IEICE TRANS. INE. & SYST., VOL.E98-D, NO.1 JANUARY 2015

65

| PAPER Special Section on Enriched Multimedia

Nearest Neighbor Search with the Revised TLAESA

Dong WANG ™, Nonmember, Hiroyuki MITSUHARA ™, Member, and Masami SHISHIBORI'®, Nonmember

SUMMARY 1t is significant to develop better search methods to
handle the rapidly increasing volume of multimedia data. For NN
(Nearest Neighbor) search in metric spaces, the TLAESA (Tree Linear
Approximating and Eliminating Search Algorithm) is a state of art fast
search method. In this paper a method is proposed to improve the TLAESA
by revising the tree structure with an optimal number of selected global
pivots in the higher levels as representatives and employing the best-first
search strategy. Based on an improved version of the TLAESA that
succeeds in using the best-first search strategy to greatly reduce the distance
calculations, this method improves the drawback that calculating less at the
price of the lower pruning rate of branches. The lower pruning rate further
can lead to lower search efficiency, because the priority queue used in the
adopted best-first search strategy stores the information of the visited but
unpruned nodes, and need be frequently accessed and sorted. In order to
enhance the pruning rate of branches, the improved method tries to make
more selected global pivots locate in the higher levels of the search tree as
representatives. As more real distances instead of lower bound estimations
of the node-representatives are used for approximating the closet node and
for “branch and bound”, not only which nodes are close to the query object
can be evaluated more effectively, but also the pruning rate of branches can
be enhanced. Experiments show that for k-NN queries in Euclidean space,
in a proper pivot selection strategy the proposed method can reach the
same fewest distance calculations as the LAESA (Linear Approximating
and Eliminating Search Algorithm) which saves more calculations than the
TLAESA, and can achieve a higher search efficiency than the TLAESA.
key words: TLAESA, Nearest Neighbor, global pivots, best-first

1. Introduction

With the rapidly increasing volume of multimedia data,
such as texts, images, videos, in the internet, it is
urgent to design better access methods that can support
retrievals like similarity queries which often refers to finding
some nearest neighbors (NN) to a query object in the
multimedia database. Especially, the cross-media retrieval
and multimedia abstraction are included in the scope of
EMM (Enriched Multimedia), which is the theme of this
special section. On the cross-media retrieval system, the
correlation between cross-media data must be calculated to
be able to retrieve the cross-media, such as the retrieval
between text and images. The similarity retrieval and
indexing technique, which are proposed in this paper,
are often used to calculate the correlation[1]. On the

Manuscript received March 11, 2014.
Manuscript revised August 8, 2014.

"The authors are with the Dept. of Information Science and
Intelligent System, the University of Tokushima, Tokushima-shi,
770-8506 Japan.

a) E-mail: wangdong.uni@gmail.com

b) E-mail: mituhara@is.tokushima-u.ac.jp

¢) E-mail: bori @is.tokushima-u.ac.jp
DOI: 10.1587/transinf.2014MUP0002

video abstraction and summarization systems, moreover, the
content-based image and video retrieval must be used in
order to extract key-frames and “highlight” sequences [2].
The similarity retrieval and indexing technique are very
important phase on the content-based image and video
retrieval. If more effective retrieval and indexing methods
are applied, high-speed processing will be realized.

Generally it is efficient to index the extracted feature
vectors for similarity queries to avoid a sequential scan.
Macroscopically we can build the index by two methods,
and the one is called the Spatial Access Method (SAM),
while the other is called the Metric Access Method (MAM).
They are both subject to the “curse of dimensionality” [3].
However, the MAMs can handle high dimensional data
more efficiently, while the SAMs are efficient only to index
low dimensional data[4]. Besides, the SAMs are not so
flexible as the MAMs when the data is not drawn from a
vector space but just some distance assignments between
every pair of objects.

We just consider the more widely applied MAMs in
metric spaces where the (dis-)similarities are measured by
distances, and shorter distances mean higher similarities. A
metric space is defined by its distance functiond : UX U —
‘R which has to satisfy the following properties [5], where
U is a universe of objects.

Y x,y,z€ U,

(1) Non-negativity: d(x,y) >0

(2) Reflexivity: d(x,y) =0 x=y

(3) Symmetry: d(x,y) = d(y, x)

(4) Triangular inequality: d(x,y) + d(y,z) > d(x,z)

The most important property is the “triangular inequality”,
as we can prune some objects by it to avoid a through
linear search in the database. The Euclidean distance, the
Manhattan distance, and the Edit distance which are widely
used satisfy those properties, and the spaces defined by them
are metric spaces. However, those properties are not so easy
to satisfy. A distance function failing in satisfying any of
the properties is called a non-metric distance function, such
as [6] the Cosine Distance, the Dynamic Time Warping, etc.

The MAMs, or the metric space indexes, can
be divided into two categories: the one is based on
the pivot-technique, which mainly refers to the AESA
(Approximating and Eliminating Search Algorithm)[7]
family including the AESA, the Linear AESA (LAESA) [8]
and the Tree LAESA (TLAESA)[9], and the other
is based on the clustering-technique, and the space is
broken up hierarchically and recursively, including almost

Copyright © 2015 The Institute of Electronics, Information and Communication Engineers

66

all the metric index trees, such as the GH-Tree[10],
the VP-Tree[l11], the M-Tree[12], etc. One can say
that a tree based metric index structure materializes a
persistent representation of a hierarchical clustering of
the data[13]. Generally, the pivot-technique is good
at reducing calculations by triangular inequality, while
the clustering-technique is good at pruning branches to
accelerate the search. There are some metric indexes which
intend to combine the two techniques. Actually any metric
index tree can be extended to a pivot based index tree
after being equipped with some pivots and a pre-calculated
distance-matrix. The PM-Tree [14] can be a case in point.
The TLAESA can also be viewed not strictly as this kind of
data structure.

An improved version of the TLAESA (iTLAESA
for short)[15] was proposed and succeeded in greatly
reducing the distance calculations. However, it saves the
calculations at the cost of the lower pruning rate of branches.
Furthermore, in the adopted best-first search strategy the
priority queue which stores the information of the visited
but unpruned nodes need be frequently accessed and sorted
due to the lower pruning rate. Consequently, the search
efficiency is not so high. Thus, in this study an improved
method is proposed in order to enhance the pruning rate.
This method intends to make the selected global pivots in
the higher levels of the search tree as possible. As more
real distances instead of lower bound estimations of the
node-representatives are used for “branch and bound”, the
pruning rate can be enhanced, and hence a higher search
efficiency can be achieved.

The contents left are organized as follows. Section
2 is a review on the TLAESA with its general build and
search process. In Sect. 3 the improved method iTLAESA
and its existing problems are illustrated. Section 4 is on the
improved schemes. Section 5 describes some adopted pivot
selection strategies that can play a vital role in affecting
the search efficiency. Section 6 displays some evaluation
experiments, and finally Sect. 7 sums up the whole paper.

2. TLAESA

The TLAESA can be classified as a pivot-technique
based metric search method. In order to avoid distance
calculations by triangular inequality, the pivot-technique
uses a subset of objects in the database as pivots and a
distance matrix which stores the pre-calculated distances
from all or a portion of the objects to each pivot.

2.1 TLAESA and Its Evolution

TLAESA belongs to the AESA family, and the AESA is
being considered as the fastest NN search method in terms
of distance computations so far in metric spaces [16]. As the
algorithm name indicates, approximation and elimination
are two key steps for the AESA, and the AESA employs
the lower bound estimation of real distance both for
approximating and eliminating. = However, the AESA

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.1 JANUARY 2015

achieves excellent computational behavior at the expense
of huge quadratic memory space requirements as it needs
a huge distance matrix to store all the distances between any
pair of objects.

