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A Speech Intelligibility Estimation Method Using a Non-reference
Feature Set
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SUMMARY We proposed and evaluated a speech intelligibility estima-
tion method that does not require a clean speech reference signal. The pro-
pose method uses the features defined in the ITU-T standard P.563, which
estimates the overall quality of speech without the reference signal. We
selected two sets of features from the P.563 features; the basic 9-feature
set, which includes basic features that characterize both speech and back-
ground noise, e.g., cepstrum skewness and LPC kurtosis, and the extended
31-feature set with 22 additional features for a more accurate description of
the degraded speech and noise, e.g., SNR, average pitch, and spectral clar-
ity among others. Four hundred noise samples were added to speech, and
about 70% of these samples were used to train a support vector regression
(SVR) model. The trained models were used to estimate the intelligibility
of speech degraded by added noise. The proposed method showed a root
mean square error (RMSE) value of about 10% and correlation with subjec-
tive intelligibility of about 0.93 for speech distorted with known noise type,
and RMSE of about 16% and a correlation of about 0.84 for speech dis-
torted with unknown noise type, both with either the 9 or the 31-dimension
feature set. These results were higher than the estimation using frequency-
weighed SNR calculated in critical frequency bands, which requires the
clean reference signal for its calculation. We believe this level of accuracy
proves the proposed method to be applicable to real-time speech quality
monitoring in the field.
key words: speech intelligibility, non-reference estimation, support vector
regression, P.563, diagnostic rhyme test

1. Introduction

Since speech communication is being carried out in a wide
variety of ambient conditions due to the wide-spread use
of mobile phones and smart phones, it is becoming in-
creasingly essential to constantly monitor the quality of the
speech communication being delivered in order to guaran-
tee the delivery of intelligible speech. In this environment,
we can assume that the primary distortions to speech sig-
nals will most likely be a wide variety of additive noise
from the surrounding environment, both stationary and non-
stationary. In this paper, we will deal first with this additive
noise. However, there are also a variety of convolutional
noise, such as seen with some analog front-ends and some
signal processing blocks, as well as highly non-linear noise,
such as speech codecs, speech enhancers, packet loss, or
even watermarked speech signals, for example. We plan to
deal with these degradations in a follow up research using
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similar techniques that are described in this paper.
There are two flavors of quality that is commonly mea-

sured. In the first of these measures, the overall “goodness”
of the speech quality is commonly measured on a five-point
scale, from excellent to bad [1]. This measure is an average
of the points a panel of listeners gives to a degraded speech
sample, and is called the Mean Opinion Score (MOS). MOS
has been standardized by the International Telecommuni-
cation Union - Telecommunication Standardization Sector
(ITU-T) as P.800 [1].

In the second measure, the accuracy perceived by the
listener of what is being said on the receiving side is mea-
sured. This measure is called the speech intelligibility, and
is a critical measure in speech communication. Speech in-
telligibility is measured in terms of the percentage of the
correct units (e.g., phones, syllables, words or sentences) a
panel of listeners identifies for a given condition. Enough
samples per condition need to be evaluated using a large
panel of listeners for stable results. Thus, speech intelligibil-
ity measurement is often an expensive and time-consuming
task.

Accordingly, attempts to estimate the speech quality
without using human listeners were conducted. Most of
these involve the estimation of the overall speech quality
(MOS). There are a number of ITU standards that are in ef-
fect for MOS estimation. The ITU-T P. 862, or better known
as the Perceptual Evaluation of Speech Quality (PESQ) [2]
estimates the MOS values from the degraded speech and
the clean speech. The difference between the two signals
is converted to a perceptual measure, and mapped to MOS
using a pre-trained mapping function. PESQ is known as
the full-reference, or the double-ended estimation since the
clean reference signal is required for its estimation. PESQ
is known to give an accurate estimation for various degra-
dations, and is widely used for applications where the ref-
erence signal is available. However, it is not readily appli-
cable to applications such as real-time quality monitoring at
a remote location, where the reference signal is not readily
available. For example, it would be impractical to expect
a reference signal in two-way real-time speech communica-
tion systems.

