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SUMMARY  Coarse Grained Reconfigurable Architectures (CGRAs)
are promising platform based on its high-performance and low cost.
Researchers have developed efficient compilers for mapping compute-
intensive applications on CGRA using modulo scheduling. In order to
generate loop kernel, every stage of kernel are forced to have the same exe-
cution time which is determined by the critical PE. Hence non-critical PEs
can decrease the supply voltage according to its slack time. The variable
Dual-Vpp CGRA incorporates this feature to reduce power consumption.
Previous work mainly focuses on calculating a global optimal Vppy, using
overall optimization method that does not fully exploit the flexibility of ar-
chitecture. In this brief, we adopt variable optimal Vppy, in each stage of
kernel concerning their pattern respectively instead of the fixed simulated
global optimal Vppy,. Experiment shows our proposed heuristic approach
could reduce the power by 27.6% on average without decreasing perfor-
mance. The compilation time is also acceptable.

key words: loop mapping, software pipelining, Dual-Vpp, low power,
Graph Minor

1. Introduction

Portable devices faced more and more challenges for si-
multaneous demands for high flexibility and high perfor-
mance as well as low power consumption than the tradi-
tional processor. Field Programmable Gate Arrays (FPGAs)
were a suitable choice in portable domain in past days be-
cause it had relative high flexibility and performance only
with disadvantage of high power consumption for manag-
ing the fine-grain reconfigurable units. Coarse Grained Re-
configurable Architectures has been attracting the industry
and academia for its low power consumption, high flexi-
bility and performance obtained from coarse grain and pro-
grammability. CGRA are becoming more and more preva-
lent in the portable environment.

As Shown in Fig. 1, ADRES-like [2] CGRA typically
consists of three main components: a 2-D mesh coarse-
grained reconfigurable elements (PE) array (PEA), a data
memory and context memory, a host controller which at-
taches the CGRA to host processor. The size and memory
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width of CGRA can varies quite different. A PE basically
includes an ALU and a register file as depicted in the right
part of Fig. 1. According to the distributed register feature
and the mesh interconnect by which each PE is connected
only to the neighbors, the CGRA compiler is much more
complex than the traditional compiler because it should take
the Placement and Routing (P&R) into account.

To accelerate the compute-intensive application, the
common method was to parallelize loops because the loops
are the most significant time consuming part. It can be in-
nermost loop parallelization or nest loop parallelization [9].
Parallelization of innermost loop was explicit pipelining of
fixed schedule which was referred to as software pipelining
and modulo scheduling [1]. Initial Interval (/T) was used as
the performance metric to guide the loop transformation. 77
was defined as the number of cycles between the start of
two consecutive iterations of a loop and was equal to the
equivalent execution time of a single iteration if the kernel
contained only one copy of iteration. In this view, we can
easily understand the shorter /I the higher performance.

Previous work had made significant contributions to re-
duce the /1. For example, in [4], Park offered a Node-centric
Scheduling by focusing on assigning DFG nodes to PEs,
where the placement problem was the first priority and the
routing was the by product. Then Park improved his method
by selecting intelligent paths from source to sink PEs that
would not block other operand paths. The improved one was
called Edge-centric Modulo Scheduling (EMS) [6]. EMS
gave priority to routing rather than placement.

Then a more efficient graph-based method called
EPIMap [7] was introduced by Hamzeh. He described map-
ping problem as finding a subgraph in a minimally Time-
Extended CGRA (TEC) graph, where the subgraph is Epi-
morphic to the input DFG. EPIMap was categorized into
temporal mapping [3]. Operands in same stage were data
independent and were not connected with each other. In
EPIMap, Il were defined as the stage numbers of explicit
kernel in TEC graph. The shorter the /1, the shorter the TEC
graph hence the higher the performance.

Chen developed another graph-based method based on
Graph Minor Testing Approach[11]. He described mod-
ulo scheduler as /I different configurations, each of them
corresponded to a particular cycle in the kernel. Instead
of using TEC graph, he restricted the time axis to the tar-
get II to get a simplified graph as schedule and route graph
(SRG) by adding wrap around edges from the last cycle to
the first cycle. Then he extended Undirected Graph Minor to
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Fig.1 The CGRA template.

directed case and used this math tool to mapping DFG onto
SRG. Since this method focused only on the steady stage of
pipelining where the CGRA consumed the most power, we
could modify this method to reduce the power consumption
without decreasing the performance.