There are some methods to improve the AESA
by reducing the overhead or the preprocessing time to
accelerate the search. The k-AESAU (k-AESA with Upper
bounds) [17] taking advantage of the upper bound function
was proposed to avoid the drawback that no active objects
can ever be eliminated until exactly k distances have been
calculated for k-NN queries, but it has no effect on reducing
distance calculations. The ROAESA (Reduced Overhead
AESA) [18] was designed to acquire a sublinear overhead
by progressively selecting the candidates in a bound area,
but it has the same distance calculations as the AESA. The
iAESA [19] attempts to be faster by using pivot-permutation
to modify the approximation, but to keep updating the
permutations makes the overhead much higher instead.
The PiAESA [20] intends to raise the lower bounds of the
still alive objects by an optimal number of pivots before
switching to the AESA usual behavior in order to discard
them later more easily by triangular inequality, but it is not
easy to determine the optimal number of pivots and probably
the optimal number is the number of all the selected pivots
for k-NN queries if k is much bigger.

The improved methods of the AESA developing
in the direction of using less memory space are more
prospective. The LAESA was earlier proposed to cut
the space complexity down to linear bounds by selecting
an optimal number of outliers as pivots other than taking
any calculated objects as pivots. Although this algorithm
increases the number of distance calculations, roughly as 1.5
times as those of the AESA [8], it is still very useful when
the distance calculation is time-consuming. The TLAESA
evolving directly from the LAESA can achieve sublinear
overhead. It can be viewed as an MAM combing the pivot
technique with the clustering technique, and the original
consider is possibly to use a tree structure to prune some
branches and filter out some leaf-objects before the LAESA
process. Like the Monotonous Bisector-Tree [21] which is
an improved variation of the binary GH-Tree, it reuses the
representative of the parent node as the representative of
the one child-node and selecting another new object as the
representative of the other child-node. Obviously in this
way, the distance calculations from the representatives to
the query object can be avoided nearly half even if they are
calculated. Unfortunately, in the depth-first search order it
calculates more than the LAESA.

2.2 General Build and Search of TLAESA

The TLAESA builds two different data structures, the search
tree and the distance matrix [15]. In the search tree, each
leaf node contains a single object which is its representative
and all the indexed objects finally act as the representatives
in the leaf-nodes. The distance matrix stores the distances
from every object to some selected outliers as pivots.

WANG et al.: NEAREST NEIGHBOR SEARCH WITH THE REVISED TLAESA

The search tree of the TLAESA is originally a binary
tree, and it is built by splitting the space recursively. For any
node containing more than one object, the TLAESA let its
right child-node reuse the same representative, and selects
the farthest object to that representative as the representative
of the left child-node. For each remaining object, if it
is closer to the representative of the right child-node than
that of the left one, it is divided into the right child-node.
Otherwise, it is divided into the left child-node.

The TLAESA traverses the search tree in the depth-first
order which is a common traversing mechanism. Unlike
the other conventional indexed trees, the TLAESA uses the
lower bound estimation instead of the real distance from
the node-representative to the query object for “branch and
bound”. As no real distance calculations take place in
the non-leaf-nodes, all the distances, except the calculated
distances from the pivots to the query object initially, are
only calculated in the leaf-nodes. Compared with filtering
out some objects in the leaf-nodes, the more important role
that the selected pivots and the relative distance matrix
play is evaluating the lower bound estimations of the
representatives for further “branch and bound”, as in any
leaf-node at most one object namely the representative can
be filtered out.

As for the lower bound estimation of the real distance,
it is defined as

8x = 8(x,q) = maxpep {|d(x, p) — d(p,)} 9]

where x is an arbitrary indexed object, g is the query object,
and P is a set of selected pivots. In addition, the distance
d(x, p) can be loaded from the built distance matrix, while
d(p, g) can be pre-calculated at the beginning of the search,
so it is very easy to get g.. If we want to get the lower bound
estimation of the representative m; of the node r € T (T is
the search tree of the TLAESA), just let x = m, in Eq. (1).

We should notice that the original TLAESA does
not follow the simplex depth-first strategy but combing
root-left-right and root-right-left strategy [9]. In the
depth-first strategy there is a question whether it is more
efficient to first visit the left-child or it is more efficient
to first visit the right-child. To answer that question, the
TLAESA indicates that the child whose representative has
a smaller lower bound estimation is first visited if it is not
pruned.

3. iTLAESA

The iTLAESA, an improved version of the TLAESA, was
proposed to mainly improve the search process to reduce the
number of distance calculations.

3.1 Search Process

The iTLAESA converts the original depth-first search
strategy to the best-first strategy, which is actually a
width-first search strategy plus a heuristic rule. This rule is
that the node which corresponds to a set should be traversed

67

preferentially when it is the closest to the query object [15],
as the closest node possibly contains the closest object. This
can be viewed as an extension of the step approximation in
the AESA from just approximating a point to approximating
a node/set.

On how to define the approximate distance %, from the
node ¢ to the query object g, the iTLAESA adopts

hy=gm — 1 ()

where 7, is the covering radius of the node 7. Then the
iTLAESA selects the node ¢ with the minimum /4, to visit
preferentially.

As the priority queue is a widely applied data
structure based on heap for fast sorting, the iTLAESA
uses it to store the information of any visited but
unpruned node ¢ that is expressed as a triple (f, gu,, 7).
In this study this priority queue is called the TPQ
(Tree-node-information-Priority-Queue) for short.

We can say that the whole search process is
transformed from the traverse of the search tree to the
frequent accesses of the TPQ. If the TPQ is not empty,
the element namely the triple (¢, g,,,7;) which can let h,
minimum is taken out so that the node to be visited next
can be acquired. Furthermore, if the acquired node is not
the leaf, for each of its unpruned child-node c, the triple
(¢, gm,» 1) 1s added into the TPQ. Otherwise, no triples are
added into the TPQ, and the distance from the representative
which can not be pruned to the query need be calculated to
update the nearest neighbors. Initially the triple of the root is
added into the TPQ, and then the steps above are recursively
repeated until the TPQ becomes empty.

Besides, the priority queue is also used to store the
information of each candidate NN that is expressed as
a pair (n;,dy,), where n; is the i-th candidate NN and
dy, 1is its distance to the query object d(n;,q), for k-NN
queries. In this study this priority queue is called the CPQ
(Candidate-nearest-neighbor-information-Priority-Queue)
for short. In addition, in this study the triples in the TPQ
is automatically sorted in the decreasing order of /,, and the
top element of the TPQ can let /2, minimum; while the pairs
in the CPQ is automatically sorted in the increasing order of
d,, and the top element of the CPQ can provide the current
search radius.

