
288
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015

PAPER Special Section on Reconfigurable Systems

Network-Level FPGA Acceleration of Low Latency Market Data
Feed Arbitration

Stewart DENHOLM†, Nonmember, Hiroaki INOUE††, Takashi TAKENAKA††, Members, Tobias BECKER†a),
and Wayne LUK†, Nonmembers

SUMMARY Financial exchanges provide market data feeds to update
their members about changes in the market. Feed messages are often used
in time-critical automated trading applications, and two identical feeds (A
and B feeds) are provided in order to reduce message loss. A key chal-
lenge is to support A/B line arbitration efficiently to compensate for miss-
ing packets, while offering flexibility for various operational modes such as
prioritising for low latency or for high data reliability. This paper presents
a reconfigurable acceleration approach for A/B arbitration operating at the
network level, capable of supporting any messaging protocol. Two modes
of operation are provided simultaneously: one prioritising low latency, and
one prioritising high reliability with three dynamically configurable win-
dowing methods. We also present a model for message feed processing
latencies that is useful for evaluating scalability in future applications. We
outline a new low latency, high throughput architecture and demonstrate a
cycle-accurate testing framework to measure the actual latency of packets
within the FPGA. We implement and compare the performance of the NAS-
DAQ TotalView-ITCH, OPRA and ARCA market data feed protocols using
a Xilinx Virtex-6 FPGA. For high reliability messages we achieve latencies
of 42ns for TotalView-ITCH and 36.75ns for OPRA and ARCA. 6ns and
5.25ns are obtained for low latency messages. The most resource inten-
sive protocol, TotalView-ITCH, is also implemented in a Xilinx Virtex-
5 FPGA within a network interface card; it is used to validate our ap-
proach with real market data. We offer latencies 10 times lower than an
FPGA-based commercial design and 4.1 times lower than the hardware-
accelerated IBM PowerEN processor, with throughputs more than double
the required 10Gbps line rate.
key words: data feed arbitration, acceleration, FPGA, low latency, finance

1. Introduction

Financial exchanges send out market information in form of
market data feeds. These data feeds describe market events
such as available and completed trades. Financial institu-
tions can subscribe to these data feeds and utilise the in-
formation in a number of applications: It is possible to de-
termine the current state of the market and the institution’s
risk, to search for time-critical arbitrage opportunities, or to
trade automatically with algorithmic trading platforms. In
the latter two examples, time-critical decisions have to be
made based on the input data, often by analysing patterns
within the data. This decision making is a critical element
for electronic trading and hence, it is vital messages are re-
ceived and presented in the correct order. Failure to do so

Manuscript received May 8, 2014.
Manuscript revised September 13, 2014.
Manuscript publicized November 19, 2014.
†The authors are with Imperial College London, UK.
††The authors are with NEC Corporation, Kawasaki-shi, 211–

8666 Japan.
a) E-mail: tbecker@doc.ic.ac.uk

DOI: 10.1587/transinf.2014RCP0011

will result in the loss of profit-generating opportunities, pro-
vide competitors with an advantage, and create a false image
of the current state of the market, increasing risk.

As message feeds are typically transmitted over Eth-
ernet using UDP, they offer no guarantee that the messages
will be received or arrive in order. Ever increasing line rates
allow for lower latency transmissions, but little work is be-
ing done to tackle messages that are lost in transmission. Fi-
nancial exchanges address this issue by providing redundant
networks that transmit two identical message feeds from the
exchange, referred to as A and B feeds. Financial institu-
tions traditionally arbitrate between the two feeds in soft-
ware to mitigate the effects of lost packets, and provide a
single message stream for processing by downstream finan-
cial applications. However, general-purpose architectures of
CPU systems separate data acquisition and processing, lead-
ing to latency penalties when processing external data.

The pipelined and parallel nature of A/B arbitration
provides an opportunity for hardware acceleration of time-
critical processing before the resulting data is passed to the
CPU. While FPGAs are capable of performing high band-
width, low latency processing, achieving this requires care-
ful consideration of design choices, especially when deal-
ing with the data-path widths necessary to support the ever-
increasing demands on latency and throughput. Resource
choice, placement and, often times, duplication play a piv-
otal role in meeting these constraints.

In this work we present an architecture for low latency
A/B arbitration, supporting all market data feed protocols.
We provide a low latency and a high reliability mode, and
support dynamically configurable windowing methods so
that downstream applications can alter the arbitrator to re-
spond to changing requirements in real time. The contribu-
tions of our work are:

• A new hardware accelerated, low latency A/B line arbi-
trator which runs two packet windowing modes simul-
taneously. It supports three dynamic windowing meth-
ods, any market data protocol, independent memory al-
location per input, and configurable data-path widths
(Sect. 3).
• Performance models and design considerations neces-

sary to perform low latency processing of data from
multiple inputs. This includes: critical path analysis,
guaranteeing deterministic memory access, and cre-
ation of a low latency testing framework (Sects. 4 and

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers



DENHOLM et al.: NETWORK-LEVEL FPGA ACCELERATION OF LOW LATENCY MARKET DATA FEED ARBITRATION
289

5).
• Implementation and evaluation of A/B line arbitration

using the NASDAQ TotalView-ITCH [1], OPRA [2]
and ARCA [3] market data feed protocols in a Xilinx
Virtex-6 FPGA. TotalView-ITCH is also implemented
on a Xilinx Virtex-5 FPGA within a network inter-
face card. We use our new low latency testing frame-
work and real market data to measure its performance
(Sects. 6 and 7).