Thus, attempts were made to estimate speech quality
without the use of a reference signal. The ITU-T standard
P.563 can estimate MOS scores without a reference sig-
nal [3]. P.563 estimates the clean speech signal from the
degraded signal, and calculates the MOS values between
the estimated clean speech and the degraded speech using
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similar techniques as the full-reference estimation. Since
these types of methods only use the degraded signal, they
are called the non-reference or the single-ended estimation.
P.563 is known to give a relatively accurate MOS estimation
for many of the conditions, although obviously lower than
P.862, which utilizes both a reference and degraded signals.
In a more recent work, Grancharov et al. [4] proposed the
Low-Complexity Quality Assessment (LCQA), in which a
large set of spectral features is reduced into fewer dimen-
sions using the Principle Component Analysis (PCA), and
fed to the Gaussian Mixture Model (GMM) to map the de-
graded speech into a MOS estimate.

However, there are currently no standards that estimate
the speech intelligibility. There have been some reports of
intelligibility estimation methods that give relatively accu-
rate results. Articulation Index (AI) [5] estimates the intel-
ligibility from SNR measurements within several frequency
bands combined using a perceptual model. This evolves to
a number of measures, including the Speech Transmission
Index (STI) [6] which uses artificial speech signals com-
municated over the channel to estimate the intelligibility
by measuring the modulation depth of weighted frequency
bands of the received signal. Recently, the application of a
new signal-dependent time-varying band importance func-
tions (BIFs) on conventional objective measures, such as
the Signal to Noise Ratio (SNR), Articulation Index-based
measures, and others, was shown to improve the estima-
tion accuracy [7]. In other efforts, a simple objective mea-
sure, which is called the Short-Time Objective Intelligibil-
ity (STOI) measure [8], was shown to give more accurate
estimation than previous methods. The STOI measures the
correlation between the temporal envelopes of clean and de-
graded speech in short segments. The authors have also at-
tempted to use MOS scores estimated with PESQ [9], and
frequency-weighed SNR [9]–[11] to estimate intelligibility,
and showed high estimation accuracy. Note that all these are
full-reference estimations and require the reference signal.

On the other hand, some efforts at non-reference intelli-
gibility estimation has also been conducted, although much
less than full-reference estimations. Sharma et al. have
introduced a non-intrusive intelligibility estimation method
using the Low Cost Intelligibility Assessment (LCIA) algo-
rithm [12], which is based on the LCQA described above.
They also use PCA on a spectral feature set, and apply
GMM on the remaining set, and output estimated intelligi-
bility for the degraded speech. In [13], we reported on our
initial attempt to estimate the speech intelligibility by select-
ing effective features from those used in the P.563, and apply
Support Vector Regression (SVR) to output the estimated
intelligibility from the degraded signal. Preliminary test re-
sults with open noise type testing (testing on a completely
unknown noise type) has been reported. In this paper, we
further describe our proposal in detail, and report the results
of an extensive test set, including the closed noise type test
(testing on unknown noise samples of noise types included
during training) among others.

This paper is organized as follows. In the next sec-

tion, we review the ITU-T P.563 standard. Then we propose
the non-reference speech intelligibility estimation method
based on the feature set of the P.563. This is followed by the
description of the experimental conditions for the estimation
accuracy experiment, and the discussions of the results are
given in Sect. 5. Finally, the conclusion and plans are given.

