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SUMMARY Detecting traffic anomalies is an indispensable component
of overall security architecture. As Internet and traffic data with more so-
phisticated attacks grow exponentially, preserving security with signature-
based traffic analyzers or analyzers that do not support massive traffic are
not sufficient. In this paper, we propose a novel method based on com-
bined sketch technique and S-transform analysis for detecting anomalies in
massive traffic streams. The method does not require any prior knowledge
such as attack patterns and models representing normal traffic behavior. To
detect anomalies, we summarize the entropy of traffic data over time and
maintain the summarized data in sketches. The entropy fluctuation of the
traffic data aggregated to the same bucket is observed by S-transform to
detect spectral changes referred to as anomalies in this work. We evaluated
the performance of the method with real-world backbone traffic collected
at the United States and Japan transit link in terms of both accuracy and
false positive rates. We also explored the method parameters’ influence
on detection performance. Furthermore, we compared the performance of
our method to S-transform-based and Wavelet-based methods. The results
demonstrated that our method was capable of detecting anomalies and over-
came both methods. We also found that our method was not sensitive to its
parameter settings.
key words: anomaly detection, sketch, entropy, time-frequency analysis,
S-transform

1. Introduction

Detecting malicious traffic is a challenging task for network
administrators. To detect malicious traffic, administrators
typically use Intrusion Detection Systems (IDS) in which
there two approaches are applied: misuse and anomaly-
based detections. The misuse-based IDSs (e.g., Snort [19])
use pre-defined attack signatures to catch attacks. These
IDSs precisely detect known attacks, but they are not able
to detect unknown and novel attacks. While the anomaly-
based IDSs look for abnormal traffic which may be mali-
cious or benign. An advantage of the anomaly-based IDSs
is that they do not need attack signatures. As a result, they
are relevant to be applied to the current fast-moving Internet
world where novel attacks are constantly invented.

The anomaly-based IDSs are categorized into two
types: supervised and unsupervised detections. The super-
vised detection creates normal and anomaly models from
pre-labeled training traffic datasets, and then classifies new
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events based on the models. The unsupervised detection
does not demand pre-labeled datasets. On the other hand,
it finds the major behavior of traffic being analyzed and de-
fines the major behavior as normal behavior of such circum-
stance. New events that do not conform to the normal be-
havior are anomalous.

Currently, unsupervised anomaly detection is attract-
ing considerable interest because it does not require any
prior knowledge. For a number of years, clustering tech-
niques were applied for unsupervised detection. In gen-
eral, clustering-based techniques cluster similar instances.
Instances that do not belong to the clusters are classified
as anomalous [5], [15], [18]. Unfortunately, most of them
still require a training phase with unlabeled traffic data to
form clusters. Principal Component Analysis (PCA) is also
applied for unsupervised detection. It is used to decom-
poses a traffic feature distribution into normal and anoma-
lous components. Anomalies are revealed when the anoma-
lous components exceed a specified threshold [6], [11]. A
well-known drawback of the use of PCA is that it has pa-
rameter sensitivity.

Unsupervised anomaly detection via statistical analysis
of aggregate traffic data is becoming a more interesting tech-
nique, especially to be deployed for massive traffic analysis
or on-line detection. The authors in [17] measured two ag-
gregate traffic features, namely packet rate and packet size.
They then used Sequential Probability Ratio Test (SPRT) to
detect abnormalities in the features. Efficient and widely
applicable aggregate traffic features for traffic anomaly de-
tection are entropies, in particular entropies of source and
destination IPs, and source and destination ports. A well-
known advantage of the entropies is that they are able to
capture more fine-grained traffic patterns than volume-based
traffic features [7], [16], [28].