2. Background and Motivation

Reliable communication protocols such as TCP rely on re-
transmission of lost packets to provide a reliable message
stream, but retransmissions lead to higher latencies and de-
graded throughput. As an alternative, one can achieve relia-
bility through duplicating packets and sending them through
disjoint communication channels. Multiple path commu-
nication with duplicated packets is an established method
to provide reliable communication for time-critical applica-
tions [4]. It has also been demonstrated that dual path com-
munication with FPGA-based duplication and merging can
maintain higher bandwidths with lower retransmission rates
than a single path solution [5]. However, the focus in pre-
vious work on multi-path communication is usually on re-
ducing retransmission rates, maintaining high bandwidths,
or providing protection against complete link failure.

A/B arbitration is a form multi-path communication
that avoids retransmission and is therefore not fully reliable.
Retransmission of packets would result in unacceptable la-
tencies where time-sensitive trading opportunities will be
lost. Instead, the goal is usually to balance minimal packet
losses and low communication latencies. A/B line arbitra-
tion aims to compensate for missing packets within an ac-
ceptable time frame and allowing each application to set and
adjust this time frame themselves is a key factor in its suc-
cessful operation and our proposed design.

The importance of A/B arbitration will continue to
grow in the future as line rates increase and financial ex-
changes continue to process an ever growing number of
messages. Since exchanges send multiple messages per
packet using multicast UDP, any error during transmission
will result in the loss of all packet messages. More pack-
ets processed every second means more messages bundled
together into each packet, increasing its informational value
and the chance that it will contain a bit error and be lost.

NASDAQ TotalView-ITCH 4.1, OPRA and ARCA are
market data feed protocols that provide market informa-
tion. TotalView ITCH is a data-feed provided by NAS-
DAQ and delivers a range of market data in variable length
messages [1]. The messages include order book informa-
tion reflecting the interest of buyers and sellers in a par-
ticular financial instrument, trade messages, administrative
messages such as paused trading on a security, and event
controls such as start and end of the day. The NYSE Arca
data feed contains similar market information on depth of

book, trades, order imbalance data, and security status mes-
sages [3] but the technical implementation and packet size
differ from TotalView-ITCH. The Options Price Reporting
Authority (OPRA) provides information about transactions
in the options markets [2]. Information such as last sale in-
formation and current options quotations is featured in a
data feed of variable length packets that can contain mul-
tiple messages.

Morris [6] uses a Celoxica board to process financial
messages, achieving a 3.5M messages per second through-
put and hardware latency of 4μs. Their trading platform is
one of the few including line arbitration, but no details of its
performance are given. It uses a single, simple windowing
system similar to the high reliability count mode in this work
and only supports the OPRA FAST format. The windowing
thresholds are not discussed and cannot be changed.

Most stand-alone A/B arbitrators are commercial and
their implementation details are usually not presented. They
tend to operate within a network interface card (NIC) and
communicate with the host via PCI Express.

One such arbitrator from Solarflare [7] uses an Altera
Stratix V FPGA. It supports either a low latency mode or
a maximum reliability mode; the latter being similar to the
high reliability time & count mode in this work. Multiple
message protocols are supported, but no processing latency
figures are available. Another platform from Enyx [8], also
using the Altera Stratix V, does not give any details regard-
ing the windowing method used or possible configuration
options. It is non-deterministic, with packet processing la-
tencies ranging from 1050 − 3080ns based on 1500 byte
packets. Some protocols, like TotalView-ITCH 4.1, specify
9000 byte packets must be supported, so it is unclear how
this latency will scale with larger packets.

Recently, a number of FPGA based feed processors
have been proposed. The majority do not mention A/B
line arbitration, such as the OPRA FAST feed decoder from
Leber [9], and the NASDAQ data feed handler by Pottathu-
parambil [10]. Other works describe, but do not implement,
arbitration, like the high frequency trading IP library from
Lockwood [11]. This is a strange omission since line arbi-
tration is an integral part of message feed processing as it
increases the amount of available information and actively
prevents message loss.

Platforms incorporating some aspects of feed process-
ing and trading within an FPGA are limited in the range of
functions they provide, making it difficult to customise de-
sired features. The flexibility to support applications with
different data requirements and different time scales is not
present in past works. Single trading platforms are therefore
unlikely to be deployed within financial organisations unless
the design features exactly meet the needs of the organisa-
tion, including the market data feed protocol used.

In our previous work [12] we looked at fitting multi-
ple basic A/B line arbitrators into a single FPGA, but with
only a single arbitration mode we limited the range of down-
stream applications we could support. This is addressed in
this work with the use of three high reliability modes, one



290
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015

of which can be output simultaneously with a new low la-
tency focused windowing method. We also lacked the low
latency architectures and testing methodologies necessary to
achieve the lowest possible latencies, remedied here by the
creation of a new low latency design and testing framework.

3. Flexible A/B Line Arbitration

Messages from financial exchanges are transmitted via iden-
tical A and B data streams. Due to network infrastructure
differences, or errors during transmission, messages may
fail to arrive, or may be reordered. By subscribing to both
streams, members reduce the likelihood of message loss, but
must now merge and order the two streams. This is facili-
tated by unique identifiers within each message, typically
taking the form of an incrementing sequence number.

Uncertainty regarding the presence and order of mes-
sages on the A and B streams give rise to four possibilities.
A message may: (1) arrive on both streams; (2) be missing
from one stream; (3) be missing from both streams; or (4)
arrive out-of-order. For the first and second cases we should
pass through the earliest message we encounter, and have no
expectation of seeing it again. However, the third and fourth
cases illustrate the need for an expectation regarding future
messages. We require a centralised system to monitor the
streams and share state information

It is important to distinguish between market data mes-
sages and packets. Exchanges send UDP packets containing
one or more messages. This can be viewed as a continuous
block of messages, all correctly ordered by sequence num-
ber, with no missing messages. When a packet is missing
we are in fact dealing with a block of missing messages.

