workshop on Quality
of Service (IWQoS 2009), pp.1–9, South Carolina, USA, July 2009.

[5] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling public veri-
fiability and data dynamics for storage security in cloud computing,”
IEEE Trans. Parallel Distrib. Syst., vol.22, no.5, pp.847–859, 2011.

[6] C. Li, Y. Chen, P. Tan, and G. Yang, “An efficient provable data
possession scheme with data dynamics,” 2012 International Con-
ference on Computer Science and Service System, pp.706–710,
Nanjing, China, Aug. 2012.

[7] Amazon S3 Versioning. Available from http://doc.s3.amazonaws.
com/betadesign/Versioning.html.

[8] Amazon Simple Storage Service. Available from http://aws.amazon.
com/s3/

[9] Openssl Crypto Library. Available from http://www.openssl.org/
[10] A. Juels and B. Kaliski, “PORs: Proofs of retrievability for large

files,” ACM CCS’07, pp.584–597, VA, USA, Oct. 2007.
[11] D. Xiao, W. Yao, C. Wu, J. Liu, and Y. Yang, “Multiple-file remote

data checking for cloud storage,” Computers & Security, vol.31,
no.2, pp.192–205, 2012.

[12] Y. Zhu, H. Hu, H. Ahn, and M. Yu, “Cooperative provable data pos-
session for integrity verification in multi-cloud storage,” IEEE Trans.
Parallel Distrib. Syst., vol.23, no.12, pp.2231–2244, 2011.

[13] K. Yang and X. Jia, “An efficient and secure dynamic auditing proto-
col for data storage in cloud computing,” IEEE Trans. Parallel Dis-
trib. Syst., vol.24, no.9, pp.1717–1726, 2013.

[14] H. Wang, “Identity-based distributed provable data possession in
multi-cloud storage,” IEEE Trans. Services Computing, DOI:10.
1109/TSC.2014.1. 2014.

[15] IBM 4764 PCI-X Cryptographic Coprocessor. http://www-03.ibm.
com/security/cryptocards/pcixcc/overperformance.shtml

[16] R. Shaikh and M. Sasikumar, “Security issues in cloud computing:
A survey,” Int. J. Computer Applications, vol.44, no.19, pp.4–10,
2012.

[17] M. van Dijk, A. Juels, A. Oprea, R.L. Rivest, E. Stefanov, and N.
Triandopoulos, “Hourglass schemes: how to prove that cloud files
are encrypted,” ACM CCS, North Carolina, USA, Oct. 2012.

[18] D. Liu, J. Lee, J. Jang, S. Nepal, and J. Zic, “A new cloud architec-
ture of virtual trusted platform modules,” IEICE Trans. Inf. & Syst.,
vol.E95-D, no.6, pp.1577–1589, June 2012.

Appendix

In this section, we give the proofs of the theorems stated in
Sect. 5.1.

A.1 Proof of Theorem 1

Suppose the file group consists of n files and a total of t
blocks, of which e blocks are corrupted. File i has ti blocks,
of which ei are corrupted. t =

∑n
i=1 ti, e =

∑n
i=1 ei. To detect

corruption, PDP samples ci blocks for file i, while MF-PDP
samples c blocks for the file group. c =

∑n
i=1 ci. Suppose

the number of sampled blocks is proportional to the size of
the file, i.e., ci = wti, c = wt, where w is a constant. Ac-
cording to the large t assumption, we have w→ 0. For both
PDP and MF-PDP, the SSP can prove its possession of the
sampled blocks by responding to the challenge with a proof
that passes the Verify algorithm. This security property is
already proved by [1].

As the DPA holds the correct persistent state of the
file group, i.e., its size t, the c blocks sampled by the DPA
are randomly distributed among the t blocks. MF-PDP de-
tection fails iff none of the c sampled blocks fall on the
e corrupted blocks, the probability of which is given by
P = 1 −

(
1 − e

t

)
·
(
1 − e

t−1

)
· . . . ·

(
1 − e

t−c+1

)
. Under the

large t assumption, the detection probability of MF-PDP is
P = 1 −

(
1 − e

t

)
· . . . ·

(
1 − e

t−c+1

)
≈ 1 −

(
1 − e

t

)c ≈ ce
t = we.

