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SUMMARY As one of the most widely investigated studies in wireless
sensor networks (WSNs), multihop networking is increasingly developed
and applied for achieving energy efficient communications and enhancing
transmission reliability. To accurately and realistically analyze the perfor-
mance metric (energy efficiency), firstly we provide a measurement of the
energy dissipation for each state and establish a practical energy consump-
tion model for a WSN. According to the analytical model of connectivity,
Gaussian approximation approaches to experimental connection probabil-
ity are expressed for optimization problem on energy efficiency. Moreover,
for integrating experimental results with theories, we propose the method-
ology in multihop wireless sensor networks to maximize efficiency by non-
linear programming, considering energy consumptions and the total quan-
tity of sensing data to base station. Furthermore, we present evaluations
adapting to various wireless sensor networks quantitatively with respect to
energy efficiency and network configuration, in view of connectivity, the
length of data, maximum number of hops and total number of nodes. As
the consequence, the realistic analysis can be used in practical applications,
especially on self-organization sensor networks. The analysis also shows
correlations between the efficiency and maximum number of hops, that
is the multihop systems with several hops can accommodate enough de-
vices in ordinary applications. In this paper, our contribution distinguished
from others is that our model and analysis are extended from experiments.
Therefore, the results of analysis and proposal can be conveniently applied
to actual networks.
key words: energy efficiency, multihop wireless sensor networks, optimiza-
tion, realistic analysis, connectivity, nonlinear programming

1. Introduction and Related Works

Wireless sensor networks (WSNs) have been made viable
by the convergence of micro-electro-mechanical systems
technology, wireless communications and digital electron-
ics [1]. They are expected to consist of a number of sen-
sor nodes (SNs) (few ten to thousands), each having sens-
ing, data processing and communicating components with
limited computational and communication power. To pro-
vide various measurements such as light, temperature, pres-
sure and activity, these low-cost, low-power, multifunctional
nodes have been widely deployed in a vast variety of en-
vironments for commercial, civil, and military applications
such as surveillance, vehicle tracking, climate, etc..

Most of SNs are designed for battery power to reduce
the size, which use limited power supply to support sensors,
processor and radio. It allows for a range of different sens-
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ing modalities as well as an interface to external sensor via
prototyping areas. It is always designed to equip several
different environmental sensors for a wide variety of appli-
cations, such as weather station with humidity, temperature
and pressure sensor, vehicle detection with accelerometer,
and so on.

In most of applications, the radio with RF transceiver
which is working for transmission and receiving messages,
consumes much more energy than sensor board and micro-
controller. In recent years, with the rapid development of
embedded systems including energy efficient devices, hard-
ware/software co-design and networking support, SNs have
been smaller in size and more efficient in data processing
and transmission. However, they are still limited in power,
memory and computational capacities. As a result, the key
challenge is to maximize the lifetime of SNs due to the fact
that the battery is the main power source in a SN. Therefore,
communication protocols are needed to be energy efficient
to save energy.

Moreover, in view of the fact that a SN only covers
a limited physical area and may produce noisy data by the
quality of the hardware, data aggregation of the individual
surveillance allows users to accurately and reliably moni-
tor an environment. During data gathering, the combination
data into high quality information on intermediate SN can
reduce the number of packets to base station (BS) for energy
conservation. Data aggregation is widely used and defined
as the processing of aggregating data to eliminate redundant
transmission and provide fusion information.

Due to restrictions on the channel in transmissions,
TDMA scheduling is regularly applied for a large WSN.
With the progress of hardware oscillator and lightweight
time synchronization algorithms, the real network using two
or more hops to convey information is available at present.

By recently developed wireless sensor networking
techniques, a vast amount of applications is enabled. The
areas also extend to underground [2] and underwater [3].
Under multiple circumstances, only theoretical analysis on
WSNs cannot truly accommodate abundant developments
and applications.