The search algorithm of the iTLAESA for k-NN
queries with some modifications from the original
iTLAESA is given in Fig.1 plus Fig.2. In the original
iTLAESA, the lower bound of the representative of the
child-node g,,, is evaluated after the judgment

8m, <VtetTy (3)

where ¢ is the child-node of the non-leaf 7, r, is the
dynamically decreased search radius. This may lead to the
incorrect results. In this study, the judgment is modified to

gmt.src‘"rs (4)

and the easily calculated g, is evaluated before the

68

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.1 JANUARY 2015

Algorithm: k-NN Query

Input:
B: indexed database
P C B: set of pivots
T: search tree
M e RIBIXIPI. distance matrix storing
distances from all indexed objects to pivots
q: query object
k € Z*: number of NNs

Output:
N: CPQ
rs: search radius

1: rs = 0

2: for each p € P do

3: b first calculate the distances from the pivots to the query

4: D[p] =d(p,q)

5: if D[p] < rs then

6: N — N U (p,D[p])

7 if |[N| > k then

8: remove top pair from N

9: end if

10: if [N| == k then

11: (ng,rs) = top pair in N

12: end if

13: end if

14: end for

15: t =root of T

16: gm, = maxpep{|M[me,p] — Dlp]l}

17: Q « {(tvg’mt:ri)}

18: while Q # 0 do

19: (t, gmy,7e) = top triple in Q

20: remove top triple from Q

21: SEARCH(tvgmt7Q7 k7rS7D7M7 P7Q7N)
22: end while

> Q is TPQ

Fig.1 k-NN query algorithm of the iTLAESA.

judgment.
3.2 Build Process

There are no problems that the iTLAESA adopts the
search tree structure of the TLAESA built specially for the
depth-first search strategy. However, for the best-first search
itis unnecessary to build such a troublesome structure where
the right child-node has to reuse the representative. Besides,
in order to evaluate which nodes are close to the query more
effectively, the iTLAESA uses one of the pivots (the first
selected pivot) as the representative of the root-node, and
apparently the lower bound estimation of the distance from
the representative to the query actually becomes the real
distance. For more details on building the search tree of
the iTLAESA, you can refer to the original paper [15].

3.3 Existing Problems

Because of the best-first search strategy, the iTLAESA
indeed can greatly reduce the distance calculations
compared to the TLAESA. The experiments show that
given the same pivots, the iTLAESA calculates almost the
same number of distances as the LAESA. However, the
pruning rate of branches defined as the ratio of the pruned

1: function SEARCH(¢, gm,,q, k,7s, D, M, P,Q, N)

2: if t is leaf then

3: if gm, <rs and m; ¢ P then

4: > try to use the lower bound to filter out
5: d=d(m¢,q)

6: if d < rs then

7 N — N U (my¢,d)

8: if [N| > k then

9: remove top pair from N

10: end if

11: if [N| ==k then

12: (ng,rs) = top pair in N

13: end if

14: end if

15: end if

16: else

17: for each child c of t do

18: if m. == m+ then > get the parent lower bound
19: Ime = Gmy
20: else > evaluate the lower bound
21: gm. = maxpep{|M[mec,p] — D[p]|}
22: end if
23: if gm. <rec+1s then
24: > add the unpruned children into the TPQ
25: Q‘_QU{(CvgmchC)}
26: end if
27: end for
28: end if

29: end function

Fig.2 Search a node of the iTLAESA.

branches to all the branches deteriorates by experiments.
We can say that there exists a “trade-off” between the
distance calculations and the pruning rate, and probably the
iTLAESA saves the distances at the sacrifice of the pruning
rate. To explain more specifically, probably the iTLAESA
makes some distance calculations happening only in the
leaf-nodes not be calculated in advance but be pruned with
a shorter search radius later; however, the number of the
unpruned branches could increase as the search radius could
not be shrunk before those calculations.

The low pruning rate leads to the disadvantage that
during the search the TPQ is frequently accessed as more
triples need be added into the TPQ. Suppose that the
elements in the TPQ need be sorted one time when one triple
is added (the remove process should not be considered),
and the times to add equal the times to sort. Although
the priority queue is quite efficient, to sort its elements
frequently is still time-consuming, particularly when its size
is very large. The frequent sort eventually could make the
search efficiency of the iTLAESA lower than that of the
TLAESA when the distance function is not so complex,
even if a large quantity of distance calculations can be
reduced.

4. Proposed Method

It is desirable that more pivots are arranged as the
representatives in the higher or upper level of the search
tree, and then more real distances instead of lower bound
estimations can be used to evaluate which nodes are

WANG et al.: NEAREST NEIGHBOR SEARCH WITH THE REVISED TLAESA

close to the query more effectively in the early stage [15].
Meanwhile, if more pivots are visited as the representatives
of the nodes in the higher levels, the pruning rate of branches
can be higher, as the process of “branch and bound” is
more efficient to earlier use real distances than lower bound
estimations. However, in the iTLAESA only one pivot
namely the first selected pivot is used as the representative of
the root, and the root as well as the successor nodes reusing
the same representative is benefited. Therefore, we hope to
improve the pruning rate of branches by making more pivots
in the higher levels of the search tree as the representatives
as possible.

4.1 Selecting Representatives as Pivots

One easy way is to directly select some representatives of
the nodes in the higher levels getting rid of the repetitions
as pivots. These selected pivots are called local node-pivots,
compared to the global pivots like the outliers. Usually this
method can affect the distance calculations. It is possible
that by some selection strategies the selected global pivots
are not so good as the node-pivots, and in this case the
method selecting node-pivots can reduce the calculations
given the same number of pivots. However, this method
is invalid when we use a proper strategy to obtain a set of
optimal or good global pivots. Of course, we can adjust
the proportion of the node-pivots, and let the global pivots
and the node-pivots work together to decrease the number
of distance calculations. Then the method TLAESA_MP
(Mixed Pivots) using a portion of global pivots and the
rest portion of node-pivots comes into being. However,
experiments showed that if a set of optimal or good global
pivots are selected, given the same number of pivots,
probably the more the global pivots take up, the fewer the
distance calculations, and the higher the search efficiency.
An extreme case is that the global pivots take up 100% and
no node-pivots are used. Hence, the TLAESA_MP is not so
worth to be recommended.

4.2 Revising Tree Structure

Another way is to change the building rule to reshape the
search tree structure of the TLAESA. When we build the
search tree after preparing a set of global pivots, the global
pivot has the priority to be selected as the representative of
the node if the node contains the remaining global pivots.
In other words, if the join of the node-set and the set of the
remaining global pivots is not empty, the object in the join is
selected as the representative preferentially. Otherwise, the
representative is selected according to the original building
rule of the TLAESA.

In this way, the global pivots which could exist in
lower levels can be risen artificially to the higher levels
of the search tree as the representatives as possible. In
consideration of reusing, eventually the levels in the first
parent-nodes are risen. A case is depicted in Fig. 3, where
t; € T is a tree node, p, € P C B is a global pivot, and

69

Fig.3 Selecting the global pivot as the node-representative preferentially
to let it into the higher level.

Algorithm: Build Search Tree

Input:
B: indexed database
P C B: set of selected pivots
w € Z N [2,|B]): number of branches
Output:
M € RIBIXIPl; distance matrix storing
distances from all indexed objects to pivots
T: search tree
1: for each b € B do > first build the distance matrix
2 for each p € P do
3 M{b, p] = d(b,p)
4 end for
5: end for
6: let t be root
7 my=p€EP
8: P=P—{p}
9: St =B
0: T=0
1

: BUILD(t, w, my¢, St, P, T) > build the search tree

Fig.4 Build the search tree of the eTLAESA.

bi,b; € B — P are two indexed data (T is the search tree
of the TLAESA, P is a set of selected pivots, and B is the
indexed database), i, j, k,[€ Z*. Suppose that a global pivot
has been selected for the representative of the parent-node
of ¢, and the pivot py is the representative of the child-node
of 11, and then the level of p; can be risen to that of #; if p;
is selected preferentially than b; as the representative of ;.

Experiments show that this is a simple but an effective
method, and it can enhance the pruning rate of branches
and greatly reduce the times to access and sort the TPQ. In
this study this method is called the eTLAESA (enhanced
TLAESA) that employs the same search process as the
iTLAESA but improves the build process. Compared with
the iTLAESA, the eTLAESA can not save more distance
calculations but can keep the same number of calculations
given the same pivots. In fact, given the same pivots the
eTLAESA or the iTLAESA has reached the limited fewest
distance calculations as the LAESA.