2. ITU-T P.563 - The Non-reference Speech Quality Es-
timation Standard

We now review the ITU-T P.563 standard [3], [14] since this
work is based on the features used in this standard. P.563 is
the only standard to date that is classified as a non-reference
objective quality measure, i.e., does not require the clean
reference signal for its operation. This standard outputs the
estimated MOS value of the degraded input signal. The
ITU-T P.563 tries to reconstruct the reference speech signal
from the distorted signal by applying the human speech pro-
duction model to the signal. The distortion, modeled as the
difference between the distorted signal and the reconstructed
signal, is classified into a number of distortion classes ac-
cording to the manner it affects the quality. In the initial
speech modeling stage, the pitch is estimated from the sig-
nal, the processing frame is synchronized to this pitch pe-
riod, and vocal tract model parameters are extracted using
linear prediction (LP). Some higher order statistics of the
LP coefficients, e.g., skewness and kurtosis, are also calcu-
lated in order to extract the frame-by-frame spectral dynam-
ics. In the succeeding reconstruction stage, the reference
speech signal is reconstructed by linear predictive coding
(LPC) synthesis using the extracted LP parameters. Esti-
mation of the speech quality is done using the reproduced
speech signal and the distorted signal in a similar manner
as the ITU-T P.862 standard [2]. The two signals are time
aligned, the difference is calculated, and a perceptual model
is applied to the difference signal, and the result is mapped
to a speech quality score, in MOS. The perceptual models
have been enhanced compared to the ITU-T P.862 in order
to detect varying distortions that affect the quality in a dif-
ferent manner.

For instance, the robotization, or the unnatural syn-
thetic quality of the distortion is detected. Temporal signal
clipping and convolutional noise are also detected. These
noise classifications are taken into account when mapping
to an estimated MOS score. The ITU-T P.563 was tested
on some speech codecs and distortions, and was shown
to achieve a correlation of 0.888 with the subjective MOS
scores. This compares favorably with P.862, with a correla-
tion of 0.945. However, P.862 requires the reference signal,
as opposed to the P.563 which does not.

3. Speech Intelligibility Estimation Using
Non-reference Features

3.1 Overview of the Estimation Method

Figure 1 is a representation of the flow of the speech intelli-
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Fig. 1 Overall configuration of the speech intelligibility estimation.

gibility estimation. During the training phase, noise is added
to speech signals to create a degraded signal sample. The su-
pervisory signal of the training is the subjective evaluation
results of the speech intelligibility of the above degraded
signal. The SVR model is trained using these two.

In the testing phase, the degraded signal is directly fed
to the SVR, which will map the degraded signal into its es-
timated speech intelligibility.

3.2 Non-reference Speech Features

The ITU-T P.563 estimates the MOS scores that quantify the
overall speech quality. Previously, we have shown that the
overall speech quality is correlated with speech intelligibil-
ity [9], [11]. Thus, we will carefully select and use the spec-
tral features used in the P.563 that seems relevant to speech
intelligibility in order to estimate the speech intelligibility of
the distorted signal. Like the P.563, the reference signal is
not required to calculate these features. These features will
then be used to map the features of an unknown signal to its
estimated intelligibility.

We initially selected 9 features that seemed to be rel-
evant. These 9 features were selected as a minimum set of
features that characterize the quality (especially the speech-
likeness) of the speech, and the basic features that relate to
the level of the background noise. Some features, such as
those related to speech packet loss, were not included since
we initially will deal only with additive ambient noise. Ta-
ble 1 lists these features. We also defined an extended set
with 22 additional features selected from the P.563 features,
which also seemed to be effective in the estimation of the
intelligibility. These additional features in general add the
characteristics of the spectral dynamics of speech and noise
components. Table 2 lists these features. Note that these 22
features were included on top of the 9 features listed in Ta-
ble 1 for a total of 31 features. In this table, the VTP is an
array describing the vocal pipe shape, and the ART is an ar-
ray describing the articulators. Both feature sets were used
to train an SVR model [15].

3.3 The SVR (Support Vector Regression)

The feature set defined in 3.2 is used to train an SVR model,

Table 1 The nine-dimension non-reference feature set.

No. Feature Description

1 Pitch Cross Power cross power between 2 frames
for each consecutive frame

2 Cepstrum Skewness skewness of per-frame cepstrum
3 LPC Kurtosis kurtosis of LP coefficients of

active frames
4 Frame Repeats number of detected frame

repetitions
5 Basic Voice asymmetrical averaged power

Quality Asymmetric spectrum in 20–170 Hz range
6 Speech Level average of the highest 95%

of the RMS values
7 Local BG Noise percentage of samples classified as

local BG noise vs. total samples
8 Local BG Noise number of samples of the frames

Affected Samples that contain local BG noise
9 Local BG Noise mean energy of frames that

Mean contain local BG noise

Table 2 The 31-dimension non-reference feature set.