On the other hand, the authors in [14], [20] believed
that time-frequency domain analysis provides new insights
into data that cannot be obtained from time-domain analy-
sis. They applied Wavelet transform to traffic time-series
and detected changes in the coefficients. Our previous
works [25], [26] introduced S-transform as a new efficient
time-frequency analysis tool for detecting anomalies, espe-
cially hidden Denial of Service (DOS) and network probe
attacks. In the works, all frequency components of traffic
time-series were exposed by S-transform and were depicted
in matrix heat maps. Finally, we detected abnormalities in
the heat maps based on heuristics [25] or an image process-
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ing technique [26].
Sketch technique has been applied in anomaly detec-

tion because it provides scalability and helps to improve de-
tection performance [10]. The sketch technique is typically
used to process the traffic data before performing anomaly
detection. The authors in [8] utilized the sketch technique to
randomly aggregate traffic flows and then used CUmulative
SUM (CUSUM) to identify change points. The sketch tech-
nique was also applied together with PCA [27] or Wavelet
transform [9], [12], [24] to detect unusual events.

In this paper, we propose an unsupervised anomaly de-
tection method based on sketch and S-transform for detect-
ing anomalies in massive traffic streams. More specifically,
at every constant time-bin, traffic summarizers, which are
technically hash functions, describe the entropy of traffic in
their own way. Then, we apply S-transform to the entropy
time-series to detect anomalous events in the time-frequency
domain of the time-series. To achieve a low positive rate,
we determine an event is anomalous when it was reported
as anomalous by every summarizer.

The proposed method has four key features. First, it
operates on aggregate traffic data without deep-packet in-
spection which enables us to analyze encrypted and mas-
sive traffic. Second, it does not require pre-defined signa-
tures of prospective targets and pre-labeled traffic datasets.
Third, it employs the sketch technique for traffic summa-
rization. These three features make the method scalable.
Fourth, as it looks for abnormalities in time-frequency do-
mains, it can detect extra anomalies apart from time-domain
analysis-based methods.

In this paper, we also evaluated the performance of the
method with Internet backbone traffic in terms of accuracy
and false positive rates. Furthermore, with the same traf-
fic dataset, we explored the method parameters and present
their effects on detection performance. Lastly, we compared
the detection performance between our method with two
unsupervised anomaly detection methods: (1) S-transform-
based and (2) sketch and Wavelet transform-based methods.

The rest of this paper is organized as follows. Section 2
describes related work. Section 3 describes details of the
sketch technique, entropy, and S-transform. The proposed
anomaly detection method is described in Sect. 4. Section 5
describes the traffic dataset, performance evaluation, and re-
sults. Section 6 describes several issued involved with this
work. Section 7 describes our conclusions and future work.

2. Related Work

Some related work have been discussed in Sect. 1. Here
we briefly describe remaining related work, especially time-
frequency-based anomaly detection methods. The authors
in [20] used Discrete Wavelet Transform (DWT), which
is the most popular time-frequency representation tool, to
decompose a traffic signal (e.g., SNMP data) into many
scales. Then, they filtered only a set of scales and detected
anomalies in the Wavelet coefficients. The works in [9],
[12], [24] enhanced their DWT-based anomaly detectors by

Fig. 1 A sketch and updating the sketch (H=4 and K=8).

adding traffic sketching before performing anomaly detec-
tion. The authors in [4] applied Continuous Wavelet Trans-
form (CWT) instead of DWT to detect volume-based net-
work anomalies.

A well-known advantage of the Wavelet transform-
based methods is that they are able to detect the various be-
havior of anomalies due to multi-resolution analysis. How-
ever, determining which mother wavelets (e.g., Daubechies)
is an important parameter that impacts detection perfor-
mance [14]. Furthermore, determining how many decom-
position levels still remains a point of contention.

3. Overview

3.1 Sketch

A sketch is a data structure used to summarize a data stream.
Technically, a sketch is a two-dimensional H × K array
S [H][K], where each row (1, 2, ..,H) is associated with dif-
ferent hash functions, and the columns (1, 2, ..,K) are the
hash buckets (see Fig. 1). The matrix element S [i][ j] con-
tains the counter associated with the hash bucket j of the
hash function i. To summarize a data stream, an empty
sketch S [H][K] is created in which all elements are set to
zero. Then, hash functions h1, h2, .., hH linearly hash each
key k (e.g., source IP) in the stream. The counters of cor-
responding matrix elements are updated. Figure 1 depicts
summarizing a data stream and storing the summarized data
in a sketch constructed by four hash functions. Each hash
table has eight buckets.