The building algorithm of the eTLAESA extended to
a multi-way tree is given in Fig.4 plus Fig.5. The built
structure of each node is (node-identity, number of branches,
node-representative, covering-radius, pointer to children).
As for the searching algorithm, it is the same as that of the
iTLASEA (the modified edition above).

70
1: function BUILD(t, w, m¢, St, P, T')
2 if |S¢| > 1 then
3 t is not leaf
4: cp = (c1,¢2,...,Cw) > suppose t has w children
5: =1
6: Me; = Myt > reuse the parent representative
7 Se; = {me, }
8: St =S¢ — {me,; }
9: while i < w and S; # 0 do
10: i=14+1
11: > select the representative in the join preferentially
12: V=5nP~P
13: if V == 0 then
14: V=25
15: end if -
16: Me;, = argmax,cy Z;;l d(v, me;)
17: Se; = {me; }
18: St = St — {mcl}
19: P=P—{me}
20: end while
21: w =1 > renew the number of branches
22: re = d(Mey , Mey)
23: if St # () then
24: > divide the remaining objects to the closest child-node
25: for each s € St do
26: i = argming <<y d(s, me;)
27: Se; = Se; U{s}
28: end for
29: end if
30: for i = 1 — w do > recursively build each child-node
31: BUILD(¢;, w, Me;, S¢;, P, T)
32: end for
33: else
34: tis leaf
35: cp = null > leaf has no children
36: w =0
37: re =0
38: end if

39: T — TU{(t, w,m¢,r¢,¢p)}
40: end function

Fig.5 Recursively build each tree-node of the eTLAESA.

The TLAESA wants the representatives of the children
to be far away from each other, and the global pivots, like
the outliers which are a set of objects far away from each
other and from the rest of the objects, don’t violate this
requirement even if they are selected as the representatives
in the higher levels. In addition, if we select all the
indexed data objects as the global pivots, the eTLAESA
becomes the iTLAESA which can be called a degradation.
However, we don’t need too many pivots, because too many
pivots could increase the distance calculations as the pivots
themselves should be calculated with the query at first.
Meanwhile, too many pivots could lead to the too large
pre-calculated distance-matrix which is time-consuming to
load and access. Therefore, a smaller number of pivots
make the eTLAESA feasible. In fact, there exists an optimal
number of pivots, but in this study the number of pivots to be
selected is limited to 5% of the number of the whole indexed
data.

As the iTLAESA, the eTLAESA adopts the best-first
strategy for searching, and the node ¢ with the minimum

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.1 JANUARY 2015

approximate distance h, is first visited. Nevertheless, to
evaluate h; we can just use g, irrespective of the covering
radius r; as

hy = gm, ®)

A heuristic factor 6 of r; can be inducted to unify the
equations as

hy = gm =61, (6)

where 0 < 0 < 1. If 6 = 0, it denotes Eq. (5), and if 0 = 1, it
denotes Eq. (2). Of course, 8 can be other values like 0.5.

We can say that the best-first strategy can be
specialized with the heuristic factor of the covering radius of
the node. Experiments show that different values of heuristic
factors can greatly affect the search performance. In this
study, the best-first search strategy with the heuristic factor
0 is defined as a strategy that uses Eq. (6) to evaluate the
approximate distance of the node, and from the root-node
first visits the node whose approximate distance is the
closest to the query. Thus the original best-first search
strategy used in the iTLAESA can be called the best-first
search strategy with the heuristic factor 1.

5. Pivot Selection Strategies

The pivot-technique can be applied to fast search by filtering
out objects without measuring their actual distance to the
query to save distance calculations. However, the way
that the pivots are selected can drastically affect the search
performance of the algorithm. Better selected pivots can
largely reduce the distance calculations, or given the same
calculations a better selected set of pivots can require much
less space for building the distance matrix than a random
set.

Several main strategies for selecting pivots are
described as follows. Of course, these strategies are used for
selecting the global pivots not the local pivots. In this study
these strategies are divided into two categories: selecting
pivots based on the data distribution, and selecting pivots
based on the evaluation criterion.

5.1 Selecting Based on Data Distribution

The classic pivot selection strategy in this category is the
incremental outlier selection technique which is earliest
applied in the LAESA. It selects objects as pivots located
far away from the previously selected pivots incrementally.
In other words, it let the selected pivots as separated as
possible, because if the pivots are not so disperse, there
exist overlapped pruning regions, and obviously two very
close pivots give almost the same information for filtering
out objects.

To implement the classic incremental outlier selection
strategy, there are actually two ways to select the next pivot
after a first random pivot p;. The one can be called the
Maximum of Sum of Distances (MSD) strategy [8], and the

WANG et al.: NEAREST NEIGHBOR SEARCH WITH THE REVISED TLAESA

other can be called the Maximum of Minimum Distances
(MMD) strategy [22]. The next pivot is selected by the
following equations:

MSD :
i-1
pi = arg maxXgep-p; Zj:l d(S,pj) (7)
MMD :
pi = arg MaxXgep_p, min;;ll d(s,pj) ®

where B is the database to be indexed, and P; =
{p1, p2,...,pi-1} s a set of selected pivots.

It is said that the MMD is more effective than the
MSD [22], but in this study we found that it is not always so
in different databases. By experiments, amazingly the MMD
can not save more distance calculations than the MSD in the
uniformly distributed databases.

5.2 Selecting Based on Evaluation Criterion

The strategy selecting pivots based on the data distribution
actually selects the pivots from the aspect of avoiding
overlapped pruning regions, and it let the selected pivots
disperse. Generally good pivots are objects far away from
each other and from the rest of the objects, but the objects
far away from each other and from the rest of the objects
are not always good pivots. We can imagine if all the pivots
are the corner points, they are indeed very disperse, but we
hardly discard any objects by triangular inequality as the
search radius keeps very big before any other objects are
calculated. Although there are improved strategies, such
as the Sparse Spatial Selection (SSS) [23] and its dynamic
extension Dynamic Pivot Selection (DPS) [24], which are
proposed to dynamically select a set of pivots that are not
very far away from each other neither very far from the
rest objects, they can hardly obtain the fewest distance
calculations compared to the MSD or the MMD [20].

To Select pivots directly from the aspect of triangular
inequality could be more effective, as for fast search we need
to filter out the objects as possible by triangular inequality.
We should notice that the lower bound estimation deduced
from triangular inequality is not bigger than the real
distance, but we can select some better pivots to maximize
the lower bound estimation to approximate the real distance.
Basing on maximizing the lower bound estimations, a
strategy selecting a set of “good pivots” [25] was proposed
and performed better than outliers for similarity queries in
the real-world databases by experiments. This strategy tries
to select the objects which can maximize the average lower
bound estimation of some randomly chosen data pairs as
pivots. Since this strategy is based on an evaluation criterion
in Eq. (9) involving the Average Lower Bound estimation, it
is called ALB strategy in this study.

A
pp, = 1/A Zj:l maxep {ld(aj, p) — d(p, b))} €))

where a; and b; are from A pairs of randomly chosen data

71

(aj, b)), and P; is better than P} when up, > Hpr.

There are also three ways to select pivots to implement

this strategy [25]:

(1)Selection of K random groups;

(2)Incremental selection;

(3)Local optimum selection.

The incremental selection method described briefly as
follows, is recommended as it is the most effective one.

A pivot p; is selected from a sample of K objects in the
database B to be indexed, so that that pivot alone has the
maximum up, value. Then, a second pivot p, is selected
from another sample of K objects in B, so that p;, p, has the
maximum up, value, considering p; fixed. The third pivot
ps3 is selected from another sample of K objects in B, so that
D1, P2, p3 has the maximum up, value, considering p; and
p> fixed. The process is repeated until the required number
of pivots is obtained.