Formulating explicit kernel requires that all stages of
kernel have the same execution time which is determined
by the critical PEs path (e.g. multiplier). There are slack
time on non-critical PEs path (e.g. not, add) because these
PEs are much faster. According to [5], we can execute these
operations on lower voltage in a fixed Dual-Vpp CGRA, be-
cause the timing constraint is not violated by the additional
delay due to level shifters and increased delay on lower
voltage.

Zhu appealed to a Variable Dual-Vpp CGRA [8] in
which he calculated unique optimal Vppp, for different ap-
plications. It was an evolution version of [5] in which the
Dual-Vpp voltage were empirically setting to 1V and 0.7V.
Estimation of Vppp was categorized into two methods: rel-
ative slow simulation method and much more quick tech-
nique using path delay distribution [10]. We choose the for-
mer one because its compilation time is acceptable.

We applied the Dual-Vpp architecture incorporated
with new algorithm into loop mapping domain. For a bet-
ter mapping schedule which offered sharp power reduction
without affecting the performance, this brief made three
contributions:

Apply Dual-Vp, optimizing to loop parallelization:
Previous research fails to reduce power in cases with high
speed execution efficiency.

Unique optimal Vpp; for each stage of kernel in-
stead of a fixed global optimal Vpp; for the whole kernel
itself: In modulo scheduling method, different stage of ker-
nel usually has different operands distribution thus can has
different optimal Vppr. We can achieve higher power effi-
ciency by evolving from Zhu’s global granularity to stage-
level granularity.

Revised Graph Minor framework: Adding re-
computation and routing techniques, which one to choose
depends on power evaluation function obtained from above,
of EPIMap to Graph Minor to reshape the original DFG
for accelerating the mapping. Then we are able to choose
the lower power consuming one between two schedulers
with same /I and different patterns. Since the core rou-
tine of Graph Minor does not change, we can reduce power
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consumption without affecting performance.

The rest of paper is organized as follows. Section 2
describes the adopted variable Dual Vpp CGRA. Section 3
depicts rough process of our method. Section 4 gives the de-
tailed math formulation and cost function. The experiment
result is discussed in Sect. 5. At last, we conclude in Sect. 6.

2. Architecture

As shown in above, we should make full use of slack time
of the non-critical PE. In this brief, we adopt the ADRES-
like CGRA template which is modified with variable Dual
Vpp function. The architecture has been raised in [8] which
depicted in Fig. 2.

The sum of delay of ALU and delay of interconnect
is the total execution time. We could make a configurable
dual Vpp switch to the both components. However, the
ALU is the critical part (75%) concerning delay while inter-
connect is the critical part (90%) concerning power, whose
POWER/DELAY is tens of times larger than ALU through
simulation results. Thus the configurable dual Vpp is de-
signed for interconnect rather than ALU. Two selecting tran-
sistors and two-bit configurations are used to choose higher
power supply Vppy or lower power supply Vppr. Level
shifters are required at the bottom where the Vpp, signals
are transmitted to the Vppy domain.

An adjustable dc-dc converter is a necessary cost to
generate the variable Vppy . The switched converter is con-
trolled by the compiler which can take advantage of our pro-
posed mapping method while the fixed Dual Vpp architec-
ture is inadaptable to achieve the best power reduction ra-
tio of various applications. Zhu utilize this architecture to
get unique global optimized Vppy, for given application as
a whole, while we delve further and calculate unique op-
timized Vppy for each stage of kernel when applying our
modulo scheduling parallelization.

3. Motivation and Main Idea

We give examples to show main idea of our last two contri-
butions. Firstly, power consumption of stage-level control
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Fig.3  Mapping patterns can affect power consumption.

is possibly lower than that of global granularity in Fig. 3 a.
According to [5], we can execute faster operations on lower
voltage. In order to explain the essential idea, we make an
extremely idealized case based on our simulation results.
The execution time of multiplier: shifter: adder: not is
about 12: 6: 4: 1. The supply voltage of critical PE (multi-
plier) is setting to the Vppy while other PEs (shifter, adder,
not) can adjust to different supply voltage accordingly. A
lower voltage means a longer execution time. We set the
Vppu as 1V and accept 1V:0.9V:0.7V:0.5V as minimum
permissible supply voltage Vppy, of each operand for con-
venient. For example, if we apply 0.6V to adder, the execu-
tion time of adder is definitely longer than 12, which violate
the time constraints.