In order to maximizing energy efficiency in WSNs, we
consider the optimization problem by nonlinear optimiza-
tion. Nonlinearities are crucial for representing an appli-
cation properly as a mathematical program. And nonlinear
programming (NLP) (or nonlinear optimization) is the term
used to describe an optimization problem when the objective
or constraint functions are not linear [4].
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There are two types of solution. One is a global opti-
mum, which is a solution to the overall optimization prob-
lem. Its objective value is as good as any other point in
the feasible region. Another is a local optimum, which is
optimal only with respect to feasible solutions close to that
point. Points far removed from a local optimum play no
role in its definition and may actually be preferred to the
local optimum. Since every global optimum is also a local
optimum, the overall optimization problem can be viewed
as seeking the best local optimum.

In most of previous works [5]–[10], radio links are as-
sumed ideal, that is, SNR is set at least a threshold value
with no transmission errors. To fulfill this assumption, the
receiver sensitivity should be high enough to guarantee that
radio link has a low transmission error probability. As a
consequence, all unreliable links are dismissed. However,
from a practical point of view, connectivity is a prerequisite
to providing reliable applications for WSNs.

In communication systems, information source is sent
to the receiver through the antenna of the transmitter, af-
ter encoding, modulation. During signal transmission in the
channel, a signal is distorted by the effect of distance, ob-
stacle, and multipath shadow and so on. After received, the
signal is demodulated and decoded to information sources.
In realistic radio link, experiments show that channel seri-
ously impacts a signal. During propagation in the channel,
not only pass loss, but also fading and shadowing in simul-
taneous affect transmission signal.

Moreover, related researches [5]–[10] mainly focus on
distance or received signal strength indication (RSSI) based
signal propagation model. In the result of this model, it is
difficult to build and apply the related proposal for a prac-
tical network, not to mention complex surroundings, for in-
stance indoor system. Several investigations also neglect the
fact that listening for an incoming packet consumes much
more energy than settings in 2.4 GHz transceiver. Thus, as
a result of multihop routing, the mechanism cannot receive
assumed energy saving for WSNs.

Specifically, the multihop networking can be recog-
nized as the clustering algorithm, when the maximum num-
ber of hops is 2. On studies of clustering algorithms, the
prime opinion is to achieve energy efficient communica-
tions by balancing energy consumptions for cluster heads
and other SNs. However, the quantity of data to BS is rarely
considered at the same time in the system.

According to multifarious missions for WSNs, there
are various options on multihop communications. Since the
complete efficiency optimization problem for routing proto-
cols is NP-hard, there is a great deal of research on multihop
networks, which concentrate on optimizing each link for
graph or tree based sensor networks. However, on account
of the lack of realistic analysis of connectivity, these works
suffer high computational complexity or difficult manage-
ment for development and application. Therefore, in our re-
search, we provide the analytic procedure for real networks,
before performing specific routing protocols for establishing
optimum network graph. With accurate and practical evalu-

ations in circumstances, multihop protocols can be applied
for energy efficient communication, which is targeted easy
utilization and great accomplishment in the real world.

The rest of our paper is organized as follows: in Sect. 2,
firstly we overview the system description of the packet
format and the energy consumption model for real WSNs.
Then, multihop networking is presented to achieve energy
efficient data collections. The performance metric is opti-
mized by convex optimization. Afterwards, in Sect. 3, we
investigate the measurement and experiments. From the re-
sults, parameters and approximation functions for connec-
tivity are described. Furthermore, we quantitatively analyze
energy efficiency with output power, length of the payload,
maximum number of hops and connection probability for
practical networks in Sect. 4. Finally, we draw conclusions
in Sect. 5.

2. Energy Efficient Multihop Network

In this section, the system description combined theory with
experiment is provided. Afterwards, we concentrate on op-
timization of energy efficiency for multihop networks.

2.1 System Description

2.1.1 Packet Format

From IEEE 802.15.4 standard [11], packet format is defined
as Fig. 1. The format is widely developed and applied in
variable practical sensor networks. Due to the low power
of SNs, header and footer of a packet are set to short size.
The frame check sequence (FCS) is based on a cyclic re-
dundancy check (CRC) of length 16 bit to detect corrupted
frames. The length of the packet is denoted by lp. And
the maximum packet length is restricted by the transmitter
frame buffer. In our research, we divide the data payload ld
into data information and several data blocks.

