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SUMMARY Mobile ad hoc networks (MANETs) consist of mobile ter-
minals that directly connect with one another to communicate without a
network infrastructure, such as base stations and/or access points of wire-
less local area networks (LANs) connected to wired backbone networks.
Large-scale disasters such as tsunamis and earthquakes can cause serious
damage to life, property as well as any network infrastructure. However,
MANETs can function even after severe disasters have destroyed regular
network infrastructure. We have proposed an autonomous decentralized
structure formation technology based on local interaction, and have applied
it to implement autonomous decentralized clustering on MANETs. This
method is known to configure clusters that reflect the network condition,
such as residual battery power and the degree of each node. However, the
effect of clusters that reflect the network condition has not been evaluated.
In this study, we configure clusters using our method, the back-diffusion
method, and a bio-inspired method, which is a kind of autonomous decen-
tralized clustering that cannot reflect the network condition. We also clarify
the importance of clustering that reflects the network condition, with regard
to power consumption and data transfer efficiency.
key words: autonomous decentralized control, local-action theory, mobile
ad hoc network, clustering

1. Introduction

Large-scale disasters such as tsunamis and earthquakes can
seriously damage or destroy network infrastructure. In the
aftermath of such disasters, it is crucial to quickly gather in-
formation about the disaster and to promptly issue according
evacuation orders. In order to realize these goals, failures in
network functionality must be corrected as quickly as pos-
sible. Because confusion tends to abound immediately after
a catastrophe, network protocols designed with the assump-
tion of a normal environment may not satisfy operating re-
quirements, and hence prompt network recovery may not be
possible. This problem can be solved by creating an envi-
ronment in which the remaining devices can operate effec-
tively.

One solution is mobile ad hoc networks (MANETs) [1],
where mobile terminals directly connect to one another to
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create a communication network without recourse to net-
work infrastructure, such as base stations and/or access
points of wireless local area networks (LANs) connected to
wired backbone networks. One of the most important issues
in MANETs is to reduce the power consumption of the net-
work in order to extend its life span. Research has been con-
ducted on methods to reduce the power consumption of net-
works [2]–[4]. Clustering mechanisms for MANETs have
been proposed for power saving and load balancing [5], [6].
They are important because they help reduce the power con-
sumption of each node and extend the life of the entire net-
work. These mechanisms use metrics such as the battery
reserves [7] and the performance (e.g., processing speed,
memory, and other parameters) [8] of each node in the net-
work.

Various clustering methods have been studied [9]–[14].
However, all these method require non-local information.
In other words, they are not strictly autonomous decentral-
ized algorithms, and global information regarding the state
of the network is needed to obtain a globally optimal so-
lution for the cluster structure. It is practically difficult to
acquire global network information because information ex-
change is structurally limited in MANETs. This emphasizes
the importance of autonomous decentralized cluster config-
uration methods, whereby globally optimum structures can
be developed from local information, and can be used to
execute traffic control, path control, and network resource
management. Methods proposed in [15], [16] are based on
local information, and include the well-known bio-inspired
method, which uses a Turing pattern of reaction-diffusion
equations. However, these clustering methods use seven pa-
rameters, and thus parameter setting is difficult for them.
Moreover, clusters configured using the bio-inspired method
cannot reflect the characteristics of the given network con-
ditions (e.g., the distribution of the residual battery power of
terminals, the position of power supplies, or the node degree
of mobile terminals).

In the past, we have proposed a framework for a novel
autonomous decentralized mechanism based on local inter-
action [17]. This framework is founded on the interplay be-
tween local interaction and the solution provided by a partial
differential equation. As a specific example, we proposed
the autonomous decentralized formation of structures with
finite spatial size and showed the applicability of our method
to autonomous clustering in MANETs [18]. Our cluster-
ing method, the back-diffusion method, can configure clus-
ters using only local information about neighboring nodes.

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers
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Moreover, it allows each node to act flexibly based only on
the information available to it, i.e., its own situation. Con-
sequently, the back-diffusion method can yield clustering
structures that reflect the characteristics of the network con-
dition. [19] shows that the back-diffusion method (see [18])
can configure clusters faster than an existing method [15]
by a factor of 10 or more. This means that communication
can be recovered more quickly through the back-diffusion
method. Furthermore, the clusters yielded by the back-
diffusion method have approximately double the lifetime of
those generated by the bio-inspired method in the control
packet transfer phase [20]. Note that [20] makes no men-
tion of the effect of the routing algorithm on the data packet
transfer phase. Moreover, the effect of clusters that reflect
the network condition has not been evaluated.

In this paper, we configure clusters using the back-
diffusion method [18] and the bio-inspired method [15]. We
then evaluate the effect which reflect the network condition
for clusters from the point of view of both power consump-
tion and data transfer efficiency [21]. In particular, we show
the characteristics of power consumption using the metrics
of both the first node die (FND) time [22] (FND time is
the time period until the first failure of a node due to bat-
tery exhaustion) and the percentage of live nodes. Live
nodes are those that have battery power remaining. More-
over, we evaluate the amount of the received packets by the
sink node of the network, which is configured by the back-
diffusion method and the bio-inspired method, to determine
data transfer efficiency. Further, we show the performance
characteristics of each method in terms of the number of
nodes and node mobility. We use a hierarchical temporally
ordered routing algorithm (Hi-TORA) [23] to evaluate the
data transfer efficiency of the cluster. Note, however, that
our aim here is not to find the most suitable routing algo-
rithm for the back-diffusion method.