No. Feature Description

10 SNR signal to noise level ratio
11 Frame Repeats mean energy of detected

Mean Energy repeated frames
12 Pitch Average average pitch period
13 Spectral Clarity average energy ratio at harmonic

frequency and between two harmonics
14 Speech Section level variation between sentences

Level Variation
15 VTP Max Tube maximum section size of first VTP

Section tube over the whole input signal
16 LPC Skewness Abs. absolute value of LPC skewness
17 High Freq. Var. high frequency introduced by noise
18 Basic Voice estimate of total audible

Quality disturbances
19 ART Average averaged section of the back cavity
20 Cepstrum Absolute absolute value of cepstrum deviation

Deviation
21 Est. BG Noise estimated background noise floor
22 Final VTP Ave. averaged section of the last VTP tube
23 VTP VAD Overlap ratio of total len. of voiced sections

over the total speech section len.
24 Cepstrum Kurtosis kurtosis of cepstrum
25 VTP Peak Tracker tracks the amp. var. within vocal tract
26 LPC Skewness skewness of LP coefficients
27 Pitch Cross Corr. offset for cross-corr. used to place

Offset pitch markers
28 Spectrum Level range of the average spectrum

Range level
29 Spectrum Level deviation of the average

Deviation spectrum level
30 Local BG Noise local BG noise mean in dB

Log
31 Relative Noise relative noise floor

Floor

which will then be used to map an unknown distorted signal
to its estimated intelligibility. SVR is one of the applica-
tions of the support vector algorithm, which was proposed
by Vapnik et al. [15], to the regression problem, and has
been proven to possess a high generalization performance.

In this paper, we will use the SVR implementation of
the LIBSVM [16]. We decided to use the SVR with the
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Table 3 The word-pair list for the phonetic feature “sustention”.

Word pair no. With feature Without feature

1 hashi kashi
2 shiri chiri
3 suki tsuki
4 hen ken
5 hoshi koshi
6 hata kata
7 hiru kiru
8 suna tsuma
9 heri keri
10 horu koru

Radial Basis Function (RBF) as the kernel function in the
following experiments since the RBF constantly gave bet-
ter results than the linear kernel in previous tests. We also
conducted smaller scale experiments with neural networks,
but the difficulty in the optimization of the basic parameters
(e.g., hidden layer units, the number of iterations) that works
well in all conditions, as well as apparent over-training of
the models convinced us that the SVR is the better choice.

3.4 Subjective Speech Intelligibility Measurement

The supervisory signal to train the SVR model will be the
subjective speech intelligibility. In this paper, the subjective
speech intelligibility was measured using the Japanese Di-
agnostic Rhyme Test (DRT) [11], [17]–[19]. The DRT is a
speech intelligibility test that forces the tester to choose one
word that they perceived from a list of two rhyming words.
The two rhyming words differ by only the initial consonant
by a single distinctive feature. The features used in the DRT,
following the definition by Jacobson, Fant and Halle [20],
are voicing, nasality, sustention, sibilation, graveness, and
compactness.

Ten word-pairs per each of the 6 features, two pairs per
each of the five vowel context, were proposed for a total of
120 words [19]. The words in each word-pair are rhyming
words, differing only in the initial phoneme. The first words
in the word-pair list are words whose initial consonants have
the consonant feature under test, and the initial consonants
in the latter words do not. The intelligibility is measured by
the average correct response rate over each of the six conso-
nant features, or by the average over all features. The correct
response rate should be calculated using the following for-
mula (1) to compensate for the chance level,

S =
100(Nr − Nw)

NT
[%] (1)

where S is the response rate adjusted for chance (“true” cor-
rect response rate), Nr is the observed number of correct
responses, Nw the observed number of incorrect responses,
and NT the total number of responses. Since this test is
a two-to-one selection test, a completely random response
will result in half of the responses to be correct. With the
above formula, a completely random response will give an
average response rate of 0%. S shall be called the Chance-
Adjusted Correct Response (CACR) rate.