In practical WSNs, SNs mainly work for sensing data
and transmitting data to BS. These data collected from sen-
sor board should follow the user-defined structure. Other-
wise, base station cannot interpret received messages. We
define a data block as a serial data for a collection from sen-
sor board. The data block is necessary to be operated and
transmitted to BS for environment monitoring. Let lb denote
the length of a data block. And in the field of data informa-
tion, the attributes of packet and data are recorded, such as

Fig. 1 Packet format for wireless sensor networks.
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Fig. 2 Transceiver energy consumption model.

collection time, packet index, RSSI, voltage and so on. We
define the length of data information as linf. Therefore, we
get ld = linf + βlb, where β is number of data blocks in a
packet.

2.1.2 Energy Consumption Model

To examine the energy efficiency of a network, it is essential
that energy consumption for each state should be revealed.
We assume that a SN always powers on the microcontroller
before exhausting battery. The sensor board and radio board
are programmed enable power only in the working period to
save energy consumption. From the experimental analysis
in Sect. 3.1, we establish the practical energy consumption
model as follows:

• Idle state: Compared with other states, the energy con-
sumption is quite small in sleep mode.
• Sensing state: the energy consumption denoted by

Esensing is computed by the power pwrsensing and the
time tsensing. The microcontroller receives the data ac-
quired by sensors through analog-to-digital converter.
• Transceiver module: is shown in Fig. 2

– Activated state: the energy consumption is de-
noted by Epower on. Hardware/software synchro-
nization is performed between microcontroller
and radio transceiver.

– Radio initial state: the energy consumption is de-
noted by Eradio initial. After this state, a SN gets
ready for RX or TX.

– RX state: the energy dissipation for receiving de-
noted by ERX can be calculated by the power con-
sumption pwrRX and message receiving time tRX.

– TX state: the energy dissipation for transmission
defined as ETX v is computed by the vth level out-
put power pwrTX v and message transmission du-
ration tTX.

In many applications, after the transmission, SNs al-
ways change state to sleep to save energy and wait next
wake-up. The system employs TDMA schedule for avoid-
ing transmission collisions and reducing energy consump-
tions from other transceiver operations, such as clear chan-
nel assessment for CSMA in IEEE 802.15.4. Collisions
between wireless transmissions are not considered with
enough margin time of communication for TDMA schedul-
ing in the paper. We use Estart up to present the sum of
Epower on and Eradio initial. Thus, radio start-up includes ra-
dio board and transceiver initialization. The TX dissipates
energy ETX to run the radio electronics and the power ampli-
fier, and the receiver dissipates energy ERX to run the radio

Fig. 3 Graph of multihop networking.

electronics. In our research, we consider that a SN has lim-
ited output TX power. The difference with previous works
is that TX power is ranged by levels not distances, which is
credited and used in practical network.

2.2 Multihop Networking and Optimization

In this section, we concentrate on establishing multihop net-
working and describing the optimization. Firstly, we define
energy efficiency (ee f ) as the performance metric. Accord-
ingly, in the network for data collections, ee f can be ex-
pressed as the quantity of data (bits) received by BS per
energy consumption. We use microjoule (μJ) as the unit
of energy consumption. We consider practical application
scenarios that a field of SNs sends data measurements to
BS through intermediate nodes, which perform data aggre-
gation to compress information. Then BS can receive data
from intermediate nodes and terminal nodes. In most of the
applications, BS is wired into the main source. After accom-
plishing β sensing tasks, each SN in the network transmits
the sensing data once. Through time synchronization and
TDMA scheduling, intermediate nodes can transmit mes-
sages after receiving without radio shutdown. Consequently,
we have energy consumptions for a transmission:

Etrans v = βEsensing + Estart up + ETX v. (1)

And the total energy consumption for each SN should also
take a count on radio receiving consumption by the number
of receiving.