Power is proportional to square of voltage. We use the
sum of all the PE’s square of voltage to represent the power
for illustrating the idea. In Fig.3 a, four PEs of first layer
are all assigned to not operands, the second layer are mul-
tiplier and adder. Using two granularity control of voltage,
global-level and stage-level, we calculate power consump-
tion reduction ratio respectively.

We first apply the global granularity voltage control. In
this case, there has only one fixed Vppy for all PEs. If we
set 0.7V as the Vpp, then all PEs except the multiplier can
use the Vpp. If we set 0.5V as the Vpp, only the first layer
can use the lower voltage because the adder would violate
time constraints. Then we appeal to stage-level granularity
voltage control. Obviously the Vpp of first layer is 0.5V
while the second layer is 0.7V. The formulations are as fol-
lows and we can tell that the stage-level is more efficient. In
this case, the power reduces by (4.43 -3.47)/4.43 = 21.6%.
Formulations are as follows:

min(0.72 x4 + 0.7 x 3+ 12,0.5° x4 + 1> x 4) =
443
0.52x4+0.7*>x3+ 12 =347

Secondly, we demonstrate a sample in Fig. 3 b to prove
that different Free Node Arrangement could deduce great
power consumption difference under equal /I scheduler. In
this case, we always apply the stage-level granularity volt-
age control. Each stage has only two supply voltage, the
Vppu = 1V and its unique Vppr. There is no possible to
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have two VppLs.

In Fig.3b, a 5 operands DFG with two free nodes
can achieve 3 different mapping patterns all with the same
1l = 2. We can calculate the power cost left to right, top to
bottom using above simplified method and represent them
as follows. Right bottom is the best one and it reduces the
power by (2.96-2.48)/2.96 = 16.2% compared to the worst
choice.

(12 +0.5%) + min(12 x 2 + 0.5%,0.7> x 3) = 2.72
12 +min(12 x 2 + 0.5% X 2,0.7> x 4) = 2.96
(1> +0.52%x2)+0.7* x2 =248

We can get a hint that different mapping patterns with
equal /I can have different optimal Vpp, pairs hence can
generate dramatic power consumption difference. How-
ever, Graph Minor focuses only on how to reduce the /I,
neglecting dramatic power consumption difference between
two equal /I schedules with different patterns. We improve
Graph Minor by adding cost function concerning power
consumption and node arrangement guide. We once tried
three different granularities:

1) Global granularity voltage optimization method. It’s
a direct transplantation from Zhu’s Dual-Vpp simulation
method to loop mapping. Though it can reduce the power
reduction, it does not fully utilize the feature of loop map-
ping application.

ii) Appealing to stage-level granularity voltage con-
trol. We find that each stage of kernel usually has different
operands distribution hence can has unique optimal Vppp
rather than the global equal Vppy, in Zhu’s brief. In Fig. 3,
we have an insight that this modification is powerful. We
have reasons to believe that this further considering would
reduce power consumption. Though more compilation time
is the cost, result shows the cost is acceptable.

iii) For logical completeness and with the ii) method
performance inspire, we hope to take full use of the flexi-
bility. We had a trial on assigning unique optimal Vppr, to
each PE according to its own operand types. But we quickly
abandon this expansion for its unaffordable additional power
cost of Level Shifter for transmitting signals among diversi-
fied VDDs, which counteracts the potential power income
as our experiments shows. Thus, we accept the method ii)
for its higher efficiency at the cost of a tolerated additional
compilation time.

4. Implementation

This section details math formulations of estimating the op-
timal Vpp, and describes how to wrap them into a cost func-
tion by which we can improve original pruning constraints
of Minor Graph. We should export a datasheet of feasible re-
gion of Vppy, variation of ALU, Interconnect, Level Shifter
through experiment. Then we provide a high-level view of
algorithm and a detailed ReMinor function.
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4.1 Optimal Vppr, Estimation

2
P= Zi[m) +Pi(i) x (V\;([:H) * PLsﬁ)] (1
Da(i) + Di(i) X u(i, Vppr) < Dc )
u(i, Vopr) = 20 3)
% (Vppr)
Vi) € {VbpL, Vpph) 4)
i € PEs x PEs (5)

Pa, Py, and P g are the power of the ALU, interconnect and
level shifter. Dy is the delay of the ALU in each PE. Dy is
the delay of interconnect. D¢ is the critical path delay (e.g.
multiplier). u(i, Vppr) is the delay which is a function of
voltage variation. V(i) is the supply voltage of the intercon-
nect. The number i represent individual PE.