This paper consists of the following sections: in Sect. 2,
we present the framework of our proposed autonomous de-
centralized structure formation technology and explain the
bio-inspired method, which is an autonomous decentralized
structure formation approach that uses Turing patterns. In
Sect. 3, we describe Hi-TORA, the hierarchical routing al-
gorithm used in this study. We evaluate the characteristics
of the back-diffusion method in Sect. 4, and Sect. 5 provides
our concluding remarks.

2. Clustering Method Based on Autonomous Decen-
tralized Structure Formation

In this section, we provide an overview of the autonomous
decentralized structure formation that uses back-diffusion
drift. We also describe the bio-inspired method based on
reaction-diffusion equations.

2.1 Overview of Back-Diffusion-Based Autonomous De-
centralized Structure Formation Technology

We first introduce the autonomous decentralized structure

formation technology (back-diffusion method) for an one-
dimensional network model to provide an intuitive under-
standing of the behavior of our method. Let the density
function (density distribution) of a certain quantity at time
t and position x be q(x, t). The initial value of q(x, 0) can
be considered as the metric, e.g., the residual battery power
of each node in a MANET. Local behavior corresponds to
changing the value of q(x, t) at each point, x, by controlling
the information exchange between adjacent nodes. Note
that, q(x, t) (t > 0) is used for cluster configuration and is
independent of residual battery power, whereas q(x, 0) re-
flects initial battery power. Therefore, changing the value of
q(x, t) at each point does not mean that each node changes its
own battery power. In an autonomous decentralized struc-
ture formation, flow J(x, t) (the operation rule that changes
the value of q(x, t)) is expressed as

J(x, t) = −c f (x, t) q(x, t) − cσ2 ∂

∂x
q(x, t), (1)

where the first and second terms denote the drift and diffu-
sion terms, respectively. The temporal evolution of distribu-
tion q(x, t) that corresponds to this change is given by

∂

∂t
q(x, t) = c

(
∂

∂x
f (x, t) + σ2 ∂

2

∂x2

)
q(x, t). (2)

In the above equation, c (> 0) denotes the rate of tem-
poral evolution of q(x, t) and σ2 denotes the variance of
the normal distribution on which the function converges.
J(x, t) represents the extent of spatial movement of q(x, t);
note that the total amount of battery power q(x, t) does not
change over time. Equation (2) is a second-order differential
equation. Therefore, this operation rule can be determined
through interaction with adjacent nodes.

The introduction of f (x, t) eliminates the need to set a
coordinate system in the network. As a more intuitive ex-
planation, we consider the potential function Φ(x, t) instead
of f (x, t):

f (x, t) = −∂Φ(x, t)
∂x

. (3)

Choosing an appropriate Φ(x, t) yields autonomous decen-
tralized control that does not depend on a coordinate sys-
tem. We now investigate the calculation of the drift term
from q(x, t) at each point x. SinceΦ(x, t) should result in the
maintenance of the distribution within a finite spatial size,
contrary to the effect of diffusion, Φ(x, t) is, after discrete
time Δt, given by

Φ(x, t + Δt) = −
(
q(x, t) − γ∂

2q(x, t)
∂x2

Δt

)
, (4)

where γ > 0, and Φ(x, t) is periodically renewed at intervals
of Δt. The above equation is obtained by the sign inversion
of the space derivative term in the diffusion equation. Note
that Eq. (4) uses periodic time with interval Δt instead of dt.
This is because the effect of the second term vanishes at the
limit where dt approaches 0 [18]. The method of generating
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Fig. 1 Determining Φ(x, t) according to back-diffusion.

Fig. 2 Diffusion and back-diffusion.

Fig. 3 Cluster structure formation by the back-diffusion method (initial
state, after 5, 20).

potential Φ(x, t +Δt) by using q(x, t) is shown in Fig. 1. The
meaning of this figure is expressed as follows:

• We let the time progression of the diffusion phe-
nomenon with diffusion coefficient γ be reversed
(back-diffusion).
• We then reverse the distribution (up and down) and re-

gard the completed distribution as the potential.

Because of the effect of the drift term, including the po-
tential, the peak of q(x, t) is emphasized and the shape of the
distribution is sharpened (Fig. 2). The effect of the diffusion
term, on the other hand, is to flatten the distribution. Fig-
ure 3 shows an example of the structure with a finite spatial
size that can be formed by balancing one effect against the
other. In Fig. 3, the peak of q(x, t) is the representative node
of the cluster and the minimum value of the distribution is
the boundary of the cluster.