Let W denote the total number of SNs. And we define
the maximum number of hops as n, the number of SNs in
the ith hop as Ni, respectively. Let G = (V, E) be a multihop
networking graph for a wireless sensor network, shown in
Fig. 3. We use V to represent the set of all vertices including
SNs and one BS, and E to represent the set of edges which
are transmissions among vertices. We assume that each SN
transmits once in each data collection. Consequently, we
get G is a tree and |V | = W + 1, |E| = W. In realistic ra-
dio propagation, we should consider connectivity to express
unreliable links during packet transmissions. Therefore, we
denote Pi for unreliable transmission from ith hop to (i−1)th
hop, which is defined as the average successful probability
of packet transmission from a SN in ith hop to the receiver
in (i − 1)th hop. As the result of tree model, we can get en-
ergy consumptions for a data collection in a whole network
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by:

Ecollection =

n∑
i=1

NiEtrans v i +

n−1∑
i=1

Ni+1ERX i. (2)

Etrans v i denotes mean transmission energy consumptions of
a node in ith hop with vth output TX power; ERX i denotes
average listening energy dissipation of a node in ith hop. Ac-
cording to experimental analysis of TX output power with
connectivity in Sect. 4.1, we can get Etrans v i = Etrans, where
all SNs in a network utilize maximum TX output power dur-
ing transmissions. And Etrans denotes energy consumptions
for one transmission by maximum TX power for a SN in our
paper.

Moreover, we use S Ni h to denote the node as hth SN
in the ith hop, and we can have 1 ≤ h ≤ Ni. The aggregated
data rate for S Ni h is αi h. In our research, we consider a
simple aggregation scheme, where data payload length ld in
each packet is invariable during data processing. Therefore,
we can get ERX i = ERX and αi h = 1. Furthermore, we
assume that this aggregated data can completely exhibit all
sources of information. Then, we can calculate ee f by the
following function:

ee f =
ld

∑n
i=1

∏i
j=1 NiPj

WEtrans v +
∑n

i=2 NiERX
, (3)

The expression shows that energy efficiency is not lin-
ear. Consequently, in order to maximize energy efficiency,
we use nonlinear programming as the solution tool. As one
of the most widely applicable methods for the nonlinear
programming problem, the local optimization method can
manage the large-scale problem and requires differentiabil-
ity of the objective and constraint functions. We adopt this
method for our research for a large number of SNs and mul-
tihop networks. Next, we describe the optimization prob-
lem on energy efficiency. The solution can be obtained
from differential equations including gradient of the objec-
tive function, Jacobian of the constraints and the Hessian of
the Lagrangian function, which are derived by the differen-
tial and two-order differential of the objective and constraint
functions.

In order to solve the optimization problem on energy
efficiency, the Gaussian approximation model is used for
fitting the curves of experimental results, which is not theo-
retic model based on wireless communications. The follow-
ing proposed optimization of energy efficiency can be used
from other approximation models, which are requested to be
second order differentiable, even if Gaussian approximation
is not applicable. From energy efficiency in Eq. (3), we de-
scribe the problem of getting an optimum energy efficiency
estimate of parameter vector N as:

maximize : ee f ;

subject to : N;

constraint :
n∑

i=1

Ni = W; (4)

Pi from Gaussian approximation model.

Here, the vector N = (N1,N2, . . . ,Nn) is the set of vari-
ables of the optimization problem, the function ee f is the
objective function and the approximate Pj from the Gaus-
sian approximation model is represented in Sect. 3.2 from
analysis of connectivity experiments. In first constraint
function, the sum N should be equal to W. The other con-
straint functions is to calculate Pi for the objective function.
We denote that N∗ is a solution of the problem. Finally, we
can get the N∗ from N∗ = arg max ee f by nonlinear pro-
gramming.

