
1474
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.6 JUNE 2016

PAPER Special Section on Human Cognition and Behavioral Science and Technology

Sparse Trajectory Prediction Method Based on Entropy Estimation

Lei ZHANG†a), Member, Leijun LIU†b), and Wen LI†, Nonmembers

SUMMARY Most of the existing algorithms cannot effectively solve
the data sparse problem of trajectory prediction. This paper proposes a
novel sparse trajectory prediction method based on L-Z entropy estimation.
Firstly, the moving region of trajectories is divided into a two-dimensional
plane grid graph, and then the original trajectories are mapped to the grid
graph so that each trajectory can be represented as a grid sequence. Sec-
ondly, an L-Z entropy estimator is used to calculate the entropy value of
each grid sequence, and then the trajectory which has a comparatively low
entropy value is segmented into several sub-trajectories. The new trajectory
space is synthesised by these sub-trajectories based on trajectory entropy.
The trajectory synthesis can not only resolve the sparse problem of trajec-
tory data, but also make the new trajectory space more credible. In addi-
tion, the trajectory scale is limited in a certain range. Finally, under the new
trajectory space, Markov model and Bayesian Inference is applied to tra-
jectory prediction with data sparsity. The experiments based on the taxi tra-
jectory dataset of Microsoft Research Asia show the proposed method can
make an effective prediction for the sparse trajectory. Compared with the
existing methods, our method needs a smaller trajectory space and provides
much wider predicting range, faster predicting speed and better predicting
accuracy.
key words: trajectory prediction, data sparsity, L-Z entropy estimation,
sub-trajectory synthesis

1. Introduction

As the usage of Global Positioning System (GPS) and Smart
Mobile Device (SMD) becomes a part of our daily lives,
the trajectory data is showing the explosive growth [1]. The
landing location of hurricane and other natural disasters
can be forecasted by predicting their moving routes, so we
may prevent them. A number of Location Based Services
(LBSs) require destination prediction of moving objects’
trajectories. Patterson et al. [2] presented a method to learn
a Bayesian model of a traveler moving through an urban en-
vironment. Anna Monreale et al. [3] extracted movement
patterns named trajectory patterns from historical trajecto-
ries of moving objects, which are a concise representation
of behaviors of moving objects as sequences of regions fre-
quently visited with a typical travel time. A decision tree,
named T-pattern tree, is learnt from the trajectory patterns
that hold a certain area and it may be used as a predictor
of the next location for a new trajectory by finding the best

Manuscript received September 28, 2015.
Manuscript revised March 4, 2016.
Manuscript publicized April 1, 2016.
†The authors are with School of Computer Science and Tech-

nology, China University of Mining and Technology, Xuzhou,
221116, China.

a) E-mail: zhanglei@cumt.edu.cn
b) E-mail: ljliu@cumt.edu.cn

DOI: 10.1587/transinf.2015CBP0001

matching path in the tree. William Groves et al. [4] pro-
posed a framework to predict trajectories by using global
and local information based on four prediction algorithms:
a frequency-based algorithm (FreqCount), a correlation-
based algorithm (EigenStrat), a spectral clustering-based al-
gorithm (LapStrat), and a Markov Chain-based algorithm
(MCStrat). Brownian Bridge Model was improved for high
resolution location predictions by Mao Lin [5]. PENG et
al. [6] proposed a trajectory prediction based on markov
chains, which builds directed graph of all trajectories and
computes one-step to k-steps transition probability matri-
ces. Guo Limin et al. [7] proposed an uncertain trajectory
pattern mining algorithm to mine trajectory patterns, which
are indexed by a novel access method for efficient query pro-
cessing. However, the above methods suffer from the “data
sparsity problem”: there is no historical trajectory that can
match the query trajectory.

To address the data sparsity problem of trajectory pre-
diction, Zheng Yu et al. [8] proposed a novel method based
on the Sub-Trajectory Synthesis (SubSyn) algorithm. Sub-
Syn algorithm first decomposes historical trajectories into
sub-trajectories comprising of two adjacent locations, and
then connects the sub-trajectories into “synthesized” trajec-
tories. However, this method has some drawbacks. The tra-
jectory space is big so that the time taken by sub-trajectory
synthesis is very long; the prediction accuracy would be re-
duced because of some abnormal trajectories which affect
the reliability of “synthesized” trajectories in the trajectory
space. In order to address these drawbacks, this paper im-
proves the method that Zheng Yu proposed and proposes a
sparse trajectory prediction method based on entropy esti-
mation. Firstly, we use trajectory entropy to evaluate trajec-
tory regularity.We implement the L-Z entropy estimation to
compute the entropy of a trajectory sequence. Secondly, we
do trajectory synthesis based on trajectory entropy and put
synthesized trajectories into trajectory space. The trajectory
synthesis can not only resolve the sparse problem of trajec-
tory data, but also make the new trajectory space smaller
and more credible. Finally, under the new trajectory space,
we utilize Markov model and Bayesian Inference for desti-
nation prediction.