Moreover, [18] has shown that our approach can be ap-
plied to an arbitrary network as well as a one-dimensional
network because diffusion and back-diffusion can be defined
based only on the states of the node and nodes adjacent to it.
We now concretely describe the local action rule in the net-
work. First, the set of nodes that are adjacent to node i (the

set of nodes that are linked to node i) is defined as Ni. We
also discretize time and set the time interval of autonomous
control as Δt. In the following, we describe the action rule
for spatial discretization that corresponds to nodes in the
network, and time discretization that corresponds to control
timing. The distribution qi(tk) at time tk (:= k × Δt) at node
i changes (after Δt) as follows:

qi(tk+1) = qi(tk) − Δt
∑
j∈Ni

(
Jdrift

i, j (tk) + Jdiff
i, j (tk)

)
, (5)

where Jdrift
i, j (t) and Jdiff

i, j (t) are variations created by the drift
effect and the diffusion effect within each unit time, respec-
tively. Jdrift

i, j (t) and Jdiff
i, j (t) satisfy the following equations:

Jdrift
i, j (tk) :=

{
c fi, j(tk) qi(tk), ( fi, j(tk) > 0),

−c f j,i(tk) q j(tk), ( f j,i(tk) > 0),
(6)

fi, j(tk) := −(Φ( j, tk) − Φ(i, tk)), (7)

Jdiff
i, j (tk) := −σ2

(
q j(tk) − qi(tk)

)
. (8)

Due to the drift effect, the distribution moves in direc-
tion i → j ( j → i) in the case of fi, j(tk) > 0 ( fi, j(tk) < 0).
Here, equation fi, j(tk) = − f j,i(tk) holds. The variation is pro-
portional to the product of the velocity of the drift fi, j(tk)
( f j,i(tk)) and qi(tk) (q j(tk)) in node i ( j). The above descrip-
tion is formalized by Eq. (6). The variation due to the diffu-
sion effect is proportional to the gradient of the distribution
in Eq. (8).

We now explain how to determine the potential Φi(tk)
that is related to drift. The potential value Φi(tk+1) of node i
at time tk+1 is decided by the value of the distribution qi(tk)
and the back-diffusion of qi(tk) as follows:

Φi(tk+1) = −
⎛⎜⎜⎜⎜⎜⎜⎝qi(tk) − γΔt

∑
j∈Ni

(
Jback

i, j (tk) − Jback
j,i (tk)

)⎞⎟⎟⎟⎟⎟⎟⎠ ,
(9)

where Jback
i, j (tk) is generated by the back-diffusion of qi(tk),

and is the variation in a unit time period in the direction of
node i→ j. The variation Jback

i, j (tk) is given by

Jback
i, j (tk) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q j(tk) − qi(tk), (Δqmax

i (tk)
= q j(tk) − qi(tk)),

0, (otherwise).
(10)

Δqmax
i (tk) := max

(
max
j∈Ni

(
q j(tk) − qi(tk)

)
, 0

)
. (11)

Δqmax
i (tk) is the difference between the distribution

value of node i and the distribution value of the adjacent
node j in the direction of the steepest ascent from node i.
In the above-mentioned action rule for discretization in the
network, local interaction is guaranteed because the summa-
tions of nodes j ∈ Ni in the above equations involve only the
nodes adjacent to node i.

To achieve the above-mentioned control, it is necessary
to exchange information about the values of the distribution
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q j(tk) for the adjacent nodes at the interval of Δt. The com-
plexity of this information exchange does not depend on net-
work size because the communication range is only one hop.
Therefore, it is scalable against the number of nodes.

Our method takes into account only the initial battery
capacity of terminals for clustering. A better cluster can cer-
tainly be configured if updated information about the net-
work, such as the battery capacity of each terminal, is used
for our clustering. We have in the past proposed a vector
distribution quantity [24], [25] for this purpose. By using
this method, it is possible to reflect the network condition
(e.g., the residual battery power of each node) for cluster
structures at all times. However, our aim here is to evaluate
the effect of the clustering which reflects or not the network
condition from the point of view of both power consump-
tion and data transfer efficiency. Thus, we do not use the
vector process in our evaluation. The vector process is nec-
essary for practical use, but we have positioned this paper as
a basic study. In future research, we will evaluate the effect
which reflect the network condition for clusters using vector
process.

2.2 Bio-Inspired Method Based on Reaction-Diffusion
Equations

The bio-inspired method [15] is an autonomous decentral-
ized structure formation approach that uses Turing patterns.
Invented by Alan Mathison Turing, a Turing pattern is a
mathematical method used to describe pattern formation on
the bodies of animals. A Turing pattern is formed through
reaction-diffusion equations (Eqs. (12) and (13)). Each node
in the network contains two factors, activator a and inhibitor
h, and these values change over time according to the fol-
lowing differential equations:

∂a
∂t
=

ca2

h
− μa + ρ0 + Da∇2a, (12)

∂h
∂t
= ca2 − νh + ρ1 + Dh∇2h, (13)

where c, ρ0, and ρ1 are parameters that enhance the effects
of the activator and the inhibitor, and μ and ν are parame-
ters that reduce the effects of the activator and the inhibitor,
respectively. Moreover, Da and Dh are parameters that de-
scribe the rate of diffusion of the activator and the inhibitor,
respectively. From Eqs. (12) and (13), we see that the spatial
pattern appears gradually over time (Fig. 4), and the peak of
the created pattern denotes the representative node of the
cluster whereas the extent of the pattern denotes the extent
of the cluster. [26] presents research on parameter design
for systems based on reaction-diffusion equations. It is, in

Fig. 4 Examples of Turing pattern.

general, significantly more difficult to design parameters for
the bio-inspired method than the back-diffusion method be-
cause the former has many more parameters.

3. Hierarchical Routing Hi-TORA

In this section, we describe Hi-TORA [23], a hierarchical
routing algorithm that we apply to MANETs in this paper.