3. Experimental Analysis

In this section, we show our experiments on energy mea-
surements and connectivity of the WSN, which are devel-
oped in TinyOS [13]. The implements are IRIS motes with
MTS400 sensor boards from Crossbow Technology. The
mote operates on 2 AA batteries, and uses the Atmel RF230
radio frequency transceiver [14] integrated with an Atmega
1281 micocontroller, 8 KB RAM, 128 KB program mem-
ory and 512 KB flash memory. Moreover, the radio em-
ploys offset quadrature phase shift keying (O-QPSK), pro-
viding an effective data rate of 250 kbps in the 2.4 GHz
unlicensed ISM band. The RF transmission power is pro-
grammable from 3 dBm to −17.2 dBm by 16 output power
levels. Furthermore, the MTS400 sensor board offers five
basic environmental sensors, which are humidity, temper-
ature, barometric pressure, light and 2-axis accelerometer
sensor. Applicable industries include agriculture, industrial,
forestry, heating, ventilation, and air conditioning (HVAC)
and more. The environmental sensor board utilizes energy
efficient digital IC-based board-mount sensors. It also can
be programmed enable and disable power to the individual
sensor.

In measurements, we get the mean power consumption
and average time for each state by the digital oscilloscope.
Furthermore, connectivity results are analyzed to approxi-
mate functions of connection probabilities. The confidence
of numerical analysis for statisticians is 0.975.

3.1 Measurements

Measurements of the energy consumption in each state are
performed on 4 SNs from 4 channels simultaneously. The
sampling rate is set to 0.2 μs/sample. The experiments
on transceiver module are repeated 5 times for each TX
power. On account of response delay of sensors, SNs ex-
ecute sensing tasks during 1s and count number of sensing
tasks. Then, the average period of a sensing task is about
8.8 ms from the results.

Shown in Fig. 4, it is essential to identify the following
intervals for states. Moreover, the result of power consump-
tion is presented in Table 1.

• T1: A SN maintains a timer for waiting wake up and
state-info LED in idle state.
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Fig. 4 Measurement of energy consumptions.

Table 1 Power consumption from measurements.

State Power consumption (mW)
Idle 5
Sensing 31.8
Power on 16.8
Radio initial 53.2
RX 47
TX (3 dBm) 58
TX (1.1 dBm) 51
TX (−17.2 dBm) 41

• T2: A SN executes one sensing task on all sensors of
sensor board and voltage comparator of chip. And we
get T2 = 8.8 ms.
• T3: The supply voltage is applied to the radio

transceiver. The crystal oscillator gets activated and the
master clock is provided to a clock source to the mi-
crocontroller after the crystal oscillator has stabilized.
And we get T3 = 2.2 ms.
• T4: After the voltage regulator has been settled, the

frequency synthesizer is enabled. To change RX state,
the receiver is immediately enabled. For TX state, the
message is written to the buffer. And we have T4 =

3.3 ms.
• T5: After transmission of the preamble and the start-

of-frame delimiter (SFD), the frame buffer content is
transmitted. The radio transceiver is configured to au-
tonomously compute the FCS bytes and append it to
the transmit packet. When the frame transmission is
completed, the radio transceiver automatically turns
off the power amplifier. The solid line and two dash
lines denote results with different TX output power,
which are maximum (3 dBm), 1.1 dBm and minimum
(−17.2 dBm) TX output power, respectively.
• T6: During this state, only the preamble detection of

the digital signal processing is running. When a pream-
ble and a valid SFD are detected, also the digital re-
ceiver is turned on. The radio transceiver enters the
receiving state.

And TX period T5 and RX period T6 base on the packet
length, which are equal to lp/Rb. Rb is the bit rate of SNs.

Fig. 5 Distribution of connectivity experiments.

3.2 Connectivity Experiments and Approximation

In order to characterize and quantify the connectivity for
WSNs, we perform experiments on the roof of Engineering
Building No.12, the University of Tokyo, shown in Fig. 5.
Supposing that the location and height of BS are different
with distributed SNs in the area, the characteristics of con-
nection probability from a SN to the BS are different with
those of connectivity probability from a SN to another SN.
Therefore, connectivity from SNs to BS and connectivity
between SNs are tested and investigated respectively. More-
over, we define connection probability as successful proba-
bility of packet transmission.