It is better to have a high value of parameter A which
denotes the number of evaluated data pairs, but it is not
feasible to evaluate all the data pairs. Besides, a low value
of parameter K is suggested. In this study, the value of
parameter A is set to the number of the indexed data, and
the parameter K is set to the suggested value 50.

6. Experiments

The experiments in this study are mainly to compare the
proposed method eTLAESA with the state of art method
TLAESA as well as with its improved method iTLAESA
employing the best-first search strategy and the first selected
global pivot as the root-representative. The more significant
MAMs supporting k-NN similarity queries, which can be
systematically implemented by range queries, are carried
out to test their performances. In all the experiments, the
Euclidean distance is used to measure (dis-)similarity. In
addition, all the built indexed trees are binary trees, as the
experiments showed that the multi-way trees were not so
effective as the binary trees.

Two real-world databases as well as an artificial
database are used in the experiments:

(1) Two real-world databases: the NasaD20 and the

ColorsD112, are downloaded from http://www.sisap.org.

The NasaD20 contains 40,150 20-dimensional vectors

obtained from the NASA video and image archives.

The ColorsD112 contains 112,682 112-dimensional vector

obtained from the color images.

(2) An artificial uniformly distributed database: the

UniformD20, is generated by the code from http://www.sisap.
org. The data dimension is set to 20.

The default number of the indexed data in each
database are fixed to 10,000. For each database, 1,000 data
objects are randomly chosen from the unindexed data as the
query objects, and finally the average results of the 1,000
queries are figured out. The values of the parameters like
distance calculations for evaluating the search performance
are all average values, but the word “average” is omitted.

72

NasaD20: LAESA ColorsD112: LAESA
3000 1400 9800

UniformD20: LAESA

& MSD N
» #
g 1390 |-oommn| -/ 9600 | 7"
1200, [ZTALB | £
1100 Ve 9400) /5
/ /
|3 2 1000 / 2 /
S 2200 a2 ° 5 ¢ » oo ¢
g 5 900 / s i
2 2000 3 / ~ 3 i
8 8 s /S g0 i
1800 L
700, ssool o]
1600 600 Vs i
800l /
1400 s000 &/ B
4
1200 400 8400

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
k k k

Fig.6 Comparing calculations as k increases among different pivot
selection strategies, in NasaD20 (left), ColorsD112 (middle), UniformD20
(right), by LAESA.

6.1 Comparing Pivot Selection Strategies

Good pivots play a vital role in reducing distance
calculations and enhancing the search efficiency. We need a
better or proper strategy to select a set of good global pivots
for the successive study. In the following experiments, the
three pivot selection strategies, the MSD and the MMD
based on the data distribution, and the ALB based on the
evaluation criterion are compared for the optimal. Because
the TLAESA, the iTLAESA, and the proposed eTLAESA,
can be viewed as the extensions of the LAESA with the
tree structure to do pre-pruning, the LAESA is just used to
evaluate the selected pivots.

After a certain number of pivots are selected by each
pivot selection strategy, the k-NN queries are carried out
with them. The value of k is from 10 to 50 at intervals
of 10. The calculations with the variable k are shown in
Fig. 6, where the pivot-number is fixed to 100, but even if
the pivot-number is added to 200 or subtracted to 50, those
curves still keep the same relative positions.

From Fig.6 we can find that in the two real-world
databases NasaD20 and ColorsD112, the MSD strategy
calculates most while the ALB strategy calculates least
whichever value k is, and it is true that the MMD strategy
is more effective than the MSD strategy in terms of
calculations. ~ However, it is opposite in the artificial
database UniformD20, and the MSD strategy calculates
least. In addition, to our surprise, too many calculations took
place in the database UniformD20 compared to the same
dimensional database NasaD2(0. We can say it is harder to
search in the high dimensional uniformly distributed data
instead. Besides, we would ask the same question in the
paper [25] whether it is valid to test pivot selection strategies
in uniformly distributed spaces as usual, because the results
in the uniformly distributed database are probably counter to
those in the real-world databases, and the selected pivots for
the uniformly distributed database can slightly cut down the
distance calculations compared to the linear scan for k-NN
queries if k is much bigger.

Since all the applications should be put into the
real-world databases at last, the two real-world databases

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.1 JANUARY 2015

ColorsD112: ALB, TLAESA_MP ColorsD112: MSD, TLAESA_MP
1200 76 1400 74

—e—Calculations
—=-Pruned branches

—e—Calculations S
1100/ L= Pruned branches Jvu" 75

P

1300

1000

=
N

Pruning rate of branches/%

1200

©
S
S
=
@

ions

1100

@
<}
3
=~
N}

Calculations
Calculati

1000, A /
/ 8 X
/ "'h'

900, ... \

800,

-
3
8
X

=]
Pruning rate of branches/%

3
@

@
=}
3
=
3

500

10 20 30 40 50 60 70 80 90 10%8
Percent of global pivots/%

10 20 30 40 50 60 70 80 90 10%9
Percent of global pivots/%

Fig.7 Calculations & pruning rate of branches as percent
of global pivots increases, in ColorsD112, in pivot selection
strategy: ALB (left), MSD (right), by TLAESA_MP.

are directly selected for the following experiments, and
without special illustrations the ALB strategy is adopted
for selecting global pivots due to the fewest distance
calculations in the real-world databases.

6.2 Testing TLAESA_MP

The TLAESA_MP intends to combine some global pivots
with some representatives in the higher levels to improve the
pruning rate, but the fact could be that if we adopt a proper
strategy to acquire a set of optimal or good global pivots,
given the same number of pivots, the distance calculations
are fewer when more global pivots are used. This can
be observed in the following experiments of the common
20-NN queries, where the total number of pivots is fixed to
100, and the percent of global pivots is increased from 0%
to 100% at intervals of 10%.

The results on the distance calculations plus the
pruning rate of branches with the variable percent of global
pivots in the database ColorsD112 are depicted in Fig.7
(left). Note that the search strategy is the best-first strategy
with the heuristic factor 1, and the pivot selection strategy
is the ALB. We can clearly find that as the percent of global
pivots increases, the distance calculations trend to decrease
while the pruning rate trends to increase. A few node-pivots
can not make the calculations and the pruning rate change
when the percent of global pivots reaches 90% or more.

If we use an improper pivot selection strategy to get
a set of not so good global pivots, when we combine them
with some node-pivots, indeed the distance calculations can
be reduced a lot and meanwhile a high pruning rate can be
acquired. We can take the same queries in the database
ColorsD112 as an example. Note that the pivot selection
strategy is changed to the MSD. In Fig.7 (right), there
are fewest distance calculations and a highest pruning rate
when the percent of global pivots is 70%. Overall the
ALB strategy can save more distance calculations than the
MSD strategy at the same percent of global pivots, and then
we regard the former as a proper pivot selection strategy.
However, it remains a question that because of relativity
a new improved pivot selection strategy could make the
old one improper, and usually we don’t know whether the

WANG et al.: NEAREST NEIGHBOR SEARCH WITH THE REVISED TLAESA

NasaD20: ALB
2600 72

NasaD20: ALB

--&- TLAESA
-o--iTLAESA

—e—eTLAESA, 6=1
—S~eTLAESA, 6=0

2400

2200

2000

1800

Calculations

--a- TLAESA
-%-iTLAESA

1600

—o—eTLAESA, 6=1 54 T
1400 —5—€TLAESA, 8=0 e
+~ LAESA s2r T -

120(% 0 20 30 40 50 10 20 30 40 50

k k

Fig.8 Comparing calculations (left), pruning rate of branches (right) as
k increases among different search methods, in NasaD20, in ALB.

selected pivots are good pivots or how good they are for an
unknown database.