3.1 Overview of Hi-TORA

Hi-TORA is a hierarchical routing (cluster-based routing)
scheme used in MANETs. Hi-TORA has two phases ac-
cording to the domain in which the routing algorithm oper-
ates: the intra-cluster (within a cluster) and the inter-cluster
(among clusters) phases. The traditional link-state-type
routes (shortest path routes) are provided for intra-cluster
routing. For inter-cluster routing, on the other hand, Hi-
TORA applies a TORA (Temporally Ordered Routing Al-
gorithm) [27]. It regards one cluster as a virtual node in this
case. In this way, Hi-TORA calculates the routing path from
the source node to the sink node based on the two phases,
when the sink node belongs to a different cluster from the
source node. We briefly explain the routing algorithm for
each phase below.

3.2 Routing for the Intra-Cluster Phase

For the intra-cluster phase, Hi-TORA executes the link-state
routing algorithm, which finds the shortest path between the
source node and the sink node using Dijkstra’s algorithm.
When the source node and the sink node are in the same
cluster, the source node sends the data to the sink node
through the shortest path. Otherwise, the source node sends
the data to the boundary node adjoining the neighboring
cluster on the path to the sink node. If two or more boundary
nodes exist, the source node chooses as the boundary node
the one that has the a lower numerical node ID.

3.3 Routing for the Inter-Cluster Phase

Hi-TORA adopts TORA to execute on-demand path calcu-
lations for the routing algorithm among the clusters because
TORA is highly adaptable to node mobility. TORA estab-
lishes the DAG (directed acyclic graph) in which the sink
node is regarded as the root. TORA then determines the
logical direction of the links to the sink node by using the
DAG, where the calculation of the direction of each link
uses a metric called “height”. TORA controls the entire
network to maintain multiple paths between the source and
sink nodes. Thus, the overhead of the control packets for
TORA inevitably increases with the number of nodes. The
overhead can be reduced by assuming that each cluster is a
virtual node, so that height can be set not to each link but to
each cluster.

When a source node wants to communicate with a sink
node, the source node sends a request to send (RTS) packet
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to the sink node. The height is then set for all clusters that re-
ceive the packet. The destination cluster’s height is set to 0.
The closer a cluster is to the source node, the larger the value
of height set for it. Thus, the height of the source cluster, to
which the source node belongs, is the highest value in the
network, and the height of the destination cluster, to which
the destination node belongs, is the lowest value. The data
packets generated by the source node are forwarded through
the clusters with lower height.

Note that the clusters on which Hi-TORA in [23] op-
erates are configured by the clustering method in [28]. The
evaluations of this paper compare the back-diffusion method
and the bio-inspired method as clustering methods.

4. Evaluation

In this section, we clarify the effect which reflects the net-
work condition for clusters from the point of view of both
power consumption and data transfer efficiency while show-
ing the results of a comparative evaluation of the temporal
evolution of the live node percentage, the FND time, and the
amount of data received by the sink node.

Our evaluations do not take into account the physical
layer and the MAC (media access control) layer. This is be-
cause the aim of our study is to evaluate the effect which
reflects the network condition for clusters. In other words,
we evaluate the effect of the mismatch between the network
condition and the configured clusters. Therefore, we fo-
cus on the importance of the clustering that reflects network
conditions rather than evaluations of accurate power con-
sumption. Power consumption and data transfer efficiency
are merely metrics for the evaluation of the effect which re-
flects the network condition for clusters. In future research,
we intend to evaluate the back-diffusion method by consid-
ering the effects of real environments, such as protocols and
real battery models, using vector process.

4.1 Characteristics of Power Consumption and Data
Transfer Efficiency

We examine the power consumption characteristics of data
transfer for each method in order to clarify the importance
of clustering that reflects network conditions. The network
is an UDG (unit disk graph) of 1,000 m × 1,000 m and is
constructed by 101 nodes. An UDG is a type of intersection
graph based on circles of the same size (Fig. 5). An UDG
is suitable as a model of an ad hoc network because it can
describe various radio transmission ranges between nodes,
but cannot reflect more realistic wireless network character-
istics such as packet collisions. We will address this issue
in future work. The network model has a torus topology
to exclude the influence of the boundary. In other words,
each node emerges on the other side when it crosses the
boundary. Note that we assume mobile nodes in MANETs.
Node movement is set by a random direction model every
second, and the average velocity of each node is 1.3 m/s.
The random direction model is a kind of famous mobility

model [29]. This model is used for the simulating the move-
ment of users in a mobile wireless networks.

One of the nodes is taken to be a sink node and is set at
the center of the network. The position of the sink node is
(500 m, 500 m). Note that the sink node is fixed. It assumes
that the sink node is a server or a base station. The estab-
lished servers and base stations can secure battery supply.
Therefore, the sink node does not consume its own battery.
If the sink node consumes battery, it may become immedi-
ately unusable by the mobility pattern of each node. This
is because the number of nodes adjacent to the sink node
may suddenly increase. As a result, maximum data transfer
efficiency cannot be measured, and the analysis of results
becomes difficult.

