
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.12 DECEMBER 2014
3033

PAPER Special Section on Parallel and Distributed Computing and Networking

Tree-Based Consistency Maintenance Scheme for Peer-to-Peer File
Sharing of Editable Contents∗

Taishi NAKASHIMA†, Nonmember and Satoshi FUJITA†a), Member

SUMMARY This paper proposes a consistency maintenance scheme
for P2P file sharing systems. The basic idea of the proposed scheme is to
construct a static tree for each shared file to efficiently propagate the update
information to all replica peers. The link to the root of the trees is acquired
by referring to a Chord ring which stores the mapping from the set of shared
files to the set of tree roots. The performance of the scheme is evaluated by
simulation. The simulation result indicates that: 1) it reduces the number
of messages in the Li’s scheme by 54%, 2) it reduces the propagation delay
of the scheme by more than 10%, and 3) the increase of the delay due to
peer churns is effectively bounded provided that the percentage of leaving
peers is less than 40%.
key words: Peer-to-Peer, file sharing, consistency maintenance, distributed
hash table

1. Introduction

Recently, Peer-to-Peer (P2P) file sharing systems have at-
tracted considerable attention as a method to share digital
contents through the Internet. In classical P2P file shar-
ing systems such as Gnutella [10] and WinMX [11], given
shared files cannot be updated by the end-users while they
can be read out by any users. However, in these years,
there have been proposed several file sharing applications
which allow end-users to update shared files, which in-
cludes online storage systems such as OceanStore [8], muta-
ble content sharing such as P2P WiKi [3], P2P collaborative
workspace [2], and others.

Many P2P file sharing systems dynamically generate
replicas of shared files and distribute them over several peers
called replica peers to enjoy the following advantages of
P2P systems [4]:

• To reduce the load of the owner of popular files ac-
cessed by many users.
• To enable participants to access (replica of) files even

after the file owner leaves.
• To reduce the time before finding a replica under

flooding-based query propagation schemes.

A scheme which updates all replicas of a given file to

Manuscript received December 24, 2013.
Manuscript revised April 7, 2014.
†The authors are with the Department of Information Engi-

neering, Graduate School of Engineering, Hiroshima University,
Higashihiroshima-shi, 739–8527 Japan.

∗Earlier version of this paper was presented at “Tree-Based
Consistency Maintenance Scheme for Peer-to-Peer File Sharing
Systems,” by Taishi Nakashima and Satoshi Fujita, In Proc. CAN-
DAR 2013.

a) E-mail: fujita@se.hiroshima-u.ac.jp
DOI: 10.1587/transinf.2014PAP0007

be consistent with the update of the original file is called
the consistency maintenance scheme. A typical scenario
which needs such a consistency maintenance is the realiza-
tion of a forum of users in P2P environments, in which each
user subscribes to articles in a thread published by other end-
users (editors) which is locally cached by each subscriber
to reduce the response time. The simplest way to realize
such a consistency maintenance in a P2P environment is that
the file owner keeps the information on all replica peers and
when the file is updated, the owner directly notifies the up-
date information to all replica peers. Although it is simple
and natural, it has a drawback such that the load of the file
owner becomes heavy as the number of replicas increases
(it is reported that such a naive method works well if the
number of replica peers is less than ten [14]). To overcome
such a drawback of the simple scheme, several consistency
maintenance schemes such as push/pull [9] and IRM (Inte-
grated file Replication and consistency Maintenance mecha-
nism) [5] have been proposed in the literature. Among those
proposals, the scheme proposed by Li et al. realizes an ef-
ficient consistency maintenance using the following sophis-
ticated techniques: 1) a Chord ring [7] is prepared for each
shared file to store the set of replica peers, 2) after conduct-
ing an update, the updater dynamically extracts a tree from
the Chord ring to realize an efficient tree-based notification
to the replica peers, and 3) the churn of peers is effectively
tolerated by the underlying Chord protocol.