In this paper, we only used the ten word-pairs or twenty
words of the phonetic feature “sustention” since we know
from previous experiments that this feature gives about the
average scores over all features for a wide range of real (not
artificial) additive noise types, especially babble noise [11].
The word-pairs of the sustention phonetic feature are listed
in Table 3.

4. Speech Intelligibility Estimation Experimental Setup

We now evaluate the accuracy of the proposed estimation
method. In this experiment, we used twenty word speech
read by a single female speaker. Various noise samples were
added to this speech.

4.1 The Noise Database

The noise samples were selected from the JEIDA noise
database [21], and were added to this speech. The level of
the added noise was adjusted so that the SNR becomes −20,
−10, 0, +10, and +20 dB, respectively. The level configu-
ration was done using the whole sequence, i.e., the average
level of all test words for the signal level, and the average
level for the duration of the noise sample for the noise level.
The noise level was adjusted using this average level, and
added to the test word speech. Thirteen noise types, 400
noise samples were selected from this database. The sub-
jective speech intelligibility was measured for all samples
using 8 subjects. The tests were carried out for each noise
condition, and the CACR was calculated according to the
equation defined in the previous section.

4.2 SVR Model Training

Both 9 and 31-dimensional feature sets described in Sect. 3
were calculated for all degraded speech samples. We con-
ducted two types of SVR training in order to test the accu-
racy of the proposed estimation method.

In the first training schedule, shown in Table 4, about
70% out of all 400 noise samples were randomly selected
and used to train the SVR models. This comes to 271
noise samples. Two types of tests were conducted using the
trained SVR. In the first test, the closed set test, the same
samples that were used to train the SVR were used to esti-
mate the speech intelligibility. This test evaluates how well
the trained SVR models the training data itself. In the sec-
ond test, which will be called the open set test, the noise
samples were different from the trained ones, but some were
of the same noise type used in the training. For example, the
noise type “exhibition noise (booth)” was used in both train-
ing and testing, but the noise sample used for training was
selected from a different time interval than the sample used
for testing. Thus, the noise samples (129) used in this test
were not used in the SVR training, but were reserved to test
the estimation accuracy of unseen data. The open set test
evaluates how well the SVR performs on unseen noise sam-
ple (not unseen noise type, however). This training schedule
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Table 4 The noise database used in the closed noise type test.

No. Noise type Training set Test set Total samples

1 exhibition 28 11 39
(booth)

2 exhibition 17 6 23
(aisle)

3 phone booth 20 12 32
4 factory floor 20 7 27
5 sorting facility 16 5 21
6 heavy traffic road 25 9 34
7 crowd 30 17 47
8 train 2 2 4

(bullet expr.)
9 train 31 10 41

(local)
10 computer room 25 12 37

(minicomputer)
11 computer room 23 13 36

(workstation)
12 fan coils 18 15 33

and ducts
13 elevator halls 16 10 26

Total samples 271 129 400

Table 5 The noise database used in the open noise type test.

No. Set Noise type Samples used Set total

1 exhibition 39
(booth)

2 exhibition 23
(aisle)

3 phone booth 32
4 Training factory floor 27 268
5 Set sorting facility 21
6 heavy traffic road 34
7 crowd 47
8 train 4

(bullet expr.)
9 train 41

(local)
10 computer room 37

(minicomputer)
11 Test computer room 36 132

Set (workstation)
12 fan coils 33

and ducts
13 elevator halls 26

is designed to find the accuracy when noise samples of the
environment are available beforehand, and can be used to
train models on these samples and to estimate the intelligi-
bility in the same environment. We will call this test the
closed noise type testing.