The remainder of this paper is organized as follows. In
Sect. 2, we introduce the date sparsity problem. In Sect. 3,
the trajectory synthesis based on entropy estimation is intro-
duced. In Sect. 4, we provide an introduction of trajectory
prediction method with data sparsity based on entropy esti-
mation. In Sect. 5, we show the experiments and results to

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers

ZHANG et al.: SPARSE TRAJECTORY PREDICTION METHOD BASED ON ENTROPY ESTIMATION
1475

Fig. 1 An example of trajectory prediction

demonstrate the effectiveness of the algorithm. Section 6 is
the conclusion.

2. Data Sparsity Problem

A common approach to destination prediction is to make use
of historical spatial trajectories of the public, available from
trajectory sharing websites, or large sets of taxi trajectories.
If an ongoing trip matches part of a popular route derived
from historical trajectories, the destination of the popular
route is very likely to be the destination of the ongoing trip
(we refer to the ongoing trip as the query trajectory). As
shown in Fig. 1, there are five historical trajectories: T1 =

{l4, l1, l2}, T2 = {l3, l2, l5 l4 l7}, T3 = {l6, l5, l8}, T4 = {l8, l7,
l9} and T5 = {l3, l6, l9}. Each trajectory is represented by a
type of line. For instance, a trip is taken from l3 to l6, and
this query trajectory {l3, l6} matches part of the historical
trajectory T5. Therefore, the destination of T5 (i.e., l9) is the
predicted destination of the query trajectory.

However, the above strategy has a significant draw-
back. A location l can be predicted as a destination only
when the query trajectory matches a historical trajectory and
the destination of the historical trajectory is l. In practice,
l7 and l8 are also very likely to be the destination of the
query trajectory, but will not be recommended to the user
due to the limitation of the historical dataset. Moreover, if
the query trajectory continues to be l5, the above strategy
will not be able to predict any destination since no histori-
cal trajectories contain the route {l3, l6, l5}. We refer to this
phenomenon as the data sparsity problem.

3. Trajectory Synthesis Based on Entropy Estimation

The main idea of trajectory synthesis based on entropy es-
timation is to serialize the trajectories and then use tra-
jectory entropy to evaluate trajectory regularity. The sub-
trajectories with low trajectory entropy are used to synthe-
size the new trajectory space with stronger regularity. Fig-
ure 2 shows the framework of trajectory synthesis based on
entropy estimation.

Fig. 2 The framework of trajectory synthesis based on entropy estima-
tion

3.1 Trajectory Description

For an original trajectory, it can be presented by n coordinate
points with timestamp. Formally,

tra = {(ti, loni, lati)|ti < ti+1}ni=1 (1)

where ti, loni, lati denote the point’s time, longitude and lat-
itude of trajectory. The map including all coordinate points
is constructed as a two-dimensional grid which consists of n
× n square cells. The granularity of this representation is a
cell, i.e., all the locations within a single cell are considered
to be the same object. Each cell has the side length of 1 and
adjacent cells have the distance of 1.The whole grid is mod-
elled as a graph where each cell corresponds to a node in the
graph. All coordinate points are chronologically mapped to
the grid graph so that a trajectory can be represented as a
sequence of nodes according to the sequence of locations of
the trajectory. Formally,

tra = (x1, y1)→ (x1, y1)→ · · · → (xn, yn) (2)

where xn, yn denote the row and column in the grid graph
at time n respectively. For the continuous time ti and t j, if
(xi, yi) = (x j, y j), one can combine (xi, yi) and (x j, y j) into a
node; by this analogy, one can combine all the neighbouring
and same nodes of trajectory sequence.

tra = {(xi, yi)|(xi, yi) � (xi+1, yi+1)}mi=1(m < n) (3)

where (xi, yi) is the node in the grid graph of trajectory se-
quence at time i.