In this paper, we propose a new consistency mainte-
nance scheme for P2P file sharing systems based on the
construction of a static tree for each shared file. More
concretely, in the proposed scheme, each file is associated
with a static tree, and each updater initializes the notifica-
tion of update information by sending a message to the root
of the tree which is not fixed unlike conventional owner-
based schemes [5], [9]. To enhance the tolerance to the peer
churn, we prepare links to few ancestors for each vertex in
the tree in addition to links to the children and prepare sev-
eral shadow peers for each root peer. The link to the root
in a tree is acquired by referring to a Chord ring which reg-
isters the mapping from the set of shared files to the set of
roots (and their shadow peers) of the trees. Since such an
acquisition takes O(log X) sequential steps where X is the
size of the Chord ring, in this paper, we take an approach
such that a newly joined peer selects the root as the con-
tact point with probability p and another known peer with
probability 1 − p for an appropriate parameter p. The per-
formance of the scheme is evaluated by simulation. The

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers

3034
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.12 DECEMBER 2014

result of simulations indicates that: 1) the proposed scheme
reduces the number of messages in the Li’s scheme by 54%,
2) the propagation delay of update messages is shorter than
the Li’s scheme and gradually decreases as the value of p in-
creases, and 3) the increase of the delay due to peer churns is
effectively bounded provided that the percentage of leaving
peers is less than 40%.

The remainder of this paper is organized as follows.
Section 2 overviews related works. Section 3 describes the
proposed scheme. Section 4 shows the result of simulations.
Finally, Sect. 5 concludes the paper with future work.

2. Related Work

Push/pull proposed by Lan et al. is a typical consistency
maintenance scheme for P2P file sharing systems [9]. In
this scheme, a peer which generated a shared file serves
as the “owner” of the file, and the consistency maintenance
procedure is always initiated by the owner peer triggered
by the update information received from an updater. Un-
der this mechanism, the file held by the owner is always the
newest among all replicas. After updating the original file,
the owner “pushes” the update information to the nearby
peers using a flooding with an appropriate TTL (time-to-
live), while peers outside of the TTL can acquire the update
information by “pulling” the latest replica by conducting a
periodical polling. As such, push/pull puts high responsi-
bility on the owner peer rather than each updater. The load
of the owner can be reduced by increasing TTL, but since a
large TTL increases the load of non-replica peers, it is diffi-
cult to reduce the overall load by merely tuning the TTL.

In IRM [5], the update information is notified to replica
peers merely by conducting pulling. In this scheme, the rate
of pulling is determined so as not to exceed the update rate
nor the query rate, where the update rate of file f is the fre-
quency of update of f by a peer and the query rate of peer
u on f is the rate of acquiring f by u. The reader should
note that if the pulling rate is higher than the update rate, the
probability of acquiring new update information becomes
low, and if the query rate is higher than the update rate, the
most of acquired information could not be used to update
acquired replica. Although IRM could reduce the redundant
pulling by tuning the pulling rate, it cannot adapt itself to
the change of the update rate. In addition, although it can
certainly bound the pulling frequency, since it must not be
lower than a certain value, the load of the owner linearly
increases as the number of replicas increases.

The drawback of the above two schemes could be over-
come by using a “structure of replica peers” as in SCOPE
(Scalable COnsistency maintenance in structured PEer-to-
peer systems) [12] and the Li’s scheme [14]. In the follow-
ing, we will merely focus on the Li’s scheme, since the su-
periority of the Li’s scheme to SCOPE was experimentally
confirmed in [14]. The outline of the Li’s scheme is as fol-
lows. At first, it organizes a Chord ring [7] of replica peers
for each shared file. The insertion and the deletion of peers
to/from the ring are conducted according to the Chord pro-

tocol. When a replica peer x updates a shared file f , x “ex-
tracts” a tree structure rooted at x from the Chord ring corre-
sponding to f , and propagates the update information along
with the extracted tree from the root to all leaves.

The extraction of such tree is conducted as follows (in
the following, we use parameter � to denote the number of
children of each peer in the extracted tree).

1. Assign all replica peers to x as the territory of x. Let
A(x) denote the set of peers assigned to x.

2. Peer x partitions A(x)−{x} into � subsets A1, A2, . . . , A�,
and after letting the first peer ui in Ai be the ith child of
x for each i, it hands over Ai to ui as the territory of ui.