The whole execution time is affected by the voltage
variation. However, power consumption of ALU and level
shifter can be seen as constant in various voltage, thus above
equations can be simplified accordingly.

We pack up the whole equations to a power cost func-
tion PV by which we can calculate the optimal Vpp; for
each stage of kernel if we set our goal to make a minimum
P in Eq.(1). If we stop our exploration and are satisfied
with the combination between Graph Minor and Variable
Dual-Vpp, we are still going to reduce power consump-
tion sharply. In this situation, we firstly apply Graph Minor
method to get a valid scheduler and appeal to the PV to cal-
culate the optimal Vppy.. After that we modify the scheduler
by writing the Vpp, information to our // different config-
urations. Experiment shows the average reduction ratio is
22.2%. We want to incorporate them into an intact method
and utilize the full flexibility, so we develop Revised Graph
Minor function as follows.

4.2 High-Level View of Algorithm

Mapping loop kernel onto CGRA is equivalent to finding a
valid graph M, which is a subgraph of the MRRG, such that
the original DFG can be obtained through edge contractions
from M.

In the preprocessing stage, ReMinor changes input
DFG, denoted with H, to satisfy the necessary mapping con-
ditions such as outdegree constraints and level constraints
(line 2, line4). Then it calculates the ideal MII (minimum
II) by existing solution introduced by traditional modulo
scheduling of VLIW processor (line 5). For efficient map-
ping, it chooses an appropriate order of nodes of H. We
could map the DFG much quickly and efficiently with the
help of this ordering (line 6). Then it fulfills the mapping
process in the while loop. An SRG (schedule and route
graph), which contains the scheduling and routing informa-
tion, is created from MRRG corresponding to the CGRA
features. The height of SRG is equal to our testing /I, which
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Algorithm1  Revised Graph Minor Mapping Algorithm

1

2 Hp, « Constraintp,cqegree(H);

3 H, « Constraintygance(Hp):

4: Hy, « szstmint,‘eve,(Hp);

5: I « Max(resMIl,recMII);

6 list « Orderfng(Hp):

7 while mapping is not found do

8 Cy < Creat_ MRRG(C,II);

9 if ReMinor(Hp, Cyy, M) then

10: Return(M)
11: elsell < 11+1
12: end if

13: end while

14: End

is also supposed to be the number of configurations of a suc-
cessful scheduler (line 8). In the next stage, we attempt to
find a valid mapping through Graph Minor Test, which is
denoted as function ReMinor(H, C;; M). The graph M is
defined as our final successful mapping pattern graph (line
10). If the H, is the minor of C;;, the DFG can be mapped
with the current initiation interval II. Applying Graph Minor
Theory, we know the H), is a minor of Cy; if there is a graph
M which is subgraph of Cy;. After all the attempts, we ei-
ther return a successful mapping graph M or increase /I to
initial a new attempt (line 9-11). At last, we get a success-
ful mapping or prove that there is no valid mapping for this
DFG.

Chen’s core program takes validity into account only,
where all the possible mapping between DFG and MRRG
are executed in Minor(H,Cj;, M); thus this process does
not omit some invalid mapping choices for there is no
preprocessing technology. Obviously, the searching space
is very large, which is exponential to the number of
nodes of DFG. For reality application, we should reduce
the searching space by our preprocessing constraints and
some pruning constraints. In addition to the core testing,
ReMinor(H, C;; M) capsule some heuristics which is de-
signed to accelerate the mapping process. These heuristics
avoids further attempts if it foresees this mapping is sup-
posed to be failed. Now we introduce our preprocessing
constraints and core pruning constraints which are carefully
designed and added into Chen’s original algorithm.

4.2.1 Degree and Level Number Constraints

Chen’s original algorithm does offer a degree constraint
checker but he neglects to fix some topology constraints of
the DFG. Firstly, the out-degree of every operation must be
less than the out-degree of PEs in the MRRG. Without this
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constraint, a feasible mapping cannot be found. A proper
solution to fix the problem might be the re-computation
mentioned in EPIMap. Secondly, the number of nodes in
each level of DFG must be less than the number of PEs in
CGRA (non-time extended). If the number of nodes in a
level exceeds the capacity of CGRA, we need to move the
exceeded ones to previous or next levels during our mapping
tests, which would consume too much time. It is wise if we
satisfy the level number constraints using re-computation
technique before the mapping. Graph H in Chen’s algorithm
is as exactly the same graph as DFG, while H,, in ours is an
epimorphic version of original DFG.