In experiments on connectivity to BS, we deploy a BS,
a referenced BS and several SNs in the designated area. The
BS has same TX/RX modular with SNs. The function of
the referenced BS is to confirm messages disseminated by
SNs, while the location is very close to the BS. Then the BS
connects PC through USB interface to record received mes-
sages, and it is assigned to a height of 2.5 m. In connectivity
experiment from SN to BS, 17 SNs are randomly distributed
in 16.9m × 47.6m rectangular area shown in Fig. 5. On the
roof, there are some cabins and outdoor parts of air condi-
tioners, which are obstacles to the transmitted signal. In the
experiment, a SN is scheduled for sending data to the BS by
TDMA with the basic operating model for IEEE 802.15.4
applications [14]. Moreover, the transmission repeats 2000
times for each TX output power. The length of a packet is
1008-bit assumed as 5 data blocks, where ld is 800 bits in-
cluding all sensing data and current voltage data.

Next, we present characteristics of the distribution area,
which can be a reference for outdoor applications. The mean
distance from a SN to the BS is 32.8 m; the mean height
of a SN is 0.8 m. The node distribution density ρ is about
0.02 node/m2. Following Poisson point process theory of
spatial data statistics, we can get that the expected nearest-
neighbor distance in the distribution area is about 3.4 m.
And in our research, the shadowing and fading channel af-
fecting the transmission signal, should be concerned with
connection probabilities of SNs in real WSNs.

In order to investigate connectivity between SNs, we
let SNs transmit messages to the setting SN, which the ID
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Table 2 Connectivity experiment results.

SN ID Dis. to BS CP. to BS Dis. to SN 6 CP. to SN 6

01 9.5 0.966 27.0 0.910
02 22.9 0.466 13.5 0.972
03 25.9 0.931 12.2 0.0
04 29.7 0.236 7.0 1.0
05 35.0 0.107 4.2 0.948
06 36.2 0.791 / /

07 40.1 0.388 7.4 0.961
08 45.6 0.746 11.9 0.967
09 45.5 0.267 10.7 0.983
10 50.4 0.288 16.4 0.887
11 31.8 0.888 5.8 1.0
12 34.6 0.881 3.0 1.0
13 55.6 0.086 19.8 0.329
14 28.0 0.361 11.1 1.0
15 13.2 0.938 25.4 0.957
16 24.7 0.945 16.7 0.865
17 28.8 0.962 11.5 0.950

Dis.: Distance in meter; CP.: Connection probability.

is 6 in Fig. 5 and the height is 1.1 m. Then, we collect data
from 15 SNs to dissect connection probability of the intra-
area distribution, except SN 3 totally blocked to SN 6 by
obstacles. The experiment settings are similar with the ex-
periment on connectivity to BS.

The results of experiments on connectivity are shown
in Table 2. Figure 6 and Fig. 7 show the connection prob-
ability in the descending order. In view of energy efficient
multihop networking, a SN in ith hop has one transmission
link to its receiver in (i − 1)th hop, which has higher con-
nection probability than that of links to the other SNs in
(i−1)th hop. SN number (τ) denotes the τth highest connec-
tion probability to BS and between SNs in Fig. 6 and Fig. 7,
respectively. In Fig. 6, considering optimization of energy
efficiency, if the τth SN is the first hop node, the other SNs
with higher connection probabilities to BS will be in the
first hop. The average connection probability of first hop
P1 should be the average value of connection probabilities
from the first SN to the τth SN. In Fig. 7, if the SN in (i−1)th
hop is the τth highest connection probability node of the SN
in ith hop and the connection probability is higher than that
to other SNs in (i−1)th hop, the SN in (i−1)th hop will be as
a receiver. The average connection probability from a SN in
ith hop to a SN in (i−1)th hop can be calculated by expected
number of neighbors for a SN in ith hop. In general, connec-
tion probability decreases with the rise in distance between
transmissions due to the path loss. However, from effect of
obstacles to signal, the connection probability may violently
change such as SN 2 to BS in Table 2. Accordingly, the SN
2 with low connection probability would transfer messages
to the BS through other intermediate SN.