3. Repeat the same procedure until the territory of all
peers becomes a singleton.

The territory of each peer is given as a “chord” in the
Chord ring, and the partition of a territory is realized by
splitting the corresponding chord into � sub-chords. In ad-
dition, the first peer in a territory means the first peer which
is found by conducting the clock-wise traversal of the ring
from the current peer. In the following, we will explain the
behavior of the procedure using a simple example shown in
Fig. 1. Let � = 2 and suppose that peer 0 updates a shared
file corresponding to the Chord ring. Then a tree rooted at
peer 0 is extracted from the ring as follows:

1. Let A(0) := [0, 15] be the territory of peer 0.
2. Peer 0 partitions A(0)− {0} into two (= �) subsets [1, 8]

and [9, 15]. The children of 0 in the tree are the first
peer 1 in the first subset and the first peer 10 in the
second subset. Peer 0 assigns a territory to each child
such that A(1) := [1, 8] and A(10) := [9, 15].

3. Peer 1 partitions A(1) − {1} into two subsets [2, 5] and
[6, 8], and assigns a territory to children 2 and 6 as
A(2) := [2, 5] and A(6) := [6, 8], respectively. Peer
10 partitions A(10)− {10} into two subsets [11, 13] and
[14, 15]. Since [14, 15] contains no peer, the first peer
12 in [11, 13] becomes the unique child of peer 10.

By repeating the same operation, we have a tree structure
depicted in Fig. 2. The propagation of the update informa-
tion is conducted from the root to the leaves, which can be
concurrently done with the extraction of the tree structure.

Fig. 1 Chord ring (to clarify the exposition, we omit shortcut links called
“fingers” in this figure).

NAKASHIMA and FUJITA: TREE-BASED CONSISTENCY MAINTENANCE SCHEME
3035

Fig. 2 Tree structure extracted from the Chord ring shown in Fig. 1.

The message propagation in the Li’s scheme is much
more efficient than push/pull, since it sends the update infor-
mation merely to the replica peers. In addition, since such a
propagation is conducted with the responsibility of the up-
dater, it could avoid the concentration of the responsibility
to a specific peer (i.e., single point of failure) as in IRM and
push/pull. However, since it constructs a Chord ring for ev-
ery shared file, the cost of each peer increases as the number
of replicas held by the peer increases. In particular, since the
number of adjacent peers in a Chord ring is Θ(log X) even
in the best case [7], where X is the number of peers in the
ring, if it accesses many popular files, the cost of the peer
increases super-linearly.

The idea of constructing a tree-structured overlay is
used in many consistency maintenance schemes with vari-
ous objectives. For example, Shen et al. recently proposed a
poll-based consistency maintenance scheme called GeWave
(Geographically aware Wave) [6] for the files geographi-
cally distributed over the network, and Hu et al. proposed
a framework called BCoM (Balanced Consistency Mainte-
nance) to tune the balance between the consistency strict-
ness, the availability of files for updates, and the update dis-
semination latency [13]. The reader should note that the pro-
posed scheme described in the next section can be applied
to those schemes, since the key points of our scheme is that:
1) an efficient access to the tree roots through Chord ring,
2) several techniques to increase the churn tolerance, and
3) the probabilistic technique to balance the cost and the
height of the resulting trees.

3. Proposed Method

3.1 Overview

In the proposed scheme, we statically construct a rooted
tree for each shared file unlike the Li’s scheme which dy-
namically constructs a rooted tree for each update request.
As will be described later, the proposed scheme requests
each peer to maintain constant number of neighbors for each
shared file, which is much smaller than the Li’s scheme
which requests to maintain Θ(log X) neighbors for each
shared file.

We consider the following four issues during the design

of the proposed scheme:

• To reduce the time required for the message transmis-
sion, we bound the number of children of each peer by
constant d (appropriate value of d will be determined
experimentally in Sect. 4).
• To reduce the time required for the message propaga-

tion, we balance the height of subtrees so that almost
all leaves have the same depth. To this end, the pro-
posed scheme includes a method to balance the depth
of leaves subject to the constraint on the number of
children.
• The leave of an internal peer easily disconnects the tree.