4.2.2 Balance Constraints

Balanced DFG in ReMinor obtained through routing is little
different from that in EPIMap. In EPIMap, the route PE can-
not be shared with two different edges, while route sharing
is the biggest feature in Graph Minor.

As shown in Fig. 4, the arc e2 is not balanced because
the node opl (scheduled at cycle 0) and op3 (scheduled at
cycle 2) is mapped on CGRA where op3 cannot receive the
data-out from op 1 if there is no replica of opI in cycle 1. The
edge e3 is the same as e2. In order to get valid mapping,
we must make the original DFG balanced and execute the
revised DFG as shown in Fig. 4-d. There is no route sharing.

Chen’s original Minor Mapping doesn’t introduce bal-
ance constraints. There is a function called expand() which
would replicate opl in (FUI1, cycle 1) and (FU3, cycle2)
when it finds all the attempts have failed. The final pattern
is shown in Fig. 4-d.

However, the function expand() is time consuming. In-
spired by balance technology of EPIMap, we add balance
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constraints to Graph Minor. In addition, the number of
replicate PEs is smaller than that in EPIMap with the help
of shared routes feature of Graph Minor. Revised DFG is
shown as the new DFG in Fig. 4-d.

Beware of the difference between the two balance con-
straints, the revision in EPIMap is necessary to obtain a
valid schedule while that of ReMinor is just an acceleration
Strategy.

4.2.3 DFG Node Ordering

The nodes along the critical path have higher priority be-
cause they appear earlier than others. If this critical path
cannot be mapped successful under current I value, we can
abort immediately without wasting time and move on to the
next /1. A node v can be mapped only when at least one of
its direct predecessor or successor has been mapped.

Ordering process can benefit from re-computation or
routing. Some DFG cases, which fail to map after all the
iterative attempting, can be reshaped through replicating
some nodes in critical path such that we can get a success-
ful mapping. In these situations, the /ist should be updated
according to the details of re-computation or routing.

However, we dislike replicate of nodes in critical path
because it may cost large extra energy consumption, which
is contrary to our goal of minimizing power consumption.
So we do not use this technique until we fail using normal
critical path order. We never update /ist in while loops.

We have no choice but to do re-computation to get a
valid mapping in the former case, while we might successful
map our DFG to CGRA without updating critical path order.
Hence the cost of re-computation in degree constraints is a
necessity which we much bear.

4.2.4 Attribute and Other Constraints

In addition to describe the functionality of specified PE, for
example, memory-only, multiply-only or omnipotent except
memory function, we must focus on how to calculate power
consumption of different Vpp. Thus we add Vpp-Execution
Time relationship, which is exported from our simulation
experiment, to our attribute table. Only after this modify-
ing can we incorporate power estimation into the placement
and routing process. Hence the meanings of available re-
sources are extended from concerning the functionality only
to both the power consumption and functionality. The data
dependence and timing constraints are satisfied as the origi-
nal algorithm suggests.

If we map a path r, from node p to node n, of graph
H to a path R of graph M, we must guarantee the path de-
lay of R is no smaller than that of r. If node n does not
have any mapped direct successor, the corresponding node
sets in graph M can safely be set to one single node. Other-
wise, the corresponding nodes are more than one in which
the additional nodes are used as route function to ensure data
dependence and timing constraints.
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Algorithm2  ReMinor(H,,Cy,M)

1: Begin
2 if no unmapped node in Hy then

3 if return success then

4 PowerCost < PV(M)

5: PowerCost — update all the valid pattern saved in §
6 return the smallest one

7 else if return fail then

8 Replicate and reordering critical path

9: Reattempt until 1Iis larger than critical length

10: end if

11: else the nextnode Bin Hy

12: P(B) « all mapped direct predecessors of B
13: S(B) « all mapped direct successors of p
14: @(B) — min_map( B,P,S)

15: @(B) — Pred(w(B)

16: if two euqal lenghts of path then

17: @(B) « randomly chose one

18: 8 « the unchosen pattern of B
19: 8 — Pred(0)

20: else if recomputation exist then

21: @(B) — chose recomputation
22: 6 « the original pattern of
23: 8 « Pred(6)

24: end if

25: M «MUo(P)