In order to accurately formulate connectivity to the
model, we use the Gaussian approximation model to fit for
our experimental curves with a minimum sum of the squares
of the errors. Gaussian peaks [15] can be matched our re-
sults of connectivity better than other mechanisms. We have
the equation for a Gaussian model is:

SN number (τ): the τth highest connection probability to BS

Fig. 6 Connectivity from SNs to BS.

SN number (τ): the τth highest connection probability to SN

Fig. 7 Connectivity between SNs.

y =

m∑
i=1

ai exp

⎡⎢⎢⎢⎢⎢⎣−
(

x − bi

ci

)2⎤⎥⎥⎥⎥⎥⎦ , (5)

where a is the amplitude, b is the centroid, c is related to the
peak width, m is the number of peaks to fit, and 1 ≤ m ≤ 8.
From this model, we can get approximation of Pi shown as
blue lines in Fig. 6 and Fig. 7:

P1 =

m∑
j=1

abs j exp

⎡⎢⎢⎢⎢⎢⎣−
(

N1 − bbs j

cbs j

)2⎤⎥⎥⎥⎥⎥⎦ ,where m = 2;

Pi =

m∑
j=1

asn j exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−
⎛⎜⎜⎜⎜⎜⎜⎜⎝

WNi

N2
i−1
− bsn j

csn j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
2⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,where m = 2; (6)

From Poisson point process, Ni

Ni−1
represents the average

number of links for a SN in ith hop to a SN in (i − 1)th hop.
We can calculate WNi

N2
i−1

, which is the expected value of num-

ber of neighbors for a SN in ith hop as SN number, when
the average number of links is Ni

Ni−1
. Furthermore, SNs are

chosen for the first hop by connectivity order. We can get
a series of parameters for constraint functions in optimiza-
tion from the Gaussian fitting processing, including sets
of {abs j, bbs j, cbs j} ( j = 1, 2) and sets of {asn j, bsn j, csn j}
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( j = 1, 2). Finally, we get {0.9698, −0.1058, 24.75},
{0.04434, 8.126, 3.066} for connectivity to BS and {0.9885,
1.245, 12.83}, {0.4641, 13.83, 6.581} for connectivity be-
tween SNs, respectively. These parameters are applied to
our experimental results and provided for a reference in the
outdoor system.

4. Evaluation

We present evaluations based on experiments in this section.
Due to variable applications for WSNs, there are different
performance metrics in current research. However, consid-
ering that the main usage of SNs is to sense data and trans-
fer data to the BS, the energy efficiency of our definition is
functional and practical in WSNs.

4.1 On Elementary Transmission

First of all, we investigate the elementary transmission,
which is known as direct communication to the BS. Ac-
cording 16 channels supported by 2.4 GHz band, this kind
of protocols can apply for a small network, not only short
range to the BS but also a small number of SNs. Moreover,
the elementary transmission is a unit for every network al-
gorithm. We assume that a SN achieves β sensing job, and
transfer the ld-bit message as data payload. The reference
probability of successful transmission for 1008-bit packet is
changed from 0.1 to 0.9, with different TX output power lev-
els to model multifarious distribution environments. The en-
ergy efficiency can be calculated by Eq. (3) assuming n = 1.
Then we can get optimization results in Fig. 8 and Fig. 9.

Both results show that energy efficiency is greatly in-
fluenced by connection probability. The first figure shows
that the length of a packet is restricted by probability of suc-
cessful transmission to achieve optimum energy efficiency.
Accordingly, suffering adverse circumstances in channel,
SN should choose a short packet to avoid wasting energy
by massive transmission failure. Another figure shows that
comparing TX power, connectivity almost completely deter-
mines energy efficiency. Therefore, TX power level should
be settled by connectivity. For example, when the connec-
tion probability is much more than the threshold value (0.88)
with the TX power, a SN can level down the power and si-
multaneously guarantee the threshold probability to achieve
energy efficient communications. Consequently, we believe
that the connection probability is presented and measured
with 3dBm TX output power, which is the maximum trans-
mitting power for energy efficient communication in most
application cases of multihop WSNs.