The proposed scheme includes a procedure to tolerate
the churn of peers so that the resulting graph after the
leave easily becomes connected in many cases.
• To start the propagation of the update information

through the tree, we need to find the root of the tree
as quickly as possible. The proposed scheme includes
a mechanism for such a quick identification of the root.

The reader should note that the proposed scheme can avoid
the concentration of the responsibility to specific peers as
in the Li’s scheme and SCOPE. In fact, although an update
message will always be delivered from the root of the tree, it
does not mean that the responsibility is concentrated at the
root, since every internal peer in the tree is responsible for
the delivery of the message to the down streams. It should
also be noted that in the proposed scheme, even if several
peers try to update the same file at the same time, each up-
date message is delivered to replica peers through the root
of static tree associated with the file, i.e., those updates are
naturally serialized at the tree root.

3.2 Identification of the Root

Let T f denote the tree corresponding to shared file f , where
the way of organizing T f will be described later. When peer
u updates f , after identifying the root of T f , u sends the
update information to the root, which will be propagated
to all replica peers by repeating message forwarding along
tree links. The identification of the root is realized by us-
ing a Chord ring. This Chord ring, which will be referred to
as R hereafter, consists of all peers participating in the file
sharing system and the join and the leave of peers is real-
ized by using the normal Chord protocol (we could modify
the scheme so that R consists of several selected super-peers
with a high computational power). In R, the mapping from
the set of shared files to the set of roots is stored in the form
of key-value pairs such that the ID of f is the “key” and the
ID of the root of T f is the “value.”

3.3 Addition of New Replica Peers

Each peer u in T f locally stores two variables Child f (u) and
Df (u), which represent the set of children and the number
of descendants in tree T f , respectively. Suppose that peer
x newly accesses file f . After acquiring a replica of the

3036
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.12 DECEMBER 2014

file from the system, peer x initializes its local variables as
Child f (x) := ∅ and Df (x) := 1, and sends message Add(x)
to peer y in the tree which is selected by using a procedure
described later. After receiving Add(x), y increments Df (y)
by one, and conducts the following operation:

• If |Child f (y)| < d, then it adds x to Child f (y) and noti-
fies the fact to x.
• Otherwise, it selects a peer in Child f (y) to have the

smallest value of Df and forwards Add(x) to the se-
lected peer.

A child which received the forwarded message con-
ducts the same operation, and such a forwarding is repeated
until the parent of x is determined. Note that the above it-
eration always terminates since any path from the root to a
leaf contains at least one peer y′ such that |Child f (y′)| < d
(in fact, any leaf satisfies this condition).

The first receiver y of request Add(x) is determined as
follows:

1. If x knows the IP address of the root of T f , the root is
selected as y with probability one.

2. Otherwise, the root of T f is selected as y with probabil-
ity p and the peer which sent a replica to x is selected
as y with probability 1 − p.

The reason of why we adopted such a probabilistic ap-
proach is as follows. If we fix the receiver of Add request
to the root of the tree, we can guarantee the balance of the
resulting tree even if the tree grows monotonically (as in
the grow of a binary heap), although the identification of
the root takes Θ(log N) sequential steps unless it has known
the IP address of it. On the other hand, if we select a peer
which just sent a replica to the peer as y, although it elimi-
nates the cost for the identification, we could not guarantee
the balance of the resulting tree. In order to resolve such a
trade-off, we take an approach such that: 1) it corrects the
imbalance of the tree caused by the transmission to known
peers by “inserting” the transmission to the root, and 2) to
bound the cost of such a correction, we limit the probability
of such an event to p.