3.2 Trajectory Entropy

In this paper, we use trajectory entropy to evaluate trajec-
tory’s regularity. We implement the L-Z entropy estimation
on the basis of Lempel-Ziv complexity [9] and use it to com-
pute the entropy of a trajectory sequence. For a trajectory
sequence tra = {(xi,yi)}mi=1, the entropy can be computed by
(4):

E(tra) = (
1

len(tra)

len(tra)∑

k=2

Λk

log2(k)
)−1

= (
1
m

m∑

k=2

Λk

log2(k)
)−1

(4)

where m is the number of nodes of trajectory tra, and Λk is
defined as the length of the shortest sub-trajectory starting
at position k that did not occur in the trajectory {(xi, yi)}k−1

i=1
previously. It has been proven that E(tra) converges to the
actual entropy when m approaches infinity [10], [11]. The

1476
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.6 JUNE 2016

smaller entropy is, the stronger trajectory’s regularity is, and
the larger entropy is, the lower trajectory’s regularity is (may
be outlier trajectory).

3.3 Trajectory Synthesis Based on Entropy Estimation

It is obvious that there are some abnormal trajectories which
affect prediction accuracy in the trajectory space. To en-
hance the regularity of the trajectory space, we do trajec-
tory synthesis based on trajectory entropy and put synthe-
sized trajectories into a trajectory space. Firstly, the map
is constructed as a finer grid to make less overlap between
the trajectories. For each trajectory trai of the trajectory
space, the entropy ei of trai is computed. So the trajec-
tory space can be obtained and it is sorted by entropy value
{(trai,ei)|ei ≤ ei+1}ni=1. Then m (trajectory selection param-
eter we can set) trajectories which have comparatively low
entropy value are chosen (higher regularity) as the new tra-
jectory space. For every trajectory of the new trajectory
space, if there are cross-nodes with other trajectories, one
divides them into sub-trajectories by these cross-nodes and
then compute the sub-trajectories’ entropy by L-Z entropy
estimation. The sub-trajectories are sorted by the sequence
of nodes of the trajectory that is going to be synthesized.
Keeping the sub-trajectories has lower entropy if there is
overlapping among them (correspond to sub-trajectories of
the trajectory is going to be synthesized). Finally, the re-
mainder sub-trajectories with lower entropy is synthesized.
The trajectory synthesis algorithm is shown as follows:

Algorithm 1 Trajectory Synthesis Algorithm Based on
Entropy Estimation (TS-EE)

Input: historical trajectory space Tra = {trai}ni=1, trajec-
tory selection parameter m.

Output: synthesized trajectory space SynTra.

1. Sub Tra = ∅ //store sub trajectories
2. foreach trai in Tra
3. ei = E(trai) as (trai,ei)
4. arrange {(trai,ei)}ni=1 by entropy as {(trai,ei)|ei ≤ ei+1}ni=1
5. choose the minimum entropy of m trajectories in Tra

as {(SynTrai,ei)|ei ≤ ei+1}mi=1
6. foreach trai in SynTra
7. foreach trak � trai in SynTra
8. find all cross-nodes between trak and trai

9. divide trak and trai into sub trajectories by
cross-nodes

10. store all sub trajectories in Sub Tra
11. foreach sub trai in Sub Tra
12. E(sub trai)
13. if sub trajectories in Sub Tra correspond to

sub trajectories of trai have overlap then
14. keep sub tra with minimum entropy
15. remove others from Sub Tra
16. syn trai = replace sub tras of trai with sub tras in

Sub Tra
17. add syn trai into Syn Tra
18. return Syn Tra

4. Trajectory Prediction Method with Data Sparsity
Based on Entropy Estimation

The trajectory prediction method with data sparsity based
on Entropy Estimation (TPDS-EE) uses the Markov model
and Bayesian inference to do sparse trajectory prediction on
the basis of the new trajectory space generated by TS-EE. It
is proved that the method obtains good prediction efficiency.

4.1 Bayesian Inference Framework for Trajectory Predic-
tion

The Bayesian inference framework for trajectory predic-
tion [12], [13] contains two phases: training phase where the
historical trajectories are mined offline and prediction phase
to calculate the destinations online. Specifically, the proba-
bility of a node n j being the destination can be computed as
the probability that n j is the destination location nd, condi-
tioning on the query trajectory Tq. Formally, the probability
is computed using Bayes rule as

P(nd = n j|T q) =
P(T q|nd = n j) · P(nd = n j)∑k

1≤k≤n2 [P(T q|nd = n j) · P(nd = nk)]

(5)

The prior probability P(nd = n j) can be easily computed as
the number of trajectories terminating at nj divided by the
number of trajectories in the dataset. Formally,

P(nd = n j) =
|Tnd=n j |
|D| (6)

where |D| is the cardinality of the historical trajectory dataset
D, and |Tnd=n j | is the number of trajectories in D that termi-
nate at location n j. Therefore, the crux of Eq. (5) lies in
computing the posterior probability P(Tq|nd = n j). In or-
der to solve this issue, we first count the number of trajec-
tories satisfying two conditions: (i) it is partially matched
by the query trajectory Tq; (ii) it terminates at location n j.
The count is then divided by the number of trajectories that
terminate at location n j to serve as the likelihood function.
Formally,

P(T q|nd = n j) =
|Tnd=n j |T q ⊂ Tnd=n j |

|Tnd=n j |
(7)

where |Tnd=n j |Tq ⊂ Tnd=n j | denotes the number of trajectories
that satisfy both the aforementioned conditions and |Tnd=n j |
denotes the number of trajectories that terminate at a loca-
tion in n j.