This means packets, rather than messages, are the
smallest unit of data we process and store. In the case
where market data protocols do not issue packet numbers—
such as OPRA, where sequence numbers are assigned to
messages—we use the sequence number of the first mes-
sage in the packet to identify that packet. The next expected
packet is then:

S Npkt+1 = S Npkt + Mpkt (1)

where S Npkt is the sequence number of the current packet
and Mpkt is the number of messages it contains.

Figure 1 gives our design layout, showing the high re-
liability and low latency modes. The windowing module
supports three high reliability modes of operation, for which
the windowing thresholds can be set at runtime. An operator
or monitoring function can adjust these thresholds to meet
application or data feed requirements.

3.1 High Reliability Modes

When we encounter a packet with a sequence number larger
than the next expected sequence number, it has arrived out of
order. The missing packet, or packets, may be late, or never
arrive. A high reliability mode stores these early packets and
waits for the missing packets, stalling the output.

Fig. 1 The layout of our A/B line arbitration design.

Fig. 2 High reliability time.

We decide how long to wait for missing packets using a
windowing system, based on either: the amount of time we
have stalled the output, the number of messages delayed,
or a hybrid of both time and message count. Within this
window we store new packets while waiting for the missing
packets. Whatever system used, we must ensure not to delay
a valid, expected packet as this is the most likely case.

Count-based windowing is used by [6], time & count
by [7], while [8] does not detail its windowing approach.
This is the first work to support all three methods provide
low latency, application-specific parametrisation, and out-
put a high reliability and low latency stream simultaneously.
Furthermore, we offer dynamic reconfiguration between the
three windowing modes so that downstream applications
can modify the arbitration method in real time, a feature not
previously available.
High reliability - time: A time-based windowing approach
is good when we want to set a hard limit on possible delays
and define the maximum processing time of packets.

When we delay a packet, P, we assign it a timeout
value, T , the maximum number of clock cycles we will
delay it. T is decremented each clock cycle, and when it
reaches zero we discard any missing packets and output P.
An example with a single input is given in Fig. 2, where
packet P2 is late, but arrives before P3’s timeout reaches
zero and is able to be output. P7, however, is too late, so the
delayed packets P8 and P9 are output, and P7 is discarded.

Assigning the maximum timeout value to a packet then
decrementing it is a more beneficial than incrementing from
zero. The timeout check is then simply a zero equality
check, and the number of remaining cycles may be used to
predict this condition and pre-compute future data values,
such as the expected number of buffered messages in the
next cycle.
High reliability - count: Time-based windowing sets a



DENHOLM et al.: NETWORK-LEVEL FPGA ACCELERATION OF LOW LATENCY MARKET DATA FEED ARBITRATION
291

Fig. 3 High reliability count.

Fig. 4 High reliability time & count.

packet timeout regardless of how many messages it con-
tains. Counting delayed messages—not packets—more
accurately represents processing delay, as the number of
messages per packet varies during the day. This time-
independent approach better matches the pace of incoming
data.

We output a delayed packet when either: the missing
packet or packets arrive, or the number of stored messages
exceeds the maximum-count threshold. Two examples of
this are shown in Fig. 3’s single input example. Packet P3

arrives before we exceed maximum-count = 2 buffered mes-
sages, so P3 and the stored packets P4 and P5 are output.
Packet P7 does not arrive, so when we receive P10 and there
are now more than maximum-count = 2 messages buffered,
we discard P7 and output the stored packets in order.

One issue with count-based windowing occurs at the
end of the day. With no more input packets to process, we
cannot output stored packets. This windowing is used in
[6], but residual packets are not addressed. It is solved in
this work either by use of the hybrid time & count method’s
time limit, or by dynamically altering the maximum-count
threshold.
High reliability - time & count: Combining the time and
count based high modes provides the most robust solution
for processing out-of-order packets. We can utilise the count
threshold’s time-independent ability to follow the incoming
packet rate as it fluctuates during the day, whilst still allow-
ing an upper limit on delay times.

In Fig. 4’s single input example, both the time and
count windowing thresholds are used to determine if a stored
packet should be output. Packet P4 takes too long to ar-
rive, therefore exceeding P5’s timeout and resulting in P4

being discarded. Later, P8 is also late, but whilst waiting
for P9’s timeout, the number of buffered messages exceeds
maximum-count = 2, and P8 is discarded.

3.2 Low Latency Mode

The singular arbitration mode in our base design [12] lacked
the ability to reduce arbitration to its simplest, fastest form:
outputting a stream of unique, ordered packets. We present
it in this work as the low latency mode.

We treat an input packet as valid based solely on
whether its sequence number is larger than or equal to the
next expected sequence number. We do not wait for miss-
ing packets and hence, do not require resources for packet
storage while also minimising transmission latencies.

The Ethernet, IP and UDP packet headers pose a prob-
lem when trying to minimise the arbitration latency. The
packet’s sequence number is only visible after we process
these headers, which may take a number of cycles. We solve
this by assuming a packet is valid and immediately output
it. When we encounter the sequence number and it is not
valid—i.e., less than the next expected sequence number—
we register an output error, causing the packet to be dis-
carded.

Similarly, when packets arrive on both input streams
simultaneously, we must make the choice of which packet
we should output without any information on either packet’s
contents. There is no method that can guarantee a priori
which stream to select, so we instead select the last stream
on which we encountered a valid packet. This differs from
the previous high reliability modes where we have addi-
tional cycles available to process and compare the sequence
number.

With these simple operations we reduce arbitration to
a single cycle. The single arbitration mode in [12] took 7
cycles meaning, with our new arbitrator design, applications
can receive an arbitrated stream of packets 7 times faster
if they are able to accommodate missing packets. Also, as
it does not require many resources, we can output the low
latency mode simultaneously with our high reliability mode.