3.4 Churn Tolerance

This subsection describes how to tolerate the churn of peers
in the proposed scheme. As for the churn at the root of the
tree, we tolerate the churn by preparing a backup of the root
(the details will be described later). For the other cases, we
tolerate the churn by preparing a variable Ancf to remember
a part of the ancestors for each peer. The leave of a peer
could be detected by an adjacent peer by periodically ex-
changing message between adjacent peers, i.e., a peer can
judge that an adjacent peer leaves when it misses consecu-
tive αmessages for some α > 0. Upon detecting the leave of
the parent, peer x sends message ReAdd(x,Df (x)) to peer y
in the tree, where y is a peer selected by using a procedure
described later. After receiving ReAdd(x,Df (x)), y incre-
ments Df (y) by Df (x), and conducts the following opera-

tion:

• If |Child f (y)| < d, then it adds x to Child f (y) and noti-
fies the fact to x.
• Otherwise, it selects a peer in Child f (y) to have the

smallest value of Df and forwards ReAdd(x,Df (x)) to
the selected peer.

A child which received the forwarded message conducts the
same operation, and such a forwarding is repeated until the
parent of x is determined.

The first receiver y of request ReAdd(x,Df (x)) is de-
termined as follows:

1. If x knows the IP address of the root of T f , the root is
selected as receiver y with probability one.

2. Otherwise, the root of T f is selected as y with proba-
bility p and a peer which is closest to the root among
all peers in Anc f currently participating in the system
is selected as y with probability 1 − p.

In other words, peer y is probabilistically selected by con-
sidering the balance of the cost and the tree height similar to
Add described in Sect. 3.3.

In order to tolerate the churn of the root peer, in the
proposed scheme, we randomly nominate c (≥ 1) peers from
the set of replica peers as the shadow peers and register the
set of IDs of shadow and original peers as the value of key-
value pairs to the Chord ring. Shadow peers of the root r
of T f share the replica of file f and variables Child f (r) and
Df (r) with r. The original root r is responsible to notify any
update of such information to all shadows. Under the pro-
cedure described in the last subsection, a peer u which up-
dated the replica of file f detects the leave of r since it needs
to contact the root of the tree associated with the replica
(via the Chord ring if it is not aware of the IP address of
the root). Upon detecting the leave of r, u randomly selects
a peer from the set of shadow peers associated with r, and
promotes it to the new root of the tree. On the other hand, if
the root r detects that the number of shadows is smaller than
c, it randomly selects a peer from Child f (r) and promotes it
to a new shadow peer.

4. Evaluation

4.1 Setup

We evaluate the performance of the proposed scheme by
simulation using PeerSim [1]. Parameters used in the simu-
lations are as follows. We consider a P2P file sharing system
consisting of 5000 peers and 5000 shared files. For each
file, the initial distribution of the number of replica peers
follows the Zipf’s distribution. Each simulation is of length
1000 unit times, and during a simulation, each file is updated
by a replica peer according to the Poisson distribution with
λ = 0.05. The arrival of peers follows the Poisson distribu-
tion with λ = 0.1 and to keep the number of participants to
be 5000, we delete a random peer when a new peer joins.
Default values of p and d are set as p = 0.5 and d = 16,

NAKASHIMA and FUJITA: TREE-BASED CONSISTENCY MAINTENANCE SCHEME
3037

respectively.
We evaluate the performance of the proposed scheme

in terms of the following three metrics and compare it with
the Li’s scheme described in Sect. 2.

• The number of messages, which includes messages to
propagate the update information and messages for the
maintenance of data structure due to join and leave of
the participant peers.
• Delay of update propagation, which is defined as the

elapsed time from the point of update of a replica to
the point at which all replica peers receive the update
information. We are particularly interested in the im-
pact of two parameters d and p to the delay, as well as
the influence of the number of replica peers, i.e., scala-
bility of the scheme.
• Churn tolerance of the schemes, which is evaluated by

the impact of the churn rate to the delay of update prop-
agation, where the definition of the churn rate is de-
scribed later.

The reason of why we focus on the Li’s scheme as a com-
petitor is as follows: 1) it is a representative structured over-
lay designed for the consistency maintenance of P2P file
sharing systems, 2) it is an extension of SCOPE [12] which
is widely used as a reference scheme in many papers [6],
[13], and 3) the superiority of the Li’s scheme to SCOPE is
confirmed in [14].

4.2 Number of Messages

At first, we evaluate the number of messages. The result for
the Li’s scheme and the result for the proposed scheme are
summarized in Tables 1 and 2, respectively. In this table,
for example, items starting with CHORD_, LI_, and TCM_ are
messages used for the management of the underlying Chord
rings, messages used in the Li’s scheme, and messages used
in the proposed scheme, respectively; and _UPDATE means
messages used to notify the update information.