Summarizing a data stream using sketch technique has
two main advantages: it touches original data only one time
and uses a fixed amount of memory to store the summarized
data. This leads to its application for analyzing and detect-
ing changes in massive data streams.

Technically, to detect changes in a data stream using
the sketch technique, a detector constructs a sketch and then
continuously updates it when an input key arrives. Until a
counter in the sketch reaches a specified value, the detector
raises an alarm and assumes that a change occurs.

In this work, we applied the sketch technique. Instead
of detecting heavy buckets in one sketch, we constructed
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several sketches with the same size at different times. We
then observed the transformation of the sketches. Finally,
we detected culprits who made big transformations.

3.2 Shannon Entropy

Shannon entropy [13] is a measure of the randomness of a
set of data. Technically, the entropy of a set of random vari-
able X with possible values x1, x2, ..xn is conventionally de-
fined as:

E(X) = −
n∑

i=0

pilog2 pi (1)

where pi is the probability of value xi that occurs in the data.
The pi is calculated by the frequency of the value xi divided
by the frequency of all possible n values. The E(X) is in
the range of zero to log2(n). The E(X) is zero when there is
absolutely no randomness. For example, when there is only
one value in the data. The E(X) is close to zero when the
data contains a few values. Conversely, the E(X) is log2(n)
or close to log2(n) when every value equally participates in
the data.

To apply the entropy concept for unsupervised statistic-
based anomaly detection, detectors typically observe the
degree of randomness of a traffic feature (e.g., destination
port). Then, they detect large variations of the randomness.
For example, in an enterprise network where the IP entropy
is normally high, if an attacker abruptly generates a huge
number of packets, the detectors raise an alert because the
entropy decreased.

In this work, we similarly considered the entropy as a
traffic feature to represent traffic behavior. However, we did
not analyze the time-domain characteristic of the entropy
time-series like the example above. We instead analyzed its
time-frequency domain characteristic. In other words, we
considered its spectral content. To completely discover var-
ious kinds of anomalies, we concentrated on four entropies:
source IP, destination IP, source port, and destination port
entropies. The formulas to compute pi of the source IP, des-
tination IP, source port, and destination port entropies are
shown below.

pi =
#pktsO f S rcIPi|DstIPi|S rcPorti|DstPorti

#totalPktsS een
(2)

3.3 S-Transform

S-transform [22] is a time-frequency representation tool
used to discover frequency components in a time-series. To
discover frequency components, the S-transform segments
the time-series using a scalable Gaussian window and then
extracts frequencies of the segmented parts using Fourier
transform. The S-transform of a time-series x(t) is conven-
tionally defined as

S T (τ, f ) =
∫ ∞
−∞

x(t)
| f |
σ
√

2π
e
−(τ−t)2 f 2

σ2 dt (3)

Fig. 2 (a) A time-series (b) Time-frequency domain of (a) by S-
transform.

where t and τ are both time, but τ is used to control the time
resolution. The f is the Fourier frequency and the σ is the
scale parameter controlling the frequency resolution.

Figure 2 (a) shows a multiple frequency time-series
containing 400 samples and Fig. 2 (b) shows the S-
transform’s output presenting the time-frequency domain of
the time-series. The x-axis represents time corresponding to
the time of the time-series. The y-axis represents frequency
and the color represents amplitude. The figures show that
the S-transform precisely shows us how each frequency be-
haves and when they change behavior.