3.3 Network-Level Operation

By choosing to arbitrate between message streams at the
network layer we remove the need for each downstream ap-
plication to arbitrate between the streams themselves, elim-
inating this processing redundancy. However, when pro-
cessing at the network-level, rather than within a computing
node, we must take an active role in routing non-market data
packets. Even within a dedicated market data feed network,
routers and NICs will transmit information requests to other
nodes. We must reserve FPGA resources to route these non-
market feed packets. Network identification packets are typ-
ically only hundreds of bits, requiring little storage space,
and are processed at the lowest possible priority to minimise
interference with market packets.

Past works [6], [7] and [8] focus on processing market
data feeds on FPGAs situated within computing nodes rather
than at the network-level. Data is then passed to the CPU or
GPU via low latency DMA transfers. This scales poorly
if further nodes are needed as each will need an FPGA for
data feed processing. Our packet-based, network-level arbi-
trator consolidates the node-independent arbitration opera-
tions. Only the low latency DMA transfers need be imple-
mented within nodes to create a newly scalable system with
the same functionality as past works.



292
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015

3.4 Customisation and Extensibility

As our arbitrator deals with the initial stages of storing, pro-
cessing and identifying market feed packets and messages,
it is a simple matter to extend our system to provide addi-
tional functionality within the FPGA. We support the fol-
lowing customisations:

The windowing threshold values can be reconfigured
at run time, as discussed above. The user, or a monitoring
function is able to tailor the time and number of messages
delayed, to meet both the changing needs of the market and
downstream applications.

Any physical connection for input and output ports
can be used. Our arbitrator can connect to any commercial
or customised network by translating the connection’s inter-
face, e.g. Ethernet or InfiniBand, to a standard FPGA inter-
face. The arbitrator may also be used within a computing
node, rather than at the network level.

The size and number of packets stored can be config-
ured at compile time, for both market and non-market pack-
ets. The size of the pipeline is adjusted accordingly.

Any market data feed protocol can be adopted, not
just those of TotalView-ITCH, OPRA and ARCA. The
only protocol-specific information required is the maximum
packet size, and the location and bit-width of the sequence
number within the packet.

4. Performance Model

Low latency processing within an FPGA has many difficul-
ties, and the high performance requirements of A/B line ar-
bitration specifically, pose a number of challenges. In this
section we present a performance model of our high perfor-
mance, low latency arbitration approach.

Any decision regarding a new packet is dependent on
its sequence number, and therefore the number of cycles we
must wait to process it. Given the packet byte position where
the sequence number begins, Posseq, its length in bytes,
Lenseq, and the byte width of our data-path, Datawidth, the
number of cycles we must wait to encounter the sequence
number is then:

Cseq = �Posseq + Lenseq − 1

Datawidth
� (2)

The packet processing latency’s lower bound is
achieved when we encounter expected packets. No fur-
ther processing should be needed, but due to the delay from
Eq. (2) we must still begin storing it in memory and then
read it out. The number of cycles for an expected packet is
then:

Cexp = Cseq +Cread (3)

The worst case time delay, Ct, is the number of cycles
we wait when the windowing system delays a packet. This
acts as the upper bound latency. Ct is potentially infinite for

the high reliability count mode, as it is designed to be time-
independent. In practice this only occurs when there are
no further packets to process, and can be resolved via run-
time alteration of the maximum-count threshold. The upper
bound cycle delay is given by:

Cmax = Cexp +Cwrite +Ct (4)

Ct for the time mode is simply the timeout, while for
time & count it is the lower of the time and count delays. In
finding Ct for the count mode we must take into account the
time taken to receive sufficient messages—not packets—to
exceed our maximum-count threshold. This is based on: the
maximum-count value, MC; the maximum number of pack-
ets that can be stored in the buffer, n; the number of cycles
required to find the stored packet with the lowest sequence
number, log2(n); the number of packets per input, per cycle,
λp; the number of messages per packet, λm; and the number
of inputs, I. For the count mode, Ct is then:

Ct = log2(n) +
MC

I × λp × λm
(5)

5. High-Performance Architecture

Achieving fast, low latency processing in our arbitrator re-
quires careful development of the overall hardware archi-
tecture. In this section, we present several architectural con-
siderations to achieve low latency processing of data from
multiple input streams.

5.1 Deterministic, Multiple-Input Memory Access

Storing data in DDR memory is unsuitable for low latency
applications due its high access times. In addition, DDR
memory locations must be refreshed periodically to main-
tain their state, leading to non-deterministic access patterns.
Other memory types, such as Content-Addressable Memory
(CAM) or specialised flash memory, are not widely avail-
able in commercial systems and their access latencies are
still higher than those required by high performance designs.
Internal FPGA memory, such as Block RAMs, are the best
option to ensure fast and predictable access times.

With multiple input sources and a single, centralised
memory within an FPGA, the number of writers to memory
will exceed the available memory ports. In reality, a large
FPGA memory is comprised of many, smaller ones mapped
to any available memory within the FPGA. Many memory
ports are then available to us, but micromanaging memory
on such a scale is undesirable. The problem can be tackled
at a higher, algorithmic level through the use of memory
address generators.

For our multiple input system we create a single logical
memory, providing the address of a free memory location to
the logic for each input. The simplest case of two inputs is
shown in Fig. 5, where the address range of input A covers
the first half of the memory, and input B, the second. When
built, the two memory halves will be independent and so



DENHOLM et al.: NETWORK-LEVEL FPGA ACCELERATION OF LOW LATENCY MARKET DATA FEED ARBITRATION
293

Fig. 5 The address generator automatically splitting a large memory.