We can make the following observations from the ta-
bles. Li’s scheme issues more CHORD_ messages than the
proposed scheme, which is apparently because of the large
number of Chord rings maintained by the scheme (recall that
the proposed scheme maintains exactly one Chord ring in
contrast to that). As for the number of update messages, Li’s
scheme issues more messages than the proposed scheme
(i.e., 2.48 × 106 v.s. 1.68 × 106), which is because of a high
overhead before conducting an actual message forwarding.
In the proposed scheme, every update message is simply
propagated from the root to the leaves through tree links
connected beforehand. In contrast, in the Li’s scheme, be-
fore conducting a message forwarding to the children, each
peer should partition a given chord into several sub-chords
and find the first peer in each chord to identify the set of chil-
dren. Such operations requires additional messages com-
pared with the proposed scheme, which results in a signifi-
cant reduction of the total number of messages by the pro-
posed scheme, i.e., it reduces the total number of messages

Table 1 The number of messages in the Li’s scheme.

CHORD_PING_PREDECESSOR 519028
CHORD_PONG_PREDECESSOR 518595
CHORD_PING_SUCCESSOR 519062
CHORD_PONG_SUCCESSOR 518548
CHORD_NOTIFY 522484
CHORD_FIND_JOIN 469
CHORD_RE_JOIN 86
CHORD_FIND_FIXFINGERS 401601
CHORD_RE_FIXFINGERS 126882
LI_UPDATE 2478815
LI_GET_REPLICA 86
LI_RE_GET_REPLICA 86
Total 5605742

Table 2 The number of messages in the proposed scheme.

CHORD_PING_PREDECESSOR 94362
CHORD_PONG_PREDECESSOR 93728
CHORD_PING_SUCCESSOR 94362
CHORD_PONG_SUCCESSOR 93728
CHORD_NOTIFY 94362
CHORD_FIND_JOIN 561
CHORD_RE_JOIN 79
CHORD_FIND_FIXFINGERS 284356
CHORD_RE_FIXFINGERS 62069
TCM_UPDATE 1647151
TCM_PING 453771
TCM_JOIN 13882
TCM_PARENT 24339
TCM_ROOT_WITHJOIN 69713
TCM_ROOTJOIN 13716
Total 3040179

Fig. 3 The number of messages for each p.

of the Li’s scheme by 54%.
The number of messages in the proposed scheme de-

pends on parameter p. Recall that p is the probability of
selecting the root peer as the first receiver of the Add mes-
sage and that the access to the root needs additional mes-
sages compared with the access to a known peer (see Sect. 3
for the details). Figure 3 illustrates the relationship between
parameter p and the number of messages. The number of
messages slightly increases as the value of p increases. In
particular, the number of messages at p = 1.0 is 1.05 times
of that at p = 0.0.

3038
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.12 DECEMBER 2014

4.3 Delay of Update Propagation

Next, we evaluate the impact of parameter d to the propaga-
tion delay (recall that d is the upper bound on the number
of children of each peer and a large d generally reduces the
height of the resulting tree). The result for 100 replica peers
with p = 0.5 is summarized in Fig. 4 (a). Although the delay
in the proposed scheme gradually reduces as d increases, in
the Li’s scheme, it rapidly “increases” after exceeding cer-

(a) Impact of parameter d (100 replica peers, p = 0.5).

(b) Impact of the number of replica peers (d = 16, p = 0.5).

(c) Impact of parameter p in the proposed scheme (1000 replica peers,
d = 16).