26: if Minm-(Hp,C][, M) == 1then sucess
27: else ¢(p) — expand_map( B,P,S) goto min_map
28: end if

29: end if

30: End

4.3 Function ReMinor(H,, Cy, M)

Original Graph Minor Framework concerns /I only and ig-
nores the pattern difference. Hence the output is only one
schedule though there may be multiple valid patterns with
the same /1. Our main purpose is to find the minimum
power one from these valid patterns, for they may have
quite different power consumption. The biggest evolution of
ReMinor is to generate all the valid patterns with smallest I/
and choose the minimum power one (line3-6). To obtain all
the patterns, we should save the breakpoint information of
mapping when we face two choices with equal time and pos-
sible different power consumption simultaneous. For prun-
ing the search space, we also transplant the prediction tech-
nology of GMinor to look ahead in future and quickly define
if the current alternative can be extended to successful map-
ping. It is abandoned if the Pred function returns false (line
16-23). Pred also find its use in formal plan (line 15).

The reordering process (line7-9) has been discussed in
4.2.3. The third contribution is the PV function and re-
computation technology.

The lesser number of nodes and edges, the smaller exe-
cution time of mapped DFG. For reducing power consump-
tion without decreasing performance, we adopt min_map
heuristic by which we find minimal mapping pattern,
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containing minimal number of nodes and satisfying all the
constraints, from each original edge to the corresponding
edge in M. Then we do Graph Minor check in function
Minor(Hp, Cy, M), which ensures the shared routes feature
and the validity of the mapping. All the direct predeces-
sors/successors of v are connected with @(v) in a shortest
path. expand is designed to solve the failure of min_map
where we add one extra node to fulfill the routing path.

While old method always chose routing in min_map
and expand, re-computation introduced in ours will be use-
ful to reduce power consumption without affecting perfor-
mance. Firstly, the length of mapped path of re-computation
is always shorter than that of routing, which will meet our
minimal mapping constraints. Considering node b to node
fin Fig. 5, the length of shortest path using re-computation
is 1, while that number of routing is 2. Secondly, we can
achieve power reduction using re-computation. Additional
number of PEs, which satisfies the necessary constraints,
is exactly the same in both re-computation and routing.
Though additional PEs in routing consume less energy for
they need not to execute again, re-computation can reduce
the power consumption as a whole.

For example, a is adder operation while others are not
operations in Fig.5. The minimum permissible Vppr is
0.7V and 0.5V respectively in our assumption. PE for route
only can be assigned to 0.5V because the delay is just like
that of not operation. Observing the kernel pattern differ-
ence between the two, only node f, e can have different op-
timal minimum Vppy.

In re-computation all the nodes can execute in their
minimum permissible Vppy , the power consumption: 0.7+
0.5 X 6 = 1.99. In routing, node f, e execute in 0.7V other
than its minimum permissible Vppy, because in first layer:
0.5°x2+1=1.5>0.7>x3 = 1.47. Power consumption of
whole kernel is: 0.7% x 3 + 0.52 X 4 = 2.47. The reduction
ratio is (2.47 — 1.99)/2.47 = 19.4%.
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5. Results

Our experiment platform is assumed to be: 4 x 4 PEA, 9-
kbit data FIFO with 256 bits width, 160-kB configuration
memories whose data width is 1024bits. It is synthesized
at I00MHz with Synopsys Design Compiler and TSMC 65-
nm library. The execution time of different operations is
exported through static timing analysis. The normalized
ALU delays under different configurations, i.e. different op-
erations, are given in Table 1. The permissible minimum
supply voltage of different operations is shown in Table 2
which is obtained through simulation method. The data of
both tables is critical to cost function PV.

We select nine loops from benchmark programs in
MiBench and SPEC2006 whose characteristics are listed in
Table 3. To inherit and compare with the former research
contributions, we assume our 4 x 4 PEA is homogeneous,
and PEs is capable of handling fixed-point and logical oper-
ations in any type.

5.1 Results of Three ReMinors

We find that the stage-level is efficient than other two gran-
ularity. The average reduction ratio of three is shown in the
rightmost column of Fig. 6 where the ratios of global, stage
and pe-level are 17.4%, 27.6% and 4.5% respectively. There
is a (27.6 — 17.4)/17.4 = 58.6% upgrade when we utilize
stage-level instead of previous global optimized Vppy .

In most test benches, apart from wavelet and sobel, the

Table1 Normalized delay.