The S-transform has advantages that support anomaly
detection as follows. It performs multi-resolution analy-
sis, thus it discovers various types of anomalies. It uses
the Fourier kernel to provide the absolute phase informa-
tion of each frequency component. This phase information
is referenced to the time origin. As a result, the S-transform
provides supplementary information about spectra which is
not available from locally referenced phase information ob-
tained by Wavelet transform [22]. Furthermore, it produces
time-frequency plots that are easier to visually analyze for
time-frequency behavior than Wavelet transform’s outputs
because the Wavelet transform produces time-scale plots
which are intricate and cannot be analyzed directly.

In this work, we utilized the S-transform to discover
time-frequency behavior of entropy time-series of aggregate
traffic. We considered frequencies from 0 Hz to length(x)

2 Hz.
For the σ, we set it to be one according to the conventional
S-transform [22].

4. Anomaly Detection Method

In this section, we describe the proposed method for de-
tecting anomalies in massive traffic streams. The method
is based on sketch technique and S-transform. It consists
of three main steps: (1) Summarizing the traffic stream, (2)
Detecting suspicious time-bins, and (3) Finding the intrinsic
culprits of anomalies. Below we describe the three steps in
detail.

4.1 Summarizing the Traffic Stream

In this step, we summarize the traffic stream and keep the
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Fig. 3 Summarizing a traffic stream at different five time-bins (H=5,
K=5, and key=srcIP).

summarized data in sketches. In every constant time-bin
we perform the following operations. Firstly, we create
an empty sketch S [H][K], where H is the number of hash
functions used to summarize the traffic and K is the num-
ber of buckets per hash table (sketch size). All elements
in S [H][K] are initially set to zero. Secondly, we use the
H hash functions to group the keys (e.g., source IPs) in the
time-bin to K buckets. h1 hashes the keys to its buckets, h2

hashes the same keys to its buckets, and so on. The keys that
have the same property (same hash value) are grouped into
the same buckets. Thirdly, we compute the entropy of the
keys in each bucket using Eq. (1) and (2). Then, we store
the entropy value in the associated sketch element. For ex-
ample, the entropy value of the keys that were hashed by h1

and dropped to its first bucket is stored in S [1][1].
Figure 3 illustrates summarizing a traffic stream at

time-bins t1, t2, .., and t5 using five hash functions. The
sketch size is five and the keys are source IPs in the stream.
At t1, the entropy value in S [1][2] is updated because
h1(srcIP1) is two, S [2][4] is updated because h2(srcIP1)
is four, S [3][2] is updated because h3(srcIP1) is two, and
so one. At t2 to t5, new four sketches with the same size
are created and updated based on new keys in the particular
time-bins. After constructing and updating the sketches, we
can see how the entropy of keys grouped to the same bucket
fluctuates at every time-bin as an entropy time-series. Ac-
cording to Fig. 3, we obtain 25 entropy time-series which
have a length of five.

4.2 Detecting Suspicious Time-bins

The goal of this step is to investigate the entropy time-series
obtained from the previous step and detect suspicious time-
bins containing anomalies or changes. Firstly, we remove
the DC component of the entropy time-series x(t) by the fol-
lowing equation.

x′(t) = x(t) − MEAN (4)

where MEAN is the mean value of the whole entropy time-
series x(t). All points in the x(t) are subtracted by its mean.
The purpose of this process is to remove the constant val-
ues that are added to the time-series. These values distort
the frequency components in the time-series. Secondly, the

Fig. 4 Detecting suspicious time-bins in entropy time-series.

S-transform converts the x′(t) to a time-frequency domain
and produces a matrix heat map like Fig. 2 (b). Thirdly, we
produce two additional time-series from the heap map: 1)
a time-series that is obtained by vertically summing all ma-
trix elements in the upper half and 2) a time-series that is
obtained by vertically summing all matrix elements in the
lower half of the matrix. The first time-series shows the am-
plitude variation of the high frequency components and the
latter shows the amplitude variation of the low frequency
components over time. In this work, we consider time-bins
that hold deviant amplitudes as suspicious time-bins. Thus,
in the first time-series we find time-bins that hold ampli-
tude values above a given SD-based upper threshold (up-
per thres). For the second time-series, we find time-bins
that hold amplitude values below a SD-based given lower
threshold (lower thres). Figure 4 illustrates the processes
of detecting suspicious time-bins in the entropy time-series.
The detected suspicious time-bins are highlighted in black.