Fig. 4 Delay of update propagation.

tain value, i.e., d = 8. The badness of the Li’s scheme for
large d’s is due to the heavy cost to reconstruct the tree struc-
ture which is necessary before conducting an actual message
forwarding [14]. Such a superiority of the proposed scheme
does hold even when the number of replica peers becomes
large. See Fig. 4 (b) for illustration. This figure summarizes
the result for d = 16 and p = 0.5, where the horizontal axis
is the number of replica peers. In general, the propagation
delay increases as the height of the tree becomes large and
the height and the imbalance of the resulting tree are (im-
plicitly) controlled by parameter p. Figure 4 (c) summarizes
the result, where the horizontal axis is the value of p ranged
from 0.1 to 0.9 (in this figure, the number of replicas is fixed
to 1000). As shown in the figure, the delay at p = 1.0 is 60%
of the delay at p = 0.1, i.e., the shape of the tree certainly
becomes balanced as p increases. Under the setting used in
the simulation, values larger than 0.5 will give a better trade-
off point for parameter p (probably 0.8 would be better than
0.5). However, the value of p giving the best trade-off point
between the delay and the number of messages decreases as
the number of participants increases, since it increases the
cost of identifying the location of the root of the tree through
the Chord ring, while for files to have many replicas should
have larger p, since as the size of the tree increases, the merit
of decreasing the delay dominates the demerit of increasing
the number of messages. In this way, an optimal value of p
would depend on: 1) the total number of peers in the Chord
ring and 2) the number of peers participating in each tree.

The reader should note that although the reduction of
the delay of update propagation does not directly reduce the
access time of each peer since each replica peer holds its
own copy in its local storage, such a reduction of the propa-
gation delay certainly improves the users’ experience since
it realize the sharing of the latest copy of the shared file ex-
isting in the network.

4.4 Churn Tolerance

Let us consider a situation in which D [%] of the participat-
ing peers “simultaneously” leave the system (since we fix
the number of participants to 5000, for example, D = 10%
means that 500 peers simultaneously leave). In the follow-
ing, we call D the churn rate. In this subsection, we evaluate
the impact of D to the delay of the schemes by varying D
from 0% to 50%. Figure 5 summarizes the result for a file
with 500 replica peers. From the figure, we can observe that
in both schemes, the delay increases as D increases, but the
delay of the proposed scheme increases more rapidly than
the Li’s scheme for large D.

The badness of the proposed scheme for large D’s can
be explained as follows. In the proposed scheme, the leave
of a peer disconnects the given tree into subtrees and peers
in a subtree which does not contain the root peer can receive
the update information issued by other peers only after con-
necting with a subtree containing the root peer. The tran-
sition of the average delay after the simultaneous leaves is
illustrated in Fig. 6 (the horizontal axis is the time units and

NAKASHIMA and FUJITA: TREE-BASED CONSISTENCY MAINTENANCE SCHEME
3039

Fig. 5 Churn tolerance of the schemes.

Fig. 6 Convergence of the delay after the simultaneous leaves.

each curve represents the convergence of the delay for each
D). As shown in the figure, the time before the convergence
increases as the value of D increases. When the churn rate
is not high, such a re-connection completes in a relatively
short time, but as the churn rate increases, the time before
completing the re-connection increases because of the con-
flict of requests at the root peer. Such a long waiting time
does not occur in the Li’s scheme because in this scheme,
each Chord ring has a sufficient redundancy under a ran-
dom selection of leaving peers and the extraction of a tree
structure is always possible if the underlying Chord ring is
connected, while the leave of peers would (slightly) degrade
the routing performance of the Chord ring. In fact, the delay
in the Li’s scheme increases from 32 to 37 (i.e., the amount
of increase is less than 20%) by increasing the churn rate
from 0% to 50%, whereas the delay in the proposed scheme
increases from 20 to 48 (i.e., it increases to more than twice)
in the same range of the churn rate.

The above result indicates that the proposed scheme is
more robust against peer churns than the Li’s scheme pro-
vided that the churn rate is relatively small (e.g., less than
40%) and if the churn rate is expected to be very high, we
should use other schemes such as the Li’s scheme.

5. Concluding Remarks

This paper proposes a consistency maintenance scheme for
P2P file sharing systems based on the construction of static
trees for each shared file. Unlike the Li’s scheme which
is regarded as the most efficient scheme in the literature,
the proposed scheme uses exactly one Chord ring for the
lookup of the root of the trees and the churn of peers is ef-
fectively tolerated by preparing links to few ancestors and
by adopting the notion of shadow roots. The result of sim-
ulations indicates that the proposed scheme outperforms the
Li’s scheme in terms of the number of messages and the
propagation delay of update messages. In addition, it im-
proves the churn tolerance of the Li’s scheme particularly
when the churn rate is less than 40%.