Table 1 Meta-data cache contents.

Name Bits Description
Nr. of Data 10 Size of packet/data-path width
Sequence Nr. 64 Packet’s unique sequence number
Cycles Remaining 32 Cycles until this packet times out
Nr. of Messages 16 Total messages in this packet
Final Byte Enable 4 Enable signal for final packet bytes
Packet Being Input 1 Is this packet still being input
Cache Line Free 1 Cache line available or occupied
Total 128

will be mapped close to their respective accessors.
To tackle storage inefficiencies, i.e., when data does not

appear uniformly across all inputs, we must: (1) minimise
data duplicated across inputs; (2) ensure the initial memory
allocation reflects the percentage of total data originating at
each input; and (3) make sure data is removed from each
memory in proportion to that memory’s occupancy.

For (1), we have no duplicated data in memory as we
guarantee packets are globally unique by checking packet
sequence numbers. Given the nature of our duplicated mar-
ket data feeds, (2) is tackled by evenly allocating memory
to each input. Finally, for (3), arbitration provides for a well
defined, ordered removal of packets, for which our packet
windowing methods establish an upper bound.

We select a memory packet to output by finding the
smallest sequence number using a binary search, requiring
log2(n) cycles for n packets. Binary search is realised in
a pipelined data-path that uses Block RAM for storing the
packet numbers. The key comparison is realised with a reg-
ister storing the search key and a comparator. The search
index calculation uses two registers for the upper and lower
search index, an adder and bitshift for the midpoint calcula-
tion, and a comparator. We do not sort packets before writ-
ing to memory as binary insertion takes the same amount of
time, but does not scale well with multiple inputs.

5.2 Optimising Packet Accesses

Now that data access is predictable and can be easily scaled
for multiple writes we must deal with read latency. Block
RAMs require two clock cycles for their data to be available,
making packet comparison in memory very costly, espe-
cially if both packets are stored within a single Block RAM.
A small meta-data cache in registers will allow immediate
access to packet-specific information, reducing routing la-
tency as fewer links to packet memory are required.

The meta-data cache is shown in Table 1, with ex-
ample bit widths for the larger, TotalView-ITCH protocol.
To be effective it must be small, fast and contain all nec-
essary packet information. A cache line is 128 bits wide
and utilises dual-port distributed RAM so it can be written

Fig. 6 The cycle-accurate testing framework.

and read in the same clock cycle. It makes efficient use of
resources as, even for the large TotalView-ITCH protocol,
each cache line fits into a single SLICEM within the FPGA.

5.3 Cycle-Accurate Testing

The difficulty in testing low latency designs is that many of
the corner cases occur within nanosecond time-frames, so it
becomes difficult to arrange packets from multiple feeds to
arrive at the arbitrator at precise times. We therefore create
a testing framework within the FPGA using two wrappers
around our design, as shown in Fig. 6.

The outer, splitter wrapper, takes a packet from one in-
put and mirrors it on the others, either in the current cycle
or delayed one or two cycles. The splitter can increment
or decrement the mirrored sequence number so it appears
as a new packet. The inner, timer wrapper, notes incoming
packet sequence numbers, counts the cycles until it appears
on the output, and writes this latency into the packet header.

The testing framework only requires the packet’s se-
quence number location, and is otherwise application and
protocol independent. We do not interfere with the arbitra-
tor’s operation or affect the critical path as all measurements
are performed outside of the arbitration module.

5.4 Improving Throughput and Latency

Improving the throughput and latency of a design can be
accomplished by widening the data-path or increasing the
clock frequency. A wider data-path requires more resources
and routing at each stage of the design, but means fewer
clock cycles are required to process packets (see Eq. (2)).

The critical path is defined by operations with the
largest combined logic (Tl) and routing (Tr) delays. The
maximum clock frequency is then:

Fmax =
1

Tl + Tr
(6)

Logic delays are reduced by increased parallelism, and
using multi-staged pipelines to spread processing over mul-
tiple cycles. Our log2(n) binary packet searcher and multi-
stage input packet processing are targeted at minimising this
delay.

Routing delays are reduced by using fewer resources,
placing interconnecting resources physically closer to-
gether, and using additional data buffering stages. Routing
delays are harder to reduce and depend heavily on the FPGA



294
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015

utilisation and the design’s interconnections. We tackle this
by separating data processing streams so logic and memory
for each stream are independent and can be placed together.

Our design’s critical path comes from packet stor-
age and sequence number comparisons. Any re-
source/frequency trade-offs to improve throughput and la-
tency must then be made by modifying these design ele-
ments: either storing fewer packets or comparing shorter
sequence numbers.

6. Implementation

We verify our proposed design and low latency architec-
ture by implementing an A/B line arbitrator for each of the
TotalView-ITCH, OPRA and ARCA market data feed pro-
tocols. For each protocol we require knowledge of the max-
imum packet size, the sequence number width and the byte
position of the sequence number in the packet. This is de-
termined by their specifications, and is given in Table 2.

To reduce latency we make use of a wide 128-bit
data-path, double the 64-bit width commonly used—as 64-
bit multiplied by the 156.25MHz reference frequency =
10Gbps. This can negatively affect the routing delay, but
with our low latency architecture we achieve latencies an
order of magnitude lower than [8] while maintaining at least
20Gbps throughput, twice that of the 10Gbps Ethernet line
rate.

We verify and test our design in two ways. First, we
implement an arbitrator for each of our chosen protocols
within a Xilinx Virtex-6 LX365T FPGA on an Alpha Data
ADM-XRC-6T1 card. As our processing rate is greater than
the 10Gbit Ethernet connections used by each protocol, we
transfer data via PCI Express. We configure each arbitra-
tor for their respective protocols by entering the values from
Table 2 into our configuration file. Adopting a new proto-
col in the future requires only that we indicate where the
equivalent fields are located within the new packet format.