In the second training schedule, 9 noise types, as indi-
cated in Table 5 are exclusively dedicated to training. The
total comes to 268 samples. Again, two types of tests were
conducted; the closed set test and the open set test. The
closed set test estimates the intelligibility of the data used in
the training. The open set test estimates the intelligibility of
the remaining 4 noise types that were not used in the train-
ing, for a total of 132 samples. This test is designed to find
the estimation accuracy when a sample of the noise environ-
ment is completely unavailable beforehand, and we need to

estimate the intelligibility for a completely unknown noise
environment. We will call this the open noise type testing.

In both of these cases, the calculated feature set is used
to train an SVR model. The SVR in the libsvm library in
the e1071 package [22] for the statistical language R was
used. The Radial Base Function (RBF) kernel was used,
and optimum cost parameters of the SVR, C and γ, were se-
lected based on a 10-fold cross validation testing that gives
the minimum RMSE values for each set. The supervisory
signal in all cases was the measured subjective speech in-
telligibility. Testing was done on a different noise sample
in both cases. Note that in the close noise type testing, the
same noise type may be also in the training set (but different
instance), but not so in the open noise type test.

For comparison, we also estimated speech intelligibil-
ity using a full-reference method, described in [23]. This
method also uses SVR, but the feature set used was a set
of 25-dimension frequency-weighed SNR in critical bands.
This estimation was shown to give the most accurate results
of all similar feature sets tested. Since the feature is based
on SNR, the reference signal is required for its calculation.
The same training and testing schedule was used.

4.3 Evaluation of the Model Performance

The estimation performance is compared using the Root
Mean Square Error (RMSE) and the Pearson correlation co-
efficient r.

RMSE is calculated as shown in Eq. (2), where S (n) is
the speech intelligibility measured by subjective evaluation,
and Q(n) is the estimated intelligibility. The correlation co-
efficient, r, is calculated as shown in Eq. (3), where S is the
average subjective intelligibility, and Q is the average esti-
mated intelligibility.

RMS E =

√√√√√√√√ N∑
n=1

(S (n) − Q(n))2

N
(2)

r =

N∑
n=1

(S (n) − S )
N∑

n=1

(Q(n) − Q)

√√
N∑

n=1

(S (n) − S )2

√√
N∑

n=1

(Q(n) − Q)2

(3)

5. Intelligibility Estimation Results and Discussions

5.1 Results of the Closed Noise Type Test

Tables 6 and 7 lists the RMSE and Pearson correlation be-
tween the intelligibility estimates and the subjective mea-
surements in the closed noise type test.

As can be seen, in the closed set test, (where train-
ing data match the test data) the RMSE is lower by about
4% when using the 31-dimensional non-reference features
(8.8%) than when using the full-reference features (12.7%),
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Table 6 RMSE of the intelligibility estimation (closed noise type test).

Test set full-reference non-reference
9-dim. 31-dim.

closed set 12.7% 13.1% 8.8%
open set 10.4% 10.5% 10.3%

Table 7 Pearson correlation of the intelligibility estimation (closed noise
type test).

Test set full-reference non-reference
9-dim. 31-dim.

closed set 0.905 0.943 0.957
open set 0.934 0.932 0.935

Fig. 2 Subjective vs. objective intelligibility (closed noise type, open set,
full-reference).

and the correlation coefficient is higher by about 0.06. This
implies that the training with the 31-dimension features
tuned the SVR to better match the training data. The 9-
dimensional features show comparable performance with
the full-reference in this case, however.

In the open set test, there is no significant difference in
the RMSE, with all tests showing RMSE of 10.3 to 10.5%.
Also, there is no significant difference in the correlation
coefficient in all tests, showing correlation coefficient of
about 0.93. Therefore, it can be said that both the full ref-
erence features and the non-reference features (9 and 31-
dimensions) have comparable performance.

Figures 2, 3 and 4 show scatter plots between the esti-
mated intelligibility and the subjective intelligibility for the
open set test with both full-reference and non-reference esti-
mation (9 and 31-dimension), respectively. From these fig-
ures, no clear difference seems to be apparent.