A future work is an extensive comparison with other
schemes such as push/pull and IRM. An improvement of
the proposed scheme by adaptively selecting the number of
children in each tree is another challenging issue.

References

[1] A. Montresor and M. Jelasity, “PeerSim: A scalable P2P simulator,”
Proc. IEEE 9th International Conference on Peer-to-Peer Comput-
ing, pp.99–100, 2009.

[2] G. Oster, P. Urso, P. Molli, and A. Imine, “Data consistency for P2P
collaborative editing,” Proc. 20th Anniversary Conference on Com-
puter Supported Cooperative Work, pp.259–268, 2006.

[3] G. Urdaneta, G. Pierre, and M.V. Steen, “A decentralized Wiki en-
gine for collaborative Wikipedia hosting,” Proc. 3rd IEEE Workshop
on Internet Applications, pp.156–163, 2007.

[4] H.-Y. Shen, “An efficient and adaptive decentralized file replication
algorithm in P2P file sharing systems,” IEEE Trans. Parallel Distrib.
Syst., vol.21, no.6, pp.827–840, 2010.

[5] H.-Y. Shen, “IRM: Integrated file replication and consistency main-
tenance in P2P systems,” IEEE Trans. Parallel Distrib. Syst., vol.21,
no.1, pp.100–113, 2010.

[6] H.-Y. Shen and G.-X. Liu, “A geographically aware poll-based dis-
tributed file consistency maintenance method for P2P systems,”
IEEE Trans. Parallel Distrib. Syst., vol.24, no.11, pp.2148–2159,
2013.

[7] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A scalable peer-to-peer
lookup protocol for Internet applications, IEEE/ACM Trans. Netw.,
vol.11, no.1, pp.17–32, 2003.

[8] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D.
Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C.
Wells, and B. Zhao, “OceanStore: An architecture for global-scale
persistent storage,” ACM SIGPLAN Notices, vol.35, no.11, pp.190–
201, 2000.

[9] J. Lan, X.-T. Liu, P. Shenoy, and K. Ramamritham, “Consistency
maintenance in peer-to-peer file sharing networks,” Proc. 3rd IEEE
Workshop on Internet Applications, pp.90–94, 2003.

[10] Gnutella Protocol Specification.
http://rfc-gnutella.sourceforge.net/src/rfc-0 6-draft.html

[11] WinMX. http://www.winmxworld.com/
[12] X. Chen, S. Ren, H.N. Wang, and X.-D. Zhang, “SCOPE: Scalable

consistency maintenance in structured P2P systems,” Proc. IEEE IN-
FOCOM, vol.3, pp.1502–1513, 2005.

[13] Y. Hu, L.N. Bhuyan, and M. Feng, “Maintaining data consistency in
structured P2P systems,” IEEE Trans. Parallel Distrib. Syst., vol.23,
no.11, pp.2125–2137, 2012.

3040
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.12 DECEMBER 2014

[14] Z.-Y. Li, G.-G. Xie, and Z.-C. Li, “Efficient and scalable consistency
maintenance for heterogeneous peer-to-peer systems,” IEEE Trans.
Parallel Distrib. Syst., vol.19, no.12, pp.1695–1708, 2008.

Taishi Nakashima received his B.E. de-
gree in information engineering from Hiroshima
University in 2013. His current research in-
terests include peer-to-peer networks and dis-
tributed systems.

Satoshi Fujita received the B.E. degree
in electrical engineering, M.E. degree in sys-
tems engineering, and Dr.E. degree in informa-
tion engineering from Hiroshima University in
1985, 1987, and 1990, respectively. He is a
Professor at Graduate School of Engineering,
Hiroshima University. His research interests in-
clude communication algorithms, parallel algo-
rithms, graph algorithms, and parallel computer
systems. He is a member of the Information
Processing Society of Japan, SIAM Japan, IEEE

Computer Society, and SIAM.