Second, we implement our design on a Xilinx Virtex-5
LX330T FPGA within an iD ID-XV5-PE20G network inter-
face card. This card receives a duplicated data feed over two
10Gbit Ethernet connections. The high reliability and low
latency outputs are transmitted to the host via PCI Express,
with the layout given in Fig. 7. We also allow for additional
user logic within the FPGA. The TotalView-ITCH protocol
is used to test our real world design as it is the most resource
and processing intensive, and messages from 9 September
2012 are used to test the system.

OPRA and ARCA operate on top of UDP, while
TotalView-ITCH uses a UDP variant called moldUDP64
[13]. Our design stores 8 packets, each with sufficient space
for the Ethernet (14 bytes), IP (20 bytes) and UDP (8 bytes)
headers, as well as the packet payloads from Table 2. Each
packet has an associated meta-data cache entry, for which
the entire cache will require only 4 slices. With our deter-
ministic, multiple-input memory architecture we can simul-
taneously write packets from each input feed and read pack-
ets out. The high-level nature of the architecture also makes

Table 2 Packet protocol specifications.

Protocol Max Packet Size Sequence Number
Width Position

ITCH 9000 bytes 64 bits 53
OPRA 1000 bytes 31 bits 47
ARCA 1400 bytes 32 bits 46

Fig. 7 The layout of our arbitrator module within the FPGA.

it simple to expand or contract the memory size at compile
time to suit our specific market protocol.

7. Results

Sequence number comparisons are a source of our criti-
cal path, so reducing the width of sequence numbers will
lower our routing delay and latency. Our Virtex-6 imple-
mentation found TotalView-ITCH, with its 64-bit sequence
numbers achieved a single cycle latency of 6ns, whereas
the OPRA and ARCA both achieved 5.25ns with sequence
number widths half that of TotalView-ITCH. This suggests
that artificially truncating the sequence numbers of packets
can benefit arbitration, at the cost of additional logic to deal
with packets that straddle the new sequence number bound-
ary.

TotalView-ITCH’s 6ns latency results in a 166MHz
FPGA design with a maximum throughput of 21.3Gbps,
while OPRA and ARCA’s 5.25ns latency means a 190MHz
design and a maximum throughput of 24.3Gbps. Both de-
signs are fast enough to satisfy 20Gbps processing. With
financial markets making greater use of higher throughput
connections, our design will be well placed to capitalise on
this increased throughput capacity. Indeed, the TotalView-
ITCH message feed is already available via both 10Gbps
and 40Gbps connections. However, only fraction of this
throughput is currently used by the message feed. Figure 8
illustrates the market activity for TotalView-ITCH at differ-
ent times of the day, showing the total throughput per sec-
ond. The rate of incoming messages changes throughout
the day, illustrating the need for run-time configuration of
the high reliability mode thresholds. For example, the ac-
ceptable delay between the busy 9.30 − 16.00 market hours
will be less than in the pre and post market hours. We find
that, at peak times, we must process 73Mbps (or 1000 pack-
ets per second). Our implementation is more than capable



DENHOLM et al.: NETWORK-LEVEL FPGA ACCELERATION OF LOW LATENCY MARKET DATA FEED ARBITRATION
295

Fig. 8 Market data feed throughput during the day.

Fig. 9 Slice usage for the three messaging protocols.

Fig. 10 Block RAM usage for the three messaging protocols.

of meeting existing demand, so we must focus on shortening
our processing latency, i.e., the time taken to react to pack-
ets and messages. Previous works often emphasise the fact
that their designs operate at the 10Gbit Ethernet line rate,
but this is not required to meet the rate of arriving current
market data feed messages.

TotalView-ITCH’s requirement for 9000 byte packets
is multiple times that of OPRA (1000 bytes) or ARCA (1400
bytes). Figures 9 and 10 show its resource usage does not
increase in proportion to this requirement, mainly due to
buffering host communications. Buffering plays a larger role
in our network interface card design as we implement two
bi-directional 10Gbit Ethernet connections. Its operation is
therefore an important test of real world performance.

7.1 Latency

We measure our packet processing latency by analysing our
design and making use of the formulae we derive in Sect. 4.
We find that for our implementation, Cwrite, the number of
cycles required to write to our packet buffer, to equal 2: one
cycle to trigger a write operation, and one cycle to write to
the memory. Cread, takes: one cycle to trigger an output
operation, one cycle to specify the memory location, one
cycle for the data to appear on the memory output, and one
cycle to output the data, for a total of 4 cycles. Each packet
is broken up into smaller segments, each of size Datawidth,
and subsequent packet segment reads are pipelined.

Plugging the protocol specific values Posseq and Lenseq

from Table 2 and Datawidth of our 128-bit (16 byte) data-
path into Eq. (2), we find the number of cycles to encounter
the sequence number are: Cseq = � 53+8−1

16 � = 3, Cseq =

� 47+4−1
16 � = 3, and Cseq = � 46+4−1

16 � = 3, for TotalView-
ITCH, OPRA and ARCA respectively. Despite having dif-
ferent message formats, the sequence numbers of all three
protocols happen to be visible in the same cycle. The lower
bound of the packet processing latency is then found as
Cexp = 3 + 4 = 7 cycles.

The upper bound latency, Cmax, requires knowledge
of the worst case time delay, Ct. For the high reliability
time mode Ct is the user-defined timeout value for a stored
packet, therefore, Cmax = 3 + 2 + Ct = 5 + Ct. To delay a
packet for a maximum of 50 cycles, for example, we set the
timeout to 50 − 5 = 45 cycles.