6.3 Evaluating the Proposed e TLAESA
6.3.1 General k-NN Queries

In the experiments of the general k-NN queries, the value
of k is from 10 to 50 at intervals of 10. For different search
methods the selected global pivots are the same in the same
database, and the number of the global pivots is fixed to 100.

The proposed method eTLAESA is compared with the
TLAESA and the iTLAESA. As for the search strategies,
the TLAESA uses the depth-first search strategy, the
iTLAESA uses the original best-first search strategy, and
the eTLAESA also uses the best-first search strategy but
with two different heuristic factors of the covering radius
which are 1 and 0. The search results of the calculations
and pruning rate of branches in the database NasaD20 are
shown in Fig. 8. The similar results can be obtained in the
database ColorsD112. In the figures, 6 = 1” denotes that
the heuristic factor is 1, while " = 0” denotes that the
heuristic factor is 0.

We can find the curves of calculations of the LAESA,
the iTLAESA, and the eTLAESA with the heuristic factor 1
completely overlap, which means that their calculations are
the same. Probably the LAESA has the fewest calculations
given the same pivots, and then the iTLAESA and the
eTLAESA with the heuristic factor 1 can reach their limited
minimum number of distance calculations compared to the
LAESA. We can also find that the iTLAESA can save more
calculations than the TLAESA, but its pruning rate is the
lowest. The emergence of the eTLAESA improves this
plight and succeeds in transcending the TLAESA on the
pruning rate.

Compared to the eTLAESA with the heuristic factor
0, the eTLAESA with the heuristic factor 1 can reach
the limited fewest calculations, but it can not gain the
highest pruning rate of branches. It seems as if there
exists a “trade-off” between the distance calculations and
the pruning rate, but the following experiments shows that
we can use a heuristic factor lower than 1 to make the
pruning rate higher, and meanwhile to keep the limited

73

NasaD20: ALB, eTLAESA NasaD20: ALB, eTLAESA

NN
2R 8
o 8 &
8.8 8
¢ @
¢ @
@
]
-]
/
[
o
9
L}
NN
S N

3
&,
/
./

Calculations
I B
s 8
8 .8
4
14
3
®
IS
b
Pruning rate of branches/%
?
G
g J
o

@
o1}

@
)

3
i
£
S

.......
et

s
010203040506070809 1
Heuristic factor of covering radius

010203040506070809 1
Heuristic factor of covering radius

Fig.9 Calculations (left), pruning rate of branches (right) as the heuristic
factor of covering radius increases for different valus of &, in NasaD20, in
ALB, by eTLAESA.

fewest distance calculations unchanged.
6.3.2 Optimizing the Heuristic Factor

In the following experiments on the eTLAESA, some k-NN
queries, where the value of k is from 10 to 50 at intervals
of 10 and the number of the pivots is fixed to 100, are
carried out when the heuristic factor is increased from 0 to
1 at intervals of 0.1. The following Fig. 9 shows the curves
on the calculations and the pruning rate of branches as the
heuristic factor increases in the database NasaD20.

We can find that there exists a breakthrough point of
the heuristic factor for different k-NN queries, and when
the heuristic factor surpasses that point, the number of the
distance calculations almost keeps the same minimum till
the heuristic factor is 1, while the pruning rate drops sharply
after a peak. The similar results can be acquired in the other
databases with different pivot selection strategies, but the
breakthrough point may be different.

In this study the breakthrough point is selected as the
optimal value of the heuristic factor. In order to make
the distance calculations completely reach the minimum
amount, the optimal value can be slightly bigger than the
breakthrough point. Thus, it is possible that the eTLAESA
can achieve a higher pruning rate while keeping the same
fewest distance calculations as the LAESA even if the
heuristic factor of the covering radius is not 1.

6.3.3 Special 20-NN Queries

Unlike the general k-NN queries above, in this section
we focus on a specific k-NN query which is the widely
applied 20-NN query to evaluate the performance of the
proposed method eTLAESA compared to the TLAESA and
the iTLAESA. The heuristic factors of the covering radius
applied to the eTLAESA are two values, which are a fixed
value 1 and an optimal value. The 20-NN queries are carried
out in the two real-world databases as the number of the
selected global pivots is gradually increased. Note that the
max number of the global pivots is restricted to 5% of the
indexed data, and the same pivot set is used for the same
database.

74

NasaD20: ALB

&~ TLAESA
---TLAESA
—o—6TLAESA, 6=1

T

—S-eTLAESA, 6=0.8

NasaD20: ALB

-
=)

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.1 JANUARY 2015

NasaD20: MSD

76, [~= TLAESA
-+ TLAESA

T4 | ——eTLAESA, 6=1

72 |5 eTLAESA, 6=08

NN NN
S ® O N R O >

S R

Pruning rate of branches/%

a0 0 DD DN
i

-]

NasaD20: MMD

&~ TLAESA
---TLAESA
—o—6TLAESA, 6=1
—=—eTLAESA, 6=0.8

o
>,

o
kY

8
3
2
» S 68,
2
S sl
S — /
3 o 64}
3
8 262
2
g
E ol —a- TLAESA
& 581/ -4~ ITLAESA
s6f * —o—&TLAESA, 6=1
54l —5—eTLAESA, 6=0.8
10095766 150 200 250 300 350 400 40 500 536100 150 200 250 300 360 400 450 500
Number of pivots Number of pivots
Fig.10 Comparing calculations (left), pruning rate of branches (right)

as number of pivots increases for 20-NN queries among different search
methods, in NasaD20, in ALB.

:‘50 100 150 200 250 300 350 400 450 500 5%0 100 150 200 250 300 350 400 450 500
Number of pivots Number of pivots

Fig.12 Comparing pruning rate of branches as number of pivots

increases for 20-NN queries among different search methods, in NasaD20,

in MSD (left) and MMD (right).

1200

1100}

ColorsD112: ALB

--a- TLAESA

ColorsD112: ALB

-%-iTLAESA
—e—eTLAESA, 6=1

1000 kY —5eTLAESA, 6=0.8

900 \‘
800 A B s

700 \

o0 h\\v—e——e’/

500

Calculations

40%0 60 90 120 150 180 210 2“10 270 300 7%0 60 90 120 150 180 210 240 270 300
Number of pivots Number of pivots

Fig.11 Comparing calculations (left), pruning rate of branches (right)
as number of pivots increases for 20-NN queries among different search
methods, in ColorsD112, in ALB.

The optimal heuristic factor is set to 0.8 both in the two
real-world databases. Then the curves on the calculations
and the pruning rates of branches are displayed in Fig. 10
and Fig.11. We can draw the similar conclusions as the
general k-NN queries above except that, the eTLAESA with
the heuristic factor 0.8 not only has reached the limited
fewest distance calculations due to the nearly overlapped
curves on distance calculations, but also obtains the highest
pruning rate.

Note that in the experiments above the pivot selection
strategy is the ALB. If the pivot selection strategy is the
MSD or the MMD, the results on the pruning rate of the
search tree in the database NasaD20 are shown in Fig. 12.
We can find that the iTLAESA indeed does not improve
the pruning rate as its pruning rate is the lowest when the
pivot selection strategy is the MSD or the MMD, although
it can reach the fewest distance calculations. Besides, the
proposed method eTLAESA with the heuristic factor 1
performs better than the iTLAESA, but it still can not or
partly transcend the TLASEA, particularly when the pivot
selection strategy is the MSD. However, we can adjust the
heuristic factor to some extent, and when we let it be 0.8,
the pruning rate becomes the highest (the calculations are
almost the same) in either of the pivot selection strategies.