Figure 6 shows an example of the distribution for initial
battery power of each node. In Fig. 6, the color represents
the battery power of each node. We assume that the initial
distribution of each node is identical to the random initial
battery power. Other conditions are shown in Table 1. Note
that we assume that the user carries his or her terminal, so
that node movement does not increase battery consumption,
and the battery consumption for each node occurs by packet
transfer and the constant processing of each representative
node. Therefore, our battery model does not capture its
nonlinear characteristics. Furthermore, this study assumes
a simplified power consumption model. Specifically, we as-
sume that the same amount of power is consumed for trans-
mitting packets and for receiving them. Naturally, consider-
ing a more realistic power consumption model is a very im-
portant issue. However, this is a basic study about the effect
of the clustering which reflects or not the network condition,

Fig. 5 Unit disk graph network.

Fig. 6 The distribution of initial battery power.
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Table 1 Experimental environment.

Network Unit Disk Graph (UDG) of 1,000 m × 1,000 m
Number of nodes 101 (One of which is sink node)

Transmission range of node 250 m
Initial battery power of node uniform random numbers in the range [5, 15] × 1 J

Battery consumption
1 μJ/bit (transmission)
0.1 μJ/s (processing of representative node)

Simulation time 20,000 s
Number of Simulations 30

Table 2 Parameters of the back-diffusion method.

c σ2 γ

0.05 0.5 0.15

Table 3 Parameters of the bio-inspired method.

c 0.001
μ 0.05
ν 0.1
ρ0 0.04
ρ1 0.02
Da 0.00122273
Dh 0.00180619

and our future work will evaluate the characteristics of a net-
work given a realistic power consumption model. Note that
clusters are formed from t = 0 s using each method, and the
routing, using Hi-TORA, and the transmission of data pack-
ets starts at t = 1,001 s. In addition, the results show the
average of 30 simulations.

We now describe the routing procedures. First, each
node generates data packets (1 pkt = 1.5 kB) with time in-
tervals that obey an exponential distribution with λ = 0.005.
The value of λ is set according to [30]. The source node
sends data packets to the sink node through the multi-hop
path computed by Hi-TORA. Once established, the routing
path is maintained until the transmission of packets is com-
pleted. For simplicity, we assume that the sink node can re-
ceive multiple packets simultaneously; that is, packet colli-
sion is not considered. If the path to the sink node cannot be
found, the source cancels packet transmission. Only the sink
node has a main power supply, and thus its battery power
is never exhausted. The parameters of the back-diffusion
method and the bio-inspired method are shown in Tables 2
and 3, respectively. The parameters of the back-diffusion
method are adjusted so that it yields the same number of
clusters as the bio-inspired method at t = 1,000s. For clus-
ter formation, adjacent nodes exchange one control packet
per second (1 pkt = 8 bytes). Routing-control packets (1 pkt
= 8 bytes) are used in inter-cluster communication through
Hi-TORA to set the height of each cluster on the path.

Figure 7 shows the temporal evolution of the percent-
age of live nodes for both methods. The horizontal axis rep-
resents time and the vertical axis is the percentage of live
nodes. We can see that the back-diffusion method offers a
longer survival time than the bio-inspired method. One rea-
son is the difference in the amount of control information
used when configuring the cluster. Another is that the back-

Fig. 7 Temporal evolution of percentage of live nodes.

Table 4 FND time.

back-diffusion bio-inspired
1,565 s 1,031 s

Table 5 Standard deviation of FND time.

back-diffusion bio-inspired
159 s 107 s

diffusion method forms clusters according to the distribution
of initial battery power. On the other hand, clusters formed
by the bio-inspired method are arranged at equal intervals
regardless of the distribution of initial battery power. This
increases the number of nodes with exhausted batteries and
the live node percentage decreases with time.

Tables 4 and 5 show the FND times of each method
and the standard deviation of the results respectively. We see
from the result that clusters configured by the back-diffusion
method have a longer FND time, by 534s, than those con-
figured by the bio-inspired method. However, the standard
deviation of the back-diffusion method is greater than that
of the bio-inspired method, by 52 s. The difference in the
shape of the configured cluster and the number of control
packets used influences these results for the same reasons as
in the case of live nodes.

Tables 6 and 7 show the amount of data received
by the sink node and its standard deviation for the back-
diffusion method and the bio-inspired method, respectively.
The results show that the sink node can gather more in-
formation, by 1,168 packets, in clusters configured using
the back-diffusion method than in those configured by the
bio-inspired method. However, the standard deviation of
data received by the sink node in the cluster configured by
the back-diffusion method is greater than that of the bio-



2990
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.12 DECEMBER 2014

Table 6 Amount of total received data.

back-diffusion bio-inspired
1,978 pkt 810 pkt

Table 7 Standard deviation of total received data by the sink node.

back-diffusion bio-inspired
99 pkt 84 pkt

inspired method, as was the case with FND time. We can
see from these results that the back-diffusion method can
reduce power consumption and permit the transmission of
significantly more data than the bio-inspired method. There-
fore, reflecting the network condition for clusters is effective
from the point of view of both the power consumption and
the data transfer efficiency.

4.2 Performance Characteristics with Varying Number of
Nodes and Node Mobility

In this section, we evaluate the characteristics of power con-
sumption and data transfer efficiency when we change the
number of nodes and their average mobility speed. The net-
work model, the routing procedures and the parameters of
clustering are same as those in Sect. 4.1. The number of
nodes and the mobility of nodes are set to (101, 201, 301,
401, 501) and (1 m/s, 5 m/s, 20 m/s), respectively. The
outcome measures are the percentage of live nodes, FND
the time, and the number of packets received by the sink
node.