The first approximately equal follows from the large t as-
sumption, and the second approximately equal follows from
the binomial expansion formula and w → 0. Similarly, the
detection probability for PDP to detect the corruption of file
i is Pi = 1 −

(
1 − ei

ti

)ci ≈ ciei

ti
= wei. PDP detection fails

iff all n single file detection fails, the probability of which is
given by

∏n
i=1(1 − Pi). Thus, the overall detection probabil-

ity of PDP is P′ = 1 −∏n
i=1(1 − Pi) ≈ 1 −∏n

i=1(1 − wei) ≈
w
∑n

i=1 ei = we = P.�

A.2 Proof of Theorem 2

In IDPA-MF-PDP, the DPA holds a persistent state α for
each file group. Because the DPA is trusted hardware, α
can be modified only when the DPA interacts with the SSP.
When creating a file group, α is initialized to 0 by the DPA.
When a file is added to a file group, both User and DPA will
modify α locally, then the DPA sends the signed α to the user
for comparison. Because the user always has the correct α, if
the two α are equal, then the current α in the DPA is correct.
Thus, as long as the interactions are executed properly, the
α preserved by the DPA is always correct.�

A.3 Proof of Theorem 3

It is obvious that when the SSP interacts properly with the
DPA according to the protocol in Sect. 4.4, the generated
audit history h of file group G will be confined within con-
sistent states. We now demonstrate that an adversary cannot
change a consistent h into another consistent state by ma-
nipulating h without interacting with the DPA.

Assume the entry reference of h in state s1 is designated
by ER1. We analyze three possible attacks for manipulat-
ing h in turn: (1) The adversary attempts to modify ER or
use a saved old version of it. Because the adversary cannot
forge the ER’s signature without knowing the DPA’s secret
key, modification of any field in the ER or replacing it with
an old one will make it unverifiable. This in turn will vio-
late the 1st condition of Definition 3, making h inconsistent;
(2) If h is non-empty and the adversary attempts to modify
or discard the first LE of h, the 2nd condition of Definition 3
will be violated; (3) If the number of LEs in h is larger than
1 and the adversary attempts to modify or discard any LE
of h except for the first one, the 3rd condition of Definition
3 will be violated, making h inconsistent. In summary, any
manipulation with any part of h will result in its departure
from the consistent state.�



806
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.4 APRIL 2015

Da Xiao received his BS and Ph.D. de-
grees in Computer Science and technology from
Tsinghua University, China in 2003 and 2009,
respectively. He is currently an assistant pro-
fessor in School of Computer Science, Beijing
University of Posts and Telecommunications,
China. His research interests include cloud stor-
age, storage security, distributed storage and file
systems, disaster backup and recovery.

Lvyin Yang received her BS degrees in soft-
ware engineering at Hebei Normal University,
China in 2013. She is currently a Master student
majored in computer science and technology in
School of Computer Science, Beijing University
of Posts and Telecommunications, China. Her
research interests include cloud storage security.

Chuanyi Liu received his BS and Ph.D.
degrees in Computer Science and technology
from Tsinghua University, China in 2003 and
2009, respectively. He spent one year as a vis-
iting scholar at the Digital Technology Center
of the University of Minnesota. He is currently
an associate professor in School of Software
Engineering, Beijing University of Posts and
Telecommunications, China. His research inter-
ests include computer architecture, cloud com-
puting and cloud security, file and storage sys-

tems, information security and data protection. He is a member of IEICE.

Bin Sun received her BS, MS and Ph.D.
degrees in Communication Engineering from
Beijing University of Posts and Telecommuni-
cations, China in 1989, 1992 and 2010, respec-
tively. She is currently an associate professor in
School of Computer Science, Beijing University
of Posts and Telecommunications, China. Her
research interests include computer networks
and network security.

Shihui Zheng received her BS and Ph.D.
degrees in Mathematics from Shandong Univer-
sity, China in 2001 and 2006, respectively. From
2006 to 2008, she was in Beijing University of
Posts and Telecommunications, China as a post-
doc research fellow. She is currently an assis-
tant professor in School of Computer Science,
Beijing University of Posts and Telecommuni-
cations, China. Her research interests include
cryptography schemes design and analysis.