4.3 Finding the Intrinsic Culprits of Anomalies

In the previous steps, the H summarizers (hash functions)
aggregated the traffic according to their own scheme and
produced HxK entropy time-series. Then, the S-transform-
based detector analyzed the time-series individually to iden-
tify suspicious time-bins which tend to contain anomalies.

Instinctively, all keys exist in the suspicious time-bins
of one summarizer are possible to be culprits who cause the
changes. As most unsupervised anomaly detection tech-
niques produce a number of false positives, to reduce the
false positives we combine the suspicious keys in the de-
tected suspicious time-bins obtained from all summarizers
by taking the intersection. The keys in the intersection re-
sult are considered as intrinsic culprits of anomalies in the
traffic.

5. Performance Evaluation and Results

In this work, we evaluated the performance of the pro-
posed method in terms of accuracy and false positive rates.
We also investigated the effect of the method parameters
on detection performance. Furthermore, we performed
two performance comparisons: our method vs. non-sketch-
based method and our method vs. Wavelet transform-based
method.
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Fig. 5 Accuracy in detecting anomalies in MAWI traces collected from Jan. 1 to Apr. 30, 2010.

Fig. 6 False positive in detecting anomalies in MAWI traces collected from Jan. 1 to Apr. 30, 2010.

5.1 Traffic Dataset and Anomaly Labels

So far, the performance of traffic anomaly detection meth-
ods were evaluated using real-world traffic, synthetic traffic,
or private traffic collected in organization networks. Intu-
itively, evaluation results obtained from testing with real-
world traffic are much more reliable.

In this work, we evaluated our method with real-world
traffic traces from the MAWI dataset [2]. More specifically,
the MAWI trace contains Internet backbone traffic collected
daily for 15 minutes at samplepoint-F of a 150 Mbps tran-
sit link between the United States and Japan. We tested the
method with 114 traces collected from January 1st to April
30th, 2010. Note that six traces during this period are un-
available in MAWI dataset.

To verify results, we used anomaly labels from MAW-
ILab [3] as benchmark. The MAWILab labels are trust-
worthy because they were derived by combining detection
results from four anomaly detectors, namely Hough trans-
form, Gamma distribution, Kullback-Leibler divergence,
and PCA-based detectors [21]. The MAWILab provides
four types of labels, namely anomalous, suspicious, notice,
and benign. In this work, we considered only the anomalous
labels for verification. The reason we selected the traces
from 2010 instead of newer traces is that the MAWILab pro-
vides complete labels only until April, 2010.

5.2 Results

In the experiment, the parameters were set as follows. The
H was three. The three hash functions are general purpose
hash functions from [1], namely RSHash, PJWHash, and
ELFHash. The K was 64 and the time-bin size was one sec-
ond. The keys were source IPs, destination IPs, source ports
and destination ports. For the upper thres and lower thres,
we set them based on a three-sigma rule. The upper thres

was 2S D and the lower thres was −2S D. This means that
we detected time-bins containing 5% of the amplitude val-
ues that are more than 2S D or less than −2S D.

In this experiment, accuracy and false positive rates of
detection were measured. The accuracy rate was computed
as the total number of anomalies that were correctly detected
by our method divided by the total number of anomalous la-
bels from the MAWILab. The false positive rate was com-
puted as the total number of normal instances that were in-
correctly detected as anomalies by our method divided by
the total number of normal instances in the trace.