First, we describe the behavior of the characteristics if
the number of nodes is varied. Figures 8 and 9 show the
variation with time in the percentage of live nodes for vary-
ing number of nodes using the back-diffusion method and
the bio-inspired method, respectively. In each figure, the
horizontal axis represents time and the vertical axis repre-
sents the live node percentage. These figures show that as
the number of nodes increases, the percentage of live nodes
decreases more rapidly. This is because each node has more
adjacent nodes in this case, thus leading to an increase in
the number of control packets sent/received by each node.
These results also show that the back-diffusion method re-
duces the rate at which the percentage of live nodes de-
creases compared to the bio-inspired method. This is be-
cause the back-diffusion method can configure clusters re-
flecting the network condition.

We now discuss the FND time for each method. In
Fig. 10, the horizontal axis represents the number of nodes,
and the vertical axis is time. This result shows that increase
in the number of nodes decreases the FND time. This is
for the same reason as the decrease in the percentage of live
nodes. The back-diffusion method yields longer FND times
than the bio-inspired method regardless of the number of
nodes. Moreover, Fig. 11 shows the relationship between
the number of nodes and the standard deviation of the FND
time. We see that an increase in the number of nodes de-
creases the standard deviation. This is because a node im-

Fig. 8 Relationship between the percentage of live nodes and the number
of nodes (back-diffusion).

Fig. 9 Relationship between the percentage of live nodes and the number
of nodes (bio-inspired).

Fig. 10 Relationship between the FND time and the number of nodes.

Fig. 11 Relationship between the standard deviation of FND time and
the number of nodes.
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mediately runs out of battery regardless of its initial posi-
tion when the number of nodes increases. From the above
results, we see that our method can better reduce power con-
sumption than the bio-inspired method, even if the number
of nodes varies.

Figures 12 and 13 show the number of data packets re-
ceived by the sink node and its standard deviation for vary-
ing numbers of nodes, respectively. These results show that
increasing the number of nodes decreases the amount of data
received by the sink node as well as its standard deviation
for both methods. However, the back-diffusion method can
transmit more data packets than the bio-inspired method.
This is because our clustering method allows nodes to live
longer (the percentage of live nodes is high) and the route to
the sink node is maintained in the network. From these re-
sults, we conclude that taking into account the network con-
dition for clustering is very important from the viewpoint of
power consumption and data transfer efficiency, even if the
number of nodes increases.

Next, we now present the experimental results of the
relation between performance characteristics and node mo-
bility. Figures 14 and 15 show the temporal evolution of the
percentage of live nodes for various node mobility values
for each method. These results show that the rate at which
the percentage of live nodes decreases is independent of av-
erage node mobility speed. This is because the number of
adjacent nodes for each node changes little in the random di-

Fig. 12 Relationship between the amount of received data and the
number of nodes.

Fig. 13 Relationship between the standard deviation of the amount of
received data and the number of nodes.

rection model, even if the average node velocity increases.
As a result, the number of control packets sent/received by
each node does not so change. The back-diffusion method
again yields a slower fall in the percentage of live nodes than
the bio-inspired method.

Figure 16 shows the relationship between the FND
time and average node velocity, and Fig. 17 represents the
standard deviation of the FND time for different average
node velocities. These results show that the FND time
and its standard deviation are not so dependent on average
node velocity. From these results, we see that the back-
diffusion method yields longer FND times than the bio-
inspired method, regardless of node velocity.

Fig. 14 Relationship between the percentage of live nodes and the
average node velocity (back-diffusion).

Fig. 15 Relationship between the percentage of live nodes and the
average node velocity (bio-inspired).

Fig. 16 Relationship between the FND time and the average node
velocity.
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Fig. 17 Relationship between the standard deviation of the FND time
and the average node velocity.

Fig. 18 Relationship between the amount of received data and the
average node velocity.

Fig. 19 Relationship between the standard deviation of the amount of
received data and the average node velocity.

Figure 18 shows the amount of data received by the
sink node at different node velocities. We see from the figure
that the number of data packets collected by the sink node
does not change, even if average node velocity increases,
because the number of live nodes changes only slightly as
a consequence. Figure 19 shows the standard deviation of
the amount of data received by the sink node. From Fig. 19,
we see that the standard deviation is almost independent of
average node velocity. Note that our clustering method can

transmit more data regardless of node velocity. These re-
sults show that reflecting the network condition for clusters
is crucial, even if the node velocity increases.

5. Conclusion

In past research, we proposed an autonomous decentralized
clustering technology based on local interaction and used it
to realize clustering in MANETs. In this study, we com-
pared the back-diffusion method to a bio-inspired method
based on the reaction-diffusion equation in order to evalu-
ate the effect of clustering on network condition in terms of
power consumption and data transfer efficiency. We used
Hi-TORA as our routing algorithm, which offers one kind
of cluster-based routing for ad hoc networks. Our evalua-
tion focused on the temporal change in the percentage of
live nodes, the FND time, and the amount of the data re-
ceived by the sink node. We found that the clusters yielded
by the back-diffusion method are superior in all respects to
those generated by the bio-inspired method. This means
that reflecting the network condition for clusters is effective
from the point of view of both power consumption and data
transfer efficiency. Therefore, the back-diffusion method
can configure clusters that can operate for longer periods
of time, and thus can help maintain communication after a
disaster for longer periods.