The high reliability count mode is not dependent on
time, but rather the rate of arriving messages, so its up-
per bound latency offers little insight. As an example,
let us consider our implementation and the peak time per-
formance for TotalView-ITCH messages where we receive
around 1000 messages per second. From this we obtain:
n = 8, I = 2, λp = 6.5 × 10−6 packets per cycle and
λm = 9000/6 = 1500 messages per packet. Here, λm as-
sumes the worst case scenario of 100% packet utilisation,
modelling a fully saturated market feed. Using Eq. (5) and
setting the maximum-count threshold MC = 10 messages,
we find Ct = log2(8) + 10

2×6.5×10−6×1500 = 516 cycles. The
upper bound latency is then Cmax = 3 + (2 − 1) + 516 = 520
cycles, where one of the Cwrite cycles is performed in paral-
lel, so the write latency is only 1 cycle.

A worst case time delay of 520 cycles is a long time for
TotalView-ITCH messages, but for OPRA we find an even
longer 10125 cycles. For MC = 10 it is possible for this
threshold to be exceeded multiple time over within a sin-
gle cycle, and indeed, this is the most likely scenario. It is
therefore best that Cmax is not used as an indicator of up-
per bound latency, but rather as a measure of the incoming
message rate, with consistently low values indicating an in-
creasing likelihood of throughput saturation.



296
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015

Fig. 11 Worst case time delay as an indicator of arbitrator saturation.

7.2 Real World Performance

From analysing the messages from our real world imple-
mentation, within which we process TotalView-ITCH mes-
sages from two redundant 10Gbps Ethernet links, we find
we process about 322 million messages throughout the day.
This would require 29 bits for message sequence numbers,
demonstrating that we can safely truncate TotalView-ITCH
messages without affecting performance.

The real world implementation also allows us to verify
our latency calculations by making use of our cycle-accurate
testing framework. By inspecting the packets on the host af-
ter they have been arbitrated we can easily read out the num-
ber of cycles it took for each packet to be processed. For the
high reliability mode we find it takes 7 cycles to process ex-
pected packets, i.e., packets not needing to be buffered. For
the low latency mode we find packets are processed in 1 cy-
cle. This low latency result also succeeds in demonstrating
the resolution of our testing framework, as we are able to
measure processes that occur within one cycle.

7.3 Future Performance Scalability

Our new saturation indicator is shown in Fig. 11 where the
message rate is used to calculate the worst case time de-
lay, Ct, for maximum-count values ranging between 10 and
100 messages. As the rate increases, Ct tends towards
log2(8) = 3 cycles, indicating the arbitrator is becoming
saturated and the high reliability mode is now effectively
functioning as a higher latency version of the low latency
mode. The value we calculated for Ct using our real mar-
ket data implementation is plotted in the graph as a square.
From this we see that current market rates are well within
the range that allows the high reliability modes to work ef-
fectively.

To model future message rates we plot a circle and tri-
angle in Fig. 11, representing over 6 million and 60 million
messages per second respectively. We see that 6 million
messages is over an order of magnitude away from satu-
ration meaning our arbitrator is well within its operational
limits. The triangle’s 60 million messages a second is closer
to saturation, but has not yet crossed the inflection point. For
such high message rates, the effectiveness of arbitration can

then be increased using a higher maximum-count.
As even 60 million messages per second is still less

than the 10Gbps line rate of Ethernet, it is possible to pro-
cess 100 times the current market data rate using current
technology.

7.4 Performance Improvement

We now measure our new arbitrator design against our ba-
sic design from previous work [12]. The new design sup-
ports three high reliability windowing methods and simulta-
neously outputs a low latency mode with a single clock cycle
latency. In high reliability mode, our new design achieves
a 42ns latency for the resource intensive TotalView-ITCH
protocol, and 36.75ns for OPRA and ARCA. The previous
design achieved only a 56ns latency for all packet protocols.
In low latency mode, our new design supports latencies of
6ns for TotalView-ITCH and 5.25ns for OPRA and ARCA.
This mode is not available in previous work.

Finally, we compare a software arbitrator using the
cutting-edge IBM PowerEN processor [14], with out-of-
order packets stored in L2 cache and using a time-based
windowing mechanism similar to the high reliability time
mode in this work. Arbitration is performed using only the
OPRA protocol and takes 150ns compared to 36.75ns in our
design. Thus, our design achieves a 4.1 times lower latency.

8. Conclusion

In this paper we outline an A/B line arbitrator for market
data feeds that operates at the network level. We present an
architecture that simultaneously produces a high reliability
and a low latency output stream. A key novelty in this work
is the ability to dynamically reconfigure the high reliabil-
ity with three windowing methods to adapt to the require-
ments of downstream financial applications in real time. We
also introduce network-level processing which was previ-
ously not available. Our architecture supports any market
data protocol, and can be configured for different data-path
widths.

Furthermore, we present a model for packet process-
ing latencies and discuss architectural considerations of ef-
ficient low latency design, opportunities for efficient, high-
level configuration, and our impact on downstream applica-
tions.

An implementation of our architecture targeting a Xil-
inx Virtex-6 FPGA achieves lower latencies than our previ-
ous work. We now achieve 42ns for TotalView-ITCH and
36.75ns for OPRA and ARCA, where our previous imple-
mentation had a fixed latency of 56ns regardless of the pro-
tocol on the same target device. Both designs have a lower
bound latency of 7 cycles for high reliability processing,
while our new low latency mode performs simple arbitra-
tion within 1 cycle. This corresponds to latencies of 6ns
and 5.25ns respectively. This mode was not available previ-
ously.