Figure 5 and 6 show the accuracy and false positive
rates in detecting anomalous source IPs, destination IPs,
source ports, and destination ports in different 114 MAWI
traces. The figures indicate that the overall accuracy rate
is above 60% and in some traces our method succeeded in
detecting anomalies with 100% accuracy. The average ac-
curacy rates of detected anomalous source IPs, destination
IPs, source ports, and destination ports are 75%, 86%, 86%,
and 88% respectively. The false positive rate of anoma-
lous source IP detection is rather stable at about 3%. The
false positive rates in detecting anomalous source and desti-
nation ports are about 12%. While the false positive rate
of anomalous destination IP detection is rather inconclu-
sive fluctuating. In summary, our method could moderately
detect anomalous source IPs with low false positive rates.
For anomalous destination IPs, source ports, and destination
ports, our method could detect anomalies with more preci-
sion, but with increased false positive rates.

We also measured the detection time for one analysis.
We randomly tested our detector with five MAWI traces.
Our detector ran on a 10.04 Ubuntu virtual machine with
3.4GHz CPU and 8GB of RAM. We found that it took
approximately two minutes to automatically performed the
three steps (until printing out intrinsic culprits) described in
Sect. 4. For example, it took 1.5 minutes to detect anomalies
in the trace collected on January 1st, 2011. The trace size is
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Fig. 7 Detection performance as a function of (a) the number of hash functions, (b) sketch size, and
(c) time-bin size.

1.6 GB containing 22 million packets and the traffic rate is
152 Mbps. Note that our detector’s detection time depends
on many factors such as traffic characteristics, the number
of hash functions, and sketch size.

5.3 Exploring Parameters

This section describes how each of the parameters affects the
detection performance of our method. We explored three
method parameters: the number of hash functions, sketch
size, and time-bin size. Note that we randomly tested our
detector with several MAWI traces and the results were con-
sistent. All figures referred to in this section illustrate the re-
sults derived from testing on the trace collected on January
1st, 2010.

Number of hash functions Fig. 7 (a) depicts the accu-
racy (above) and false positive (below) rates as a function of
the number of hash functions. We found that using smaller
numbers of hash functions provided higher accuracy rates,
while the false positive rates slightly decreased. The ac-
curacy rates decreased when we used more hash functions
because our method detected the keys in the intersection re-
sult.

Sketch size We tested the method with various values
of K, such as 16, 32, 64, and 128, and measured accuracy
and false positive rates. Figure 7 (b) depicts the effect of the
sketch size. The results show that the sketch size apparently
affected the performance. Moreover, we found that 16 is the
best sketch size for detecting anomalies in the MAWI traces
because it used the lowest amount of memory and gave the
performance similar to the remaining sketch sizes

Time-bin size Fig. 7 (c) plots the performance as a func-
tion of time-bin size. We observed the consequences of ad-
justing the time-bin size from one second to six seconds.
The results show that the smaller time-bin sizes increased
accuracy as well as false positive rates. Thus, to get the best
performance from our method, a small time-bin size should

be taken into account.
In summary, our method was slightly sensitive to the

number of hash functions and time-bin size in terms of ac-
curacy. Smaller numbers of hash functions and time-bin size
provided better detection performance.

5.4 Sketch vs. Non-sketch

The proposed method utilized sketch technique for improv-
ing detection performance and scalability. In this work, we
also compared the performance between our method with a
single S-transform-based method to confirm that the sketch
technique enhances time-frequency-based anomaly detec-
tion methods. In this experiment, our method’s parame-
ters were set to the same values described in Sect. 5.2. For
the single S-transform-based detector, it read traffic traces
and produced entropy time-series without using sketches.
The size of time-bin is one second. Then, S-transform
transforms the time-series to heat maps. Finally, it used
upper thres and lower thres to detect suspicious time-bin.
All keys in the detected suspicious time-bins were deter-
mined as culprits. Both detectors considered the same fre-
quencies (0 Hz to length(x)

2 Hz) and used the same thresh-
old values for analysis. Ten MAWI traces collected be-
tween 2007 and 2011 were investigated in this experiment.
Figure 8 shows the accuracy comparison. Figure 9 shows
the false positive comparison of the two detectors to detect
anomalous source IPs. The results indicate that our detector
mostly outperformed the single S-transform-based detector
in terms of both accuracy and false positive rates.