4.2 On Multihop Networking

In multihop WSNs, we utilize experiments on connectiv-
ity in Eq. (6) to optimize energy efficiency for similar net-
works. And the proposed methodology can be exploited
for other applications. In order to extend the evaluations
on larger WSNs, we consider consistent node distribution

Fig. 8 Number of data blocks for optimum ee f .

Fig. 9 Optimum energy efficiency with variable length of packet.

density with the experiment for the addition of SNs. We as-
sume that the user-defined packet structure is used, where
lp = 1008 bits. In consideration of connection probability in
the environment, direct communication is quite energy inef-
ficient for a large system. Thus, SNs transmit sensing data
hop by hop with data aggregation. Connectivity is approx-
imated by provided Gaussian models. Furthermore, we can
get the solution N∗ of the optimization problem on ee f in
Expression (4) by NLP. From these results, we make study
of energy efficient communications for multihop networks.

The results of ee f for multihop networking are shown
from Figs. 10 and 11, where results provide analysis on
maximum ee f with a total number of SNs, maximum num-
ber of hops by same node density as our connectivity exper-
iments. Figure 12 provides the network structure to achieve
optimum energy efficiency for two settings on node distri-
bution density.

In Fig. 10, we investigate optimum ee f with the max-
imum number of hops. Efficiency is maximized at 6 hops
for 50 SNs and 80 SNs, 7 hops for 100 SNs in networks,
respectively. When the total number of SNs is large, the
greater total number of hops achieves more efficient, espe-
cially shown in the 100-SN network. Considered complex-
ity of communication protocols and energy efficiency, a 5-
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Fig. 10 Optimum energy efficiency with variable maximum number of
hops.

Fig. 11 Optimum energy efficiency with variable total number of SNs.

Fig. 12 Energy efficient multihop networks for 100 SNs.

hop network can accommodate enough devices in normal
applications, which is close to the optimum total number of
hops. And, regarding applications, 100 SNs can be admitted
in a 3-hop network with 86 percent optimum ee f of 7-hop
network. Moreover, raising the maximum number of hops
cannot achieve more efficient than optimum ee f according
to constitute of WSNs.

We present optimum ee f with a total number of SNs

for a network in Fig. 11. Due to the constant node distri-
bution density, the ee f of networks decreases with increas-
ing the total number of SNs. In other words, a SN con-
sumes more energy for transferring data to BS in a larger
WSN, even with more hops. Generally, transmitting data
would consume energy with long distance in a large net-
work. Therefore, increasing the number of BSs or making
movable BS is one of recent technologies for large WSNs.

After analysis on ee f , we show multihop structure for
WSNs in Fig. 12. Double distribution densities are con-
sidered for 100-SN networks to achieve maximum energy
efficiency. We show the average number of SNs in each
hop from the solution of multihop networking optimization.
Low node distribution density brings small connection prob-
ability between SNs by path loss. And we can see the mul-
tihop network with 0.5ρ density achieves optimum ee f at 6
hops less than that in the ρ network. Because connectivity
between SNs in the 0.5ρ network is smaller. And much more
SNs in first two hops are chosen to increase connectivity for
other SNs.

During the network organization, SNs with high con-
nection probabilities to BS would be chosen as nodes in
the first hop, according to the solution of multihop network-
ing optimization N∗. In intra-area, nodes in ith hop (where
i > 1) would be determined by (i − 1)th hop with high con-
nection probabilities. And the average number of SNs in ith
hop should be Ni from N∗.

5. Conclusion

In this paper, in order to quantitatively analyze energy effi-
ciency in multihop networking, we firstly develop a practi-
cal model for energy consumptions from our measurements,
and present statistics of power consumption in operation
states. Moreover, we establish a multihop networking model
for a WSN, and optimize the performance metrics by non-
linear programming. From experiments on connectivity, we
investigate the connection probability and formulate it to
the model by Gaussian approximation. Finally, after sim-
plifying and modeling, we provide evaluations to express
optimum energy efficiency of elementary transmission and
multihop networking. As one of the studies on WSNs, our
proposal is extended from experiments. Therefore, it pro-
vides not only accurate analysis of theory, but also reliable
applications to real WSNs.
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