The times to access and sort the TPQ are counted on
condition that the elements in the TPQ need be sorted one
time when a new element is added. What’s more, the max
size of the TPQ is also computed according to the max

NasaD20: ALB

NasaD20: ALB
4000

oo ~<-TLAESA -<-iTLAESA
", —o—eTLAESA, 6=1 35006... —e—eTLAESA, 6=1
8500 S —5—eTLAESA, 6=0.8 o —5—eTLAESA, 6=0.8
"y T
3000 AR
.
2500 s
5
&
; 2000
=
1500,
1000\\5/;\9—\‘.\3/&
450%0 100 150 200 250 300 350 400 450 500 50%0 100 150 200 250 300 350 400 450 500
Number of pivots Number of pivots
Fig.13 Comparing times to sort TPQ (left), max size of TPQ (right)

as number of pivots increases for 20-NN queries among different search
methods, in NasaD20, in ALB.

number of the elements contained in the TPQ. The following
experiments are carried out in the two real-world databases,
but only the results in the database NasaD20 are displayed
due to the similar results. In Fig. 13, we can find that the
TPQ need be frequently sorted by the iTLAESA and its size
is rather huge, but by the eTLAESA, particularly with the
optimal heuristic factor 0.8, the times to sort the TPQ and
also the max size of the TPQ decrease sharply. These results
are in accordance with our expectation in that generally by
the best-first search strategy, the lower the pruning rate of
the search tree is, the less the number of the nodes are added
into the TPQ, furthermore, the fewer the times to sort the
TPQ are, and furthermore, the smaller the max size of the
TPQ is.

As for how fast those methods can execute the 20-NN
queries, the search CPU-time cost can tell us. The following
Fig. 14 shows the curves on the CPU-time cost as the
number of the pivots increases in the database NasaD20. By
the way, the CPU-time cost is measured in the Ubuntu 11
operating system with a 4G Hz CPU. We can see clearly
that the iTLAESA spends the most CPU-time. As long as
there are enough pivots, about 250 or more, the eTLAESA
with the heuristic factor 1 can save more CPU-time than the
TLAESA, not to mention the eTLAESA with the optimal
heuristic factor 0.8.

As the previous research, we should determine an
optimal number of pivots for the further comparisons. It has

WANG et al.: NEAREST NEIGHBOR SEARCH WITH THE REVISED TLAESA

NasaD20: ALB

.......

CPU-time/ms

& TLAESA
-<--TLAESA
—e—eTLAESA, 6=1
—5—eTLAESA, 6=0.8

S By W W
%0 100 150 200 250 300 350 400 450 500
Number of pivots

Fig.14 Comparing CPU-time cost as number of pivots increases for
20-NN queries among different search methods, in NasaD20, in ALB.

been shown by experiments [8] that the optimal number of
pivots does not depend on the number of indexed data when
the data reach a certain scale, but depends on the intrinsic
dimensionality of the space, and the number of nearest
neighbors to be queried [26]. Of course, the distribution
of the data and the pivot selection strategy also affect the
optimal number of pivots. Although the previous researches
provide some optimal number of pivots, they are mainly
for the uniformly distributed database in lower dimensional
spaces. As many factors affect the optimal number of
pivots, the best way to determine that number in an unknown
database is by experiments.

Actually we determine the optimal number of pivots
only according to the minimum number of distance
calculations. From the curves on the calculations with
the increased number of pivots in Fig. 10 and Fig. 11, we
determine roughly in Table 1 and Table 2 the optimal
number of pivots in the two real-world databases for each
index method. In fact, the optimal number of pivots for
the eTLAESA is almost the same as that for the iTLAESA
as their curves almost overlap, but may be different from
that for the TLAESA. As an example, we can find that
in the database ColorsD112, the optimal number of pivots
for the eTLAESA is less than that for the TLAESA, which
means that to achieve the same performance the eTLAESA
or the iTLATSA requires fewer pivots and a smaller size of
distance matrix.

Some evaluation parameters like the distance calcula-
tions, pruning rate of branches, for 20-NN queries are
computed according to the optimal number of pivots in the
same pivot selection strategy ALB, and they are also listed
in the tables. Note that ” X ” means no such evaluation
parameters.

From Table 1, in the database NasaD20, compared to
the TLAESA, the iTLAESA reduces about 15.0% distance
calculations, but it can not reduce the pruning rate and the
CPU-time cost. Then compared to the iTLAESA, when
the heuristic factor is 1, the eTLAESA keeps the same
calculations, but it increases the pruning rate of search tree
about 8.7%, and decreases the times to sort the TPQ about
24.3%, the max size of the TPQ about 34.2%, the CPU-time
cost about 27.9%. Furthermore, when the heuristic factor is
0.8, the eTLAESA keeps almost the same calculations, but
it increases the pruning rate of the search tree about 11.7%,

75
Table 1 Evaluation parameters in NasaD20.
TL- iTL- eTLAESA
AESA | AESA 6=1 6=0.8
Pivot-number 400 400 400 400
Calculations 1440.2 1224.2 1224.2 1224.6
Pruned branches 69.7% 64.2% 72.9% 75.9%
Times to sort TPQ X 7153.2 5416.4 | 4825.0
Max size of TPQ X 2676.8 1762.2 937.5
CPU-time 7.20ms | 9.08ms | 6.55ms | 6.06ms
Table 2 Evaluation parameters in ColorsD112.
TL- iTL- eTLAESA
AESA | AESA =1 6=0.8
Pivot-number 210 150 150 150
Calculations 769.0 539.3 539.3 539.5
Pruned branches 80.6% 75.7% 81.4% 83.8%
Times to sort TPQ X 4856.7 3725.2 32354
Max size of TPQ X 1918.6 1299.6 722.0
CPU-time 351ms | 3.72ms | 2.62ms | 2.44ms

and decreases the times to sort the TPQ about 32.6%, the
max size of the TPQ about 65.0%, the CPU-time cost about
33.3%. At last, compared to the TLAESA, the eTLAESA
with the heuristic factor 0.8 can save about 15.0% distance
calculations, increase the pruning rate about 6.2%, and
decrease the CPU-time cost about 15.9%.

We can similarly analyze the data in Table 2. In
the database ColorsD112, when the heuristic factor is 0.8,
compared to the iTLAESA, the eTLAESA increases the
pruning rate about 8.1%, and decreases the times to sort the
TPQ about 33.4%, the max size of the TPQ about 62.4%,
the CPU-time cost about 34.4%. While compared to the
TLAESA, the eTLAESA can save about 29.9% distance
calculations, increase the pruning rate about 3.2%, and
decrease the CPU-time cost about 30.5%.

7. Conclusions

We proposed a method called the eTLAESA to improve
the state of art method TLAESA by arranging the selected
global pivots in the higher levels of the search tree as
representatives as possible. As more real distances instead
of lower bound estimations of the node-representatives are
used for approximating the closet node and “branch and
bound” in the earlier stage, not only which nodes are close
to the query can be evaluated more effectively, but also the
pruning rate of branches can be enhanced, and further the
times to access and sort the priority queue used for the
best-first search strategy can be greatly reduced. Moreover,
if the selected global pivots are not so good, to some extent
the eTLAESA can adjust the heuristic factor of the covering
radius of the nodes for an optimal value to make the pruning
rate transcend the TLAESA.

The eTLAESA builds an optimal number or a smaller
number of global pivots into the higher level of the
search tree as possible and works well, but it degrades
into the iTLAESA which is an improved version of the
TLAESA if all the index objects are selected as the

76

pivots. Compared to the iTLAESA, the eTLAESA can not
save more distance calculations as it reaches the limited
fewest distance calculations given the same pivots, but it
can greatly improve the pruning rate, the times to sort
the priority queue and the search efficiency measured in
CPU-time by experiments in different real-world databases.
The experiments also show that for answering the common
20-NN queries, in the same proper pivot selection strategy,
compared to the TLAESA, the eTLAESA can save more
distance calculations and enhance the pruning rate to
achieve a higher search efficiency with the same or fewer
optimal pivots.