Finally, the most resource intensive protocol,



DENHOLM et al.: NETWORK-LEVEL FPGA ACCELERATION OF LOW LATENCY MARKET DATA FEED ARBITRATION
297

TotalView-ITCH, is also implemented on a Xilinx Virtex-
5 FPGA within a network interface card using real market
data, and verified using our new cycle-accurate testing. We
discover latency measurements can indicate message feed
saturation, providing a quantifiable method to indicate the
point at which the low latency windowing mode becomes
the optimal approach. This is used to demonstrate the ef-
fectiveness of our design at message rates 100 times their
current level. For the three messaging protocols examined,
TotalView-ITCH, OPRA and ARCA, we offer latencies 10
times lower than an FPGA-based commercial design and 4.1
times lower than the hardware-accelerated IBM PowerEN
processor, with throughputs more than double that of the
specified 10Gbps line rate.

References

[1] “NASDAQ TotalView-ITCH 4.1.” https://www.nasdaqtrader.com/
content/technicalsupport/specifications/dataproducts/
NQTV-ITCH-V4 1.pdf, 2013.

[2] “OPRA Participant Interface Specification.”
http://www.opradata.com/specs/
participant interface specification.pdf, 2011.

[3] “NYSE ARCA Europe exchange client specification.”
http://www.nyxdata.com/doc/36868, 2013.

[4] P. Ramanathan and K.G. Shin, “Delivery of time-critical messages
using a multiple copy approach,” ACM Trans. Comput. Syst., vol.10,
no.2, pp.144–166, May 1992.

[5] Y. Kodama, T. Kudoh, and T. Shimizu, “Dependable communica-
tion using multiple network paths on fast long-distance networks,”
Systems and Computers in Japan, vol.38, no.12, pp.46–54, 2007.

[6] G. Morris, D. Thomas, and W. Luk, “FPGA accelerated low-latency
market data feed processing,” 17th IEEE Symposium on High Per-
formance Interconnects, 2009.

[7] Solarflare, “Solarflare AOE Line Arbitration Brief.”
http://www.solarflare.com/Content/UserFiles/Documents/
Solarflare AOE Line Arbitration Brief.pdf, 2013.

[8] Cisco, “The next generation trading infrastructure.”
http://www.cisco.com/c/dam/en/us/products/collateral/switches/
nexus-3000-series-switches/white paper c11-720080.pdf.

[9] C. Leber, B. Geib, and H. Litz, “High frequency trading acceleration
using FPGAs,” Field Programmable Logic and Applications (FPL),
pp.317–322, 2011.

[10] R. Pottathuparambil, J. Coyne, J. Allred, W. Lynch, and V. Natoli,
“Low-latency FPGA based financial data feed handler,” Field-
Programmable Custom Computing Machines (FCCM), pp.93–96,
2011.

[11] J.W. Lockwood, A. Gupte, N. Mehta, M. Blott, T. English, and
K.A. Vissers, “A low-latency library in FPGA hardware for high-
frequency trading (HFT),” High-Performance Interconnects (HOTI),
pp.9–16, 2012.

[12] S. Denholm, H. Inoue, T. Takenaka, and W. Luk, “Application-
specific customisation of market data feed arbitration,” Field Pro-
grammable Technology (FPT), pp.322–325, 2013.

[13] “MoldUDP64 Protocol.” http://www.nasdaqtrader.com/content/
technicalsupport/specifications/dataproducts/moldudp64.pdf, 2009.

[14] D. Pasetto, K. Lynch, R. Tucker, B. Maguire, F. Petrini, and H.
Franke, “Ultra low latency market data feed on IBM PowerEN,”
Computer Science - Research and Development, vol.26, pp.307–
315, 2011.

Stewart Denholm received the Master
of Engineering degree in Electronics and Soft-
ware Engineering from the University of Edin-
burgh, Edinburgh, UK, and is currently pursu-
ing a Ph.D. degree in Computer Science from
the Department of Computing at Imperial Col-
lege London, London, UK. His current research
interests include reconfigurable computing, low
latency architectures and networks, parallel pro-
cessing, and heterogeneous computing.

Hiroaki Inoue received his B.S., M.E. and
Ph.D. degrees from Keio University in 1997,
1999 and 2009, respectively. He joined NEC
Corporation in 1999, and is now a Manager of
Corporate Technology Division. From 2007 to
2008, he was a visiting scholar of Stanford Uni-
versity. His current research interests include
real-time computing platforms. He is a senior
member of IEEE, and a member of IEICE.

Takashi Takenaka received his M.E. and
Ph.D. degrees from Osaka University in 1997
and 2000 respectively. He joined NEC Corpo-
ration in 2000 and is currently a principle re-
searcher of NEC Corporation. He was a visiting
scholar of University of California, Irvine from
2009 to 2010. His current research interests in-
clude system-level design methodology, high-
level synthesis, formal verification, and stream
processing. He is a member of IEEE, IEICE and
IPSJ.

Tobias Becker received a Dipl. Ing. degree
in electrical engineering and information tech-
nology from the University of Karlsruhe, Ger-
many in 2005 and a Ph.D. in computer science
from Imperial College London, UK in 2011. He
is currently a research associate in the Depart-
ment of Computing at Imperial College Lon-
don. His research includes work on reconfig-
urable computing, self-adaptive and self-aware
applications, and high-performance computing.

Wayne Luk received the M.A., M.Sc.,
and D.Phil. degrees in engineering and comput-
ing science from the University of Oxford, Ox-
ford, U.K. He is Professor of Computer Engi-
neering with Imperial College London, London,
U.K. He was a Visiting Professor with Stanford
University, Stanford, CA, USA. His current re-
search interests include theory and practice of
customizing hardware and software for specific
application domains, such as multimedia, net-
working, and finance.