5.2 Results of the Open Noise Type Test

Tables 8 and 9 lists the RMSE and Pearson correlation be-
tween the intelligibility estimates and the subjective mea-
surements in the open noise type test.

As can be seen, in the closed set test, the RMSE is
lower by about 5% when using the 31-dimensional non-
reference features than when using the full reference fea-

Fig. 3 Subjective vs. objective intelligibility (closed noise type, open set,
non-reference, 9-dimension).

Fig. 4 Subjective vs. objective intelligibility (closed noise type, open set,
non-reference, 31-dimension).

Table 8 RMSE of the intelligibility estimation (open noise type test).

Test set full-reference non-reference
9-dim. 31-dim.

closed set 13.7% 13.4% 8.1%
open set 20.8% 16.1% 16.0%

tures, and the correlation coefficient is higher by about 0.06.
Similar results were seen in the closed noise type test.

In the open set test, non-reference features show
smaller RMSE, again by about 5%. The dimension of the
feature set does not seem to show a significant difference.
The correlations also show similar trends. With the non-
reference estimation, the correlation is considerably high,
above 0.83 even in open noise set tests. The 31-dimension
feature set seems to show slightly higher correlation in this
case.

Figures 5, 6 and 7 show scatter plots between the esti-
mated intelligibility and the subjective intelligibility for the
open noise set tests with full-reference and non-reference es-
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Table 9 Pearson correlation of the intelligibility estimation (open noise
type test).

Test set full-reference non-reference
9-dim. 31-dim.

closed set 0.911 0.914 0.970
open set 0.724 0.836 0.855

Fig. 5 Subjective vs. objective intelligibility (open noise type, open set,
full-reference).

Fig. 6 Subjective vs. objective intelligibility (open noise type, open set,
non-reference, 9-dimension).

timation, respectively. In general, the full-reference estima-
tion seems to scatter widely around the diagonal line, which
shows the correct estimation. The non-reference generally
seems to show plots closer to the diagonal line, resulting in
the smaller RMSE and the larger correlation values.

The non-reference estimation unexpectedly showed
higher estimation accuracy than the full-reference estima-
tion. This seems to be because the non-reference estima-
tion included a wide variety of features that are influenced
by the quality of the speech and noise, respectively. On
the other hand, the full-reference estimation uses only the
SNR, which measures the level of the noise. The expanded
feature set can also measure the native intelligibility of the
speech itself, which SNR cannot, and seems to show higher
accuracy. This may be implying that if we introduce similar

Fig. 7 Subjective vs. objective intelligibility (open noise type, open set,
non-reference, 31-dimension).

features that attempt to measure the native intelligibility of
clean speech to the double-ended estimation, the accuracy
will also drastically improve. This is planned to be investi-
gated.

In any case, both the non-reference and full-reference
estimation showed relatively high accuracy, even when the
noise type was unknown. We feel that this level of accuracy
is enough for the application of both of these methods in the
field.

6. Conclusion

We proposed and evaluated an objective, non-reference
speech intelligibility method which does not require the
original clean speech. The degradation dealt with in this
work was a wide variety of additive ambient noise, both
stationary and non-stationary. The feature set used in
the ITU-T P.563 non-reference speech quality estimation
standard was used to train the Support Vector Regression
model, which were used to estimate the intelligibility for
the test samples with unknown noise type. The proposed
method showed RMSE of about 16%, and correlation above
0.84 on unseen noise data, which both outperformed the
full-reference estimation that require clean speech samples.
Thus, the proposed method can be applied to real-time
speech signals, such as two-way conversations, in which the
use of a clean reference signal is impractical.

It seems that the P.563 features capture the native in-
telligibility of the clean speech, which previously were not
taken into account. We would like to investigate the intro-
duction of P.563 features to the double-ended estimation to
see if this improves the accuracy. We would also like to test
the proposed estimation methods on other types of distor-
tions, such as reverberations, convolutional noise, clipping,
watermarks, and other non-linear distortions.
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