Our future research will involve investigating the com-
patibility of our method with routing algorithms other
than Hi-TORA, and enhancing the flexibility of the back-
diffusion algorithm. Moreover, we will evaluate the back-
diffusion method with vector processes in real environ-
ments.

Acknowledgments

This research was partly supported by Grant-in-Aid for Sci-
entific Research (C) No. 24500091 (2012–2014) and No.
24560471 (2012–2014) from the Japan Society for the Pro-
motion of Science and project research grants from the
Graduate School of Information Sciences, Hiroshima City
University.

References

[1] C.E. Perkins, ed., Ad hoc networking, Addition Wesley, 2000.
[2] A. Abbas, J. Bahi, and A. Mostefaoui, “Improving wireless ad hoc

networks lifetime,” Proc. IEEE Int. Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing (SUTC), 2006.

[3] W. Feng, H. Alshaer, and J.M.H. Elmirghani, “Evaluation of energy
consumption and network lifetime in rectangular ad-hoc wireless
networks,” Proc. 6th Int. Conference on Information Technology:
New Generations (ITNG ’09), pp.546–551, 2009.

[4] L. Zhaohua and G. Mingjun, “Survey on network lifetime research
for wireless sensor networks,” Proc. 2nd IEEE Int. Conference on
Broadband Network & Multimedia Technology (IC-BNMT ’09),
pp.899–902, 2009.

[5] D. Ganesan, A. Cerpa, W. Ye, Y. Yu, J. Zhao, and D. Estrin, “Net-
working issues in wireless sensor networks,” J. Parallel Distrib.
Comput., vol.64, no.7, pp.799–814, 2004.



HAMAMOTO et al.: POWER CONSUMPTION CHARACTERISTICS OF AUTONOMOUS DECENTRALIZED
2993

[6] J.Y. Yu and P.H.J. Chong, “A survey of clustering schemes for mo-
bile ad hoc networks,” IEEE Communication Survey and Tutorial,
vol.7, no.1, pp.32–48, 2005.

[7] T. Nagata, H. Oguma, and K. Yamazaki, “A sensor networking mid-
dleware for clustering similar things,” Proc. Int. Workshop on Smart
Object Systems in Conjunction with International Conference on
Ubiquitous Computing, 2005.

[8] S. Priyankara, K. Kinoshita, H. Tode, and K. Murakami, “A cluster-
ing method for wireless sensor networks with heterogeneous node
types,” IEICE Trans. Commun., vol.E94-B, no.8, pp.2254–2264,
Aug. 2011.

[9] S. Basagni, “Distributed clustering for ad hoc networks,” Proc. Int.
Symposium on Parallel Architectures, Algorithms and Networks,
pp.310–315, 1999.

[10] A.D. Amis, R. Prakash, T.H.P. Vuong, and D. Huynh, “Max-min
D-cluster formation in wireless ad hoc networks,” Proc. IEEE IN-
FOCOM 2000, vol.1, pp.32–41, 2000.

[11] T. Ohta, S. Inoue, Y. Kakuda, and K. Ishida, “An adaptive multihop
clustering scheme for ad hoc networks with high mobility,” IEICE
Trans. Fundamentals, vol.E86-A, no.7, pp.1689–1697, July 2003.

[12] P. Sasikumar and S. Khara, “k-means clustering in wireless sen-
sor networks,” Proc. 4th International Conference on CICN 2012,
pp.140–144, 2012.

[13] S. Thirumurugan and E.G.D.P. Raj, “Ex-PAC: An improved cluster-
ing technique for ad hoc network,” Proc. International Conference
on RACSS 2012, pp.196–200, 2012.

[14] I. Tal and G.-M. Muntean, “User-oriented fuzzy logic-based cluster-
ing scheme for vehicular ad-hoc networks,” Proc. IEEE 77th VTC
Spring, pp.1–5, 2013.

[15] G. Neglia and G. Reina, “Evaluating activator-inhibitor mechanisms
for sensors coordination,” Proc. 2nd IEEE/ACM Int. Conference on
Bio-Inspired Models of Network, Information and Computing Sys-
tems (IEEE/ACM BIONETICS 2007), pp.129–133, 2007.

[16] K. Hyodo, N. Wakamiya, E. Nakaguchi, M. Murata, Y. Kubo, and K.
Yanagihara, “Reaction-diffusion based autonomous control of wire-
less sensor networks,” Int. J. Sensor Networks, vol.7, no.4, pp.189–
198, 2010.

[17] C. Takano and M. Aida, “Autonomous decentralized flow control
mechanism based on diffusion phenomenon as guiding principle:
Inspired from local-action theory,” J. IEICE, vol.91, no.10, pp.875–
880, Oct. 2008.

[18] C. Takano, M. Aida, M. Murata, and M. Imase, “Proposal for au-
tonomous decentralized structure formation based on local interac-
tion and back-diffusion potential,” IEICE Trans. Commun., vol.E95-
B, no.5, pp.1529–1538, May 2012.

[19] K. Takagi, Y. Sakumoto, C. Takano, and M. Aida, “On convergence
rate of autonomous decentralized structure formation technology for
clustering in ad hoc networks,” Proc. IEEE ICDCS 2012 Workshops
(ADSN 2012), 2012.