It remains a work in future to apply the eTLAESA to
the other more complex metric spaces like the metric EMD
(Earth Mover’s Distance) and evaluate the performance.

Acknowledgments

This research was supported in part by a grant from the
Grant-in-Aid for Scientific Research nos. 24501136 from
the Ministry of Education, Science, and Culture, Japan.

References

[1] D. Ma, X. Zhai, and Y. Peng, “Cross-media retrieval by
cluster-based correlation analysis,” 20th IEEE International
Conference on Image Processing, pp.3986-3990, 2013.

[2] O.Marques and B. Furht, Content-Based Image and Video Retrieval,
pp-35—46, Kluwer Academic Publishers, 2002.

[3] K.S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When
is nearest neighbor meaningful?,” Proc. Internat. Conf. on Database
Theory, Lecture Notes Comput. Sci., vol.1540, pp.217-235, 1999.

[4] C. Bohm, S. Berchtold, and D.A. Keim, “Searching in high
dimensional spaces: index structures for improving the performance
of multimedia databases,” ACM Computing Surveys, vol.33, no.3,
pp.322-373,2001.

[5] T. Skopal, “Unified framework for fast exact and approximate search
in dis-similarity spaces,” ACM Trans. Database Systems, vol.V,
no.N, pp.1-45, 2007.

[6] V. Sepulveda and B. Bustos, “CP-Index: using clustering and
pivots for indexing non-metric spaces,” Proc. SISAP’10, pp.75-82,
Istanbul, Turkey, 2010.

[71 E. Vidal, “An algorithm for finding nearest neighbors in
(approximately) constant average time,” Pattern Recognit. Lett.,
vol.4, no.3, pp.145-157, 1986.

[8] M.L. Micé, J. Oncina, and E. Vidal, “A new version of the
nearest-neighbour approximating and eliminating search algorithm
(AESA) with linear preprocessing time and memory requirements,”
Pattern Recognit. Lett., vol.15, no.1, pp.9-17, 1994.

[9] L. Micd, J. Oncina, and R.C. Carrasco, “A fast branch & bound
nearest neighbour classifier in metric spaces,” Pattern Recognit.
Lett., vol.17, no.7, pp.731-739, 1996.

[10] J.K. Uhlmann, “Satisfying general proximitysimilarity queries with
metric trees,” Inf. Process. Lett., vol.40, no.4, pp.175-179, 1991.

[11] P.N. Yianilos, “Data structures and algorithms for nearest neighbor
search in general metric spaces,” Annual ACM-SIAM Symposium
on Discrete Algorithms, pp.311-321, Austin, USA, 1993.

[12] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: an efficient access
method for similarity search in metric spaces,” Proc. 23rd Internat.
Conf. on Very Large Data Bases (VLDB), pp.426-435, Athens,
Greece, 1997.

[13] E. Chavez, G. Navarro, R. Baeza-Yates, and J.L. Marroquin,
“Proximity searching in metric spaces,” ACM Computing Surveys,

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.1 JANUARY 2015

vol.33, no.3, pp.273-321, 2001.

T. Skopal, J. Pokorny, and V. Snésel, “PM-tree: Pivoting metric tree
for similarity search in multimedia databases,” 8th East-European
Conf. on Advances in Databases and Information Systems (ADBIS),
pp.99-114, Budapest, Hungary, 2004.

K. Tokoro, K. Yamaguchi, and S. Masuda, “Improvements of
TLAESA nearest neighbour search algorithm and extension to
approximation search,” 29th Australasian Computer Science Conf.
(ACSC), pp.77-83, Hobart, Tasmania, Australia, vol.48, 2006.

K. Figueroa, E. Chdvez, G. Navarro, and R. Paredes, “Speeding
up spatial approximation search in metric spaces,” J. Experimental
Algorithmics, vol.14, no.6, pp.6-21, 2009.

P. Aibar, A. Juan, and E. Vidal, “Extension to the Approximating and
Eliminating ~ Search Algorithm (AESA) for finding
k-nearest-neighbours,” Technical Report DSIC 11I/29/93, Dept.
DSIC, Univ. Politécnica de Valencia, 1993.

J.M. Vilar, “Reducing the overhead of the AESA metric-space
nearest neighbour searching algorithm,” Inf. Process. Lett., vol.56,
no.8, pp.265-271, 1995.

K. Figueroa, E. Chdvez, G. Navarro, and R. Paredes, “On the least
cost for proximity searching in metric spaces,” WEA 2006, Lect.
Notes Comput. Sci., vol.4007, pp.279-290, 2006.

R. Socorro, L. Micd, and J. Oncina, “A fast pivot-based indexing
algorithm for metric spaces,” Pattern Recognit. Lett., vol.32, no.11,
pp.1511-1516, 2011.

E. Bugnion, S. Fei, T. Roes, P. Widmayer, and F. Widmer,
“A spatial index for approximate multiple string matching,” First
South American Workshop on String Processing, pp.43-53, Belo
Horizonte, Brazil, 1993.

L. Micé and J. Oncina, “Comparison of fast nearest neighbour
classifiers for handwritten character recognition,” Pattern Recognit.
Lett., vol.19, no.3—4, pp.351-356, 1998.

N. Brisaboa, A. Farina, O. Pedreira, and N. Reyes, “Similarity
search using sparse pivots for efficient multimedia information
retrieval,” Proc. 8th IEEE Internat. Symposium on Multimedia,
IEEE Computer Society, pp.881-888, Washington, DC, USA, 2006.
B. Bustos, O. Pedreira, and N. Brisaboa, “A dynamic pivot
selection technique for similarity search,” First Internat. Workshop
on Similarity Search and Applications, IEEE Computer Society,
Washington, DC, USA, pp.105-112, 2008.

B. Bustos, G. Navarro, and E. Chédvez, “Pivot selection techniques
for proximity searching in metric spaces,” Pattern Recognit. Lett.,
vol.24, no.14, pp.2357-2366, 2003.

F. Moreno-Seco, L. Micd, and J. Oncina, “Extending LAESA fast
nearest neighbour algorithm to find the k-nearest neighbors,” Lect.
Notes Comput. Sci., vol.2396, pp.718-724, 2002.

Dong Wang was born in 1982. He received
the master degree in Mechanical Engineering
from the Beijing Institute of Technology,
China, in 2008. His Ph.D. study is on
Multimedia Information Retrieval at the Dept.
of Information Science and Intelligent System,
the University of Tokushima, Japan. Now
his main research interests are Multimedia
Information Indexing, Contents Based Image
Retrieval, and Metric Spaces.

WANG et al.: NEAREST NEIGHBOR SEARCH WITH THE REVISED TLAESA

Chapter.

Hiroyuki Mitsuhara was born in 1975.
He received the B.E. and M.E. degrees from
Kinki University in 1998 and 2000, and then he
received the Ph.D. degree from The University
of Tokushima in 2003. He is currently
an associate professor at The University of
Tokushima. His research interests include
entertainment computing, human computer

interaction, e-Learning, and Web-based learning.

He received the IEEE Young Researcher Award
2011 from IEEE Education Society Japan

Masami Shishibori was born in 1965.
He received his BS Degree in 1991, his MS
Degree in 1993 and PhD Degree in 1997, from
Tokushima University, Japan. He is currently
a Professor in the Department of Information
Science and Intelligent Systems at Tokushima
University, Japan. His research interests include
multimedia processing, information retrieval,
natural language processing.

77