5.5 S-transform vs. Wavelet Transform

We also compared our results with results from a Wavelet
transform-based anomaly detection method proposed in
[12]. More specifically, the authors in [12] applied a DWT-
based method already described in [20] to detect anomalies
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Fig. 8 Accuracy in detecting anomalous source IPs of sketches and non-
sketch-based methods.

Fig. 9 False positive in detecting anomalous source IPs of sketches and
non-sketch-based methods.

Fig. 10 Accuracy in detecting anomalous source IPs of S-transform and
Wavelet transform-based methods.

Fig. 11 False positive in detecting anomalous source IPs of S-transform
and Wavelet transform-based methods.

in time-series given by the temporal evolution of a sketch
bucket. For the Wavelet transform-based detector, we set
the number of hash functions, the sketch size, and the time-
bin size were equivalent to the values in our detector. The
mother wavelet was Daubechies D4 and the maximum de-
composition level was three. The detection threshold was
four. In this experiment, both detectors investigated the
same ten MAWI traces. The accuracy and false positive
rates of both detectors are shown in Fig. 10 and 11 respec-
tively. Figure 10 shows that our detector detected about 64%
of anomalies, while the Wavelet transform-based detector
detected about 37% of anomalies. About the false positive
rate, the Wavelet transform-based detector generated more
false positive alarms than our detector.

6. Discussion

Our performance analysis was limited by the availability of
traffic datasets that contain real and modern traffic with re-
liable labels. Due to the limitation, we evaluated the per-
formance of the method with traffic traces from only MAWI
dataset. Even though the investigated traffic is real-world
traffic that can be representative of nowadays Internet traffic,
however the obtained evaluation results shown in Sect. 5 still
are specific to these traffic and the parameter values which
were set during the experiments.

To apply the method in other networks, to get expected
detection performance, parameter tuning may be required.
For example, if network administrators wish to see as much
anomalous traffic as possible, they should set the thresholds
to be ±S D.

In this paper, we applied sketch technique and S-
transform toward detecting anomalies. Compared to ex-
isting anomaly detection methods based on sketch tech-
nique and Wavelet transform, our proposed method has two
main differences. First, it considers entropy fluctuation. By
contrast, the existing methods consider volume-based traf-
fic features (e.g., packet count). Second, it employs S-
transform, which overcomes shortcomings of Wavelet trans-
form: 1) it retains absolute phase information and 2) it pro-
duces outputs that are easier for visual analysis [22].

Sketches theoretically only contain counters and do not
preserve original keys in a data stream. Thus, in this work,
to identify the culprits, the original keys were kept temporar-
ily. For real-world applications that must avoid high mem-
ory consumption to maintain the original keys, reversible
sketches [23] can be efficiently applied. As the focus of our
work is detection performance, we did not utilize or imple-
ment the reversible sketches.

7. Conclusion and Future Work

In this paper, we proposed an unsupervised anomaly detec-
tion method based on sketch and S-transform. We evaluated
the detection performance of the method over four months
of MAWI backbone traffic. We found that the method could
detect anomalies with 60% to 100% accuracy. The false
positive rates are between 3% to 12%. We also analyzed
the effect of the method parameters and the results indicate
that our method was not highly sensitive to parameter tun-
ings. Furthermore, we compared the performance of our
method with two unsuperivsed anomaly detection methods:
(1) single S-transform-based and (2) sketch and Wavelet
transform-based methods. The results show that our method
outperformed both methods in terms of accuracy and false
positives.

Future work will be devoted to overcome the limitation
of the method, which is represented by the need for man-
ual tuning some parameters. In particular, the main efforts
will be focused on the search for an alternate automatic way
of setting the thresholds. Furthermore, the application of



PUKKAWANNA et al.: DETECTING ANOMALIES IN MASSIVE TRAFFIC STREAMS BASED ON S-TRANSFORM ANALYSIS
595

the reversible sketches will be taken into consideration for
improving the performance in terms of memory and time
consumptions.
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