[20] R. Hamamoto, C. Takano, K. Ishida, and M. Aida, “Power consump-
tion characteristics by autonomous decentralized structure formation
technology,” Proc. 9th Asia-Pacific Symposium on Information and
Telecommunication Technologies (APSITT 2012), 2012.

[21] R. Hamamoto, C. Takano, K. Ishida, and M. Aida, “Character-
istics of autonomously configured structure formation based on
power consumption and data transfer efficiency,” Proc. 6th Interna-
tional Workshop on Autonomous Self-Organizing Networks (ASON
2013), 2013.

[22] S.R. Gandham, M. Dawanda, R. Prakash, and S. Venkatesan, “En-
ergy efficient schemes for wireless sensor networks with multi-
ple mobile base stations,” Proc. IEEE GLOBECOM 2003, vol.1,
pp.377–381, 2003.

[23] T. Ohta, M. Fujimoto, S. Inoue, and Y. Kakuda, “Hi-TORA: Hier-
archical routing protocol in ad hoc networks,” Proc. 7th IEEE Int.
Symposium on High Assurance Systems Engineering (HASE2002),
2002.

[24] R. Hamamoto, C. Takano, K. Ishida, and M. Aida, “Guarantee-

ing asymptotic stability of clustering by autonomous decentralized
structure formation,” Proc. 9th IEEE Int. Conf. on Autonomic and
Trusted Computing (ATC 2012), 2012.

[25] R. Hamamoto, C. Takano, K. Ishida, and M. Aida, “Guaranteeing
asymptotic stability of clustering for MANET by autonomous de-
centralized structure formation mechanism based on local interac-
tion,” Proc. IEEE ICDCS 2013 Workshops (ADSN 2013), 2013.

[26] M.A. Dewar, V. Kadirkamanathan, M. Opper, and G. Sanguinetti,
“Parameter estimation and inference for stochastic reaction-
diffusion systems: Application to morphogenesis in D.
melanogaster,” BMC Systems Biology, vol.4, issue 1, no.21, pp.1–9,
2010.

[27] V.D. Park and M.S. Corson, “A highly adaptive distributed routing
algorithm for mobile wireless networks,” Proc. IEEE INFOCOM
1997, pp.1405–1413, 1997.

[28] T. Ohta, K. Ishida, Y. Kakuda, S. Inoue, and K. Maeda, “Mainte-
nance algorithm for hierarchical structure in large ad hoc networks,”
Proc. 1st Int. Conference on Fundamentals of Electronics, Commu-
nications and Computer Sciences (ICFS2002), 2002.

[29] P. Nain, D. Towsley, B. Liu, and Z. Liu, “Properties of random direc-
tion models,” Proc. IEEE INFOCOM 2005, pp.1897–1907, 2005.

[30] D. Kominami, M. Sugano, M. Murata, and T. Hatauchi, “Robust
and resilient data collection protocols for multihop wireless sensor
networks,” IEICE Trans. Commun., vol.E95-B, no.9, pp.2740–2750,
Sept. 2012.

Ryo Hamamoto received his B.E. and
M.E. degrees in Computer Engineering from
Hiroshima City University, Japan, in 2011 and
2014, respectively. His research interests are
in wireless networks and distributed systems.
He received the Information Network Research
Award from IEICE in 2012. He is a student
member of IEEE (U.S.A.).

Chisa Takano received her B.E. in telecom-
munication engineering from Osaka University,
Japan, in 2000, and her Ph.D. in system design
engineering from Tokyo Metropolitan Univer-
sity, Japan, in 2008. In 2000, she joined the
Traffic Research Center, NTT Advanced Tech-
nology Corporation (NTTAT). Since April 2008,
she has been an associate professor at the Grad-
uate School of Information Sciences, Hiroshima
City University. Her research interests are com-
puter networks and distributed systems. She re-

ceived the IEICE Young Researchers’ Award in 2003, and the Information
Network Research Award from the IEICE in 2004 and 2012. She is a mem-
ber of IEEE (U.S.A.).



2994
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.12 DECEMBER 2014

Kenji Ishida received his B.E., M.Sc.,
and Ph.D. from Hiroshima University, Japan, in
1984, 1986, and 1989, respectively. He was at
Hiroshima Prefectural University from 1989 to
1997. From 1997 to 2003, he was an associate
professor at Hiroshima City University. Since
2003, he has been a professor in the Depart-
ment of Computer Engineering, Faculty of In-
formation Sciences, Hiroshima City University.
His research interests include distributed com-
puting systems and design of control procedures

for computer networks. He is a member of IEEE (U.S.A.), ACM (U.S.A.),
and IPSJ (Japan).

Masaki Aida received his B.S. and M.S. de-
grees in theoretical physics from St. Paul’s Uni-
versity, Tokyo, Japan, in 1987 and 1989, respec-
tively, and his Ph.D. in telecommunications en-
gineering from the University of Tokyo, Japan,
in 1999. In April 1989, he joined NTT Labo-
ratories. From April 2005 to March 2007, he
was an associate professor at the Faculty of Sys-
tem Design, Tokyo Metropolitan University. He
has been a professor at the Graduate School of
System Design, Tokyo Metropolitan University,

since April 2007. His current interests include traffic issues in computer
communication networks. He is a member of IEEE and the Operations
Research Society of Japan.