OP code  Delay OP code Delay
* 0.74 >/>= 0.60
+/- 0.65 </<= 0.53
= 0.55 1= 0.57
<< 0.65 load/store 1.00
and/or d 0.38 and/or_s 0.47
not d 0.12 not s 0.20
Xor 0.50 register 0.10

Table2  Minimum permissible supply voltage.
OP code  Delay OP code Delay
* 1.00 >/>= 0.85
+- 0.85 </<= 0.75
= 0.80 I= 0.80
<< 0.85 load/store 1.00
and/or d  0.60 and/or_s 0.70
not_d 0.55 not_s 0.50
Xor 0.70 register 0.50
Table3  Characteristics.
Benchmark #ops #MEM tedges
wavelet 12 4 6
scissor 12 4 13
osmesa 16 9 17
sor 17 6 11
lowpass 23 9 34
sobel 27 7 34
fft 40 20 42
tiff2bw 42 20 50
Idctflt 87 25 117
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stage-level performs much better than global-level. Differ-
ences in the two exceptional benches are negligible, so we
can safely expect that the stage-level is not only a wiser
choice in average sense but also a reliable method to vari-
ous applications.

Level-Shifter and fine-granularity control hardware
counteract income for its managing cost, especially in the
situation of large DFG, such as fft, idctfft whose nodes are
more than 40, where we gain nothing from this fine gran-
ularity. PE-level is unacceptable as the result shows for its
additional overhead.

We always choose the stage-level as the results proves.

5.2 Comparison between ReMinors and Direct

Firstly, we compare the direct method with the global granu-
larity ReMinor. Depicted in Chapter 4, the direct method is a
simple combination between Graph Minor and voltage con-
trol where we directly accommodate the supply voltage of
configurations obtained by Graph Minor Mapping Process.
There is no guide information from PV function. The ra-
tios of direct and global are 17.4% and 22.2% respectively.
Though wavelet, osmesa and sobel is more suitable of global
ReMinor, the gain compared to direct is negligible and the
ratios of other cases in direct method are much higher than
that of global ReMinor.

Secondly, the direct method is revised to stage-level
ReMinor and we elevate the ratio from 22.2% to 27.6% on
average. And the stage-level ReMinor is always efficient
than direct method for all the test benches due to the essence
of ReMinor algorithm.

5.3 Reasonable Compilation Time
EPIMap and GMinor [11] have been well accepted as the
best known efficient accelerating strategies, therefore the

compilation time of both methods is reasonable which en-
ables us to compare the compilation of ReMinor with that
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Fig.6  Reduction ratios of ReMinor.
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of EPIMap and GMinor to check out whether the compila-
tion of ReMinor is acceptable.

As shown in Fig. 8, the average compilation time of
GMinor is 2.49 sec, which is slightly smaller than the 3.4
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sec reported in [11] because of the different test benches
selected, while that of EPIMap is 32.4 sec, which is con-
sistent with the timing reported in [7]. The huge differ-
ence between the two number is that EPIMap has to repeat
MCS kernel computation when the mapping fails, i.e. has
to endure many iterative steps. ReMinor is derived from
GMinor by adding some constraints and iterative process-
ing, therefore the compilation time is much more than that of
GMinor. The number is 29.1 sec shown in Fig. 8. The addi-
tional compilation time is the cost of pattern save and selec-
tion for power reducing.

Furthermore, we extract 50 random DFGs with nodes
distributed in the range (0, 100] to check out the compila-
tion time under the three methods. The result of GMinor,
EPIMap and ReMinor is 4.3 sec, 52.6 sec and 47.3 sec re-
spectively.

Since the compilation of ReMinor is smaller than that
of EPIMap, we testify that the whole compilation time of
ReMinor is acceptable.

6. Conclusion

Utilizing slack time through Variable Dual-Vpp, architecture
to reduce power consumption is not only depended on the
utility ratio of the idle time but also affected by the addi-
tional cost of hardware and scheduling. By trade-off, stage-
level granularity voltage control is chosen to combine with
graph minor loop mapping method. If we only simply do the
Graph Minor Mapping and then apply stage-level voltage
control in each stage of kernel, we still can get an average
power reduction ratio by 22.2%. In this brief, we explore
further and finally formulate Revised Graph Minor Map-
ping Algorithm which incorporates stage-level voltage con-
trol to loop mapping domain. Our method reduces power
consumption by 27.6% on average without compromising
performance.
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