The above method, which uses trajectory matching as
the posterior probability, will be used as the baseline predic-
tion algorithm. As discussed in Sect. 2, this method suffers
from the data sparsity problem, i.e., if the query trajectory
Tq cannot be partially matched by any trajectory in |D|, then
the numerator |Tnd=n j |Tq ⊂ Tnd=n j | equals 0 and the proba-
bility of any node being the destination is 0. Consequently,

ZHANG et al.: SPARSE TRAJECTORY PREDICTION METHOD BASED ON ENTROPY ESTIMATION
1477

no destination can be predicted. It should be made clear that
the baseline algorithm is not directly borrowed from the ex-
isting work, but rather an adapted version that utilizes the
same approach. An adapted version of the baseline algo-
rithm has been implemented such that the current node nc of
the query trajectory is used as a predicted destination in the
case where insufficient predicted destinations are generated
by baseline algorithm.

4.2 Trajectory Prediction by Trajectory Synthesis Based
on Entropy Estimation

SubSyn algorithm decomposes historical trajectories into
sub-trajectories. The sub-trajectories comprise of only two
adjacent locations. Then, the algorithm connects the sub-
trajectories into synthesized trajectories. It produces so
many trajectories that the training time is very long. There-
fore, we propose trajectory prediction by trajectory syn-
thesis based on entropy estimation. Our method generates
smaller and more credible trajectory space by TS-EE. Un-
der the new trajectory space, similar to SubSyn algorithm,
we uses Markov model [14], [15] to train transition proba-
bility offline.

To fully leverage the information of historical trajecto-
ries, a Markov model is constructed by associating a state to
each node ni in the n×n grid graph. Two directed transitions
of states corresponding to nodes ni and n j are established,
i.e., ni to n j and n j to ni. Then an n2×n2 transition matrix
comprises the probability pi j that a user moves ni to n j.

The transition probability of travelling from a location
ni to a location n j is denoted by pi j. These transition proba-
bilities are conditional probabilities and can be computed as
the number of sub-trajectories STns=ni,nd=n j (starting at ni and
finishing at n j, len(STi,··· , j) > 2) divided by the cardinality of
the sub-trajectory space Dsub−tra. Formally,

Pi j =
|S Tns=ni,nd=n j |
|Dsub−tra| (8)

For each pair of nodes in the grid graph, we compute the
transition probabilities offline using (8). These probabili-
ties are stored as entries of a two-dimensional n2×n2 ma-
trix where one dimension corresponds to the node of current
state and the other dimension corresponds to the next state.
M(9) is the transition matrix of the example presented in the
3×3 grid graph.

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 p12 p13 p14 p15 p16 p17 p18 p19

p21 0 p23 p24 p25 p26 p27 p28 p29

p31 p32 0 p34 p35 p36 p37 p38 p39

p41 p42 p43 0 p45 p46 p47 p48 p49

p51 p52 p53 p54 0 p56 p57 p58 p59

p61 p62 p63 p64 p65 0 p67 p68 p69

p71 p72 p73 p74 p75 p76 0 p78 p79

p81 p82 p83 p84 p85 p86 p87 0 p89

p91 p92 p93 p94 p95 p96 p97 p98 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

The total transition probability of travelling from one node
ni to another node nk, denoted by pi→k, is the sum of the k-
steps transition probabilities of all possible paths between ni

and nk. Formally:

Pi→k =

S ubS ynmax∑

r=2

Mr
ik

= M2
ik + M3

ik + · · · + MS ubS ynmax

ik

(10)

In Eq. (10), Mr(2≤ r≤ SubSynmax, SubSynmax is the maxi-
mum number of sub-trajectory synthesis) can be obtained
by using C-K equation and M. Mr holds the probabilities of
transition from one node to another in exactly k-steps sub-
trajectory synthesis. In an n×n grid graph, M is an n2×n2

matrix, and each matrix multiplication requires O(n6). The
longest distance between two cells in the grid is 2(n - 1) so
that SubSynmax ≤ (n - 1). Therefore, the computation com-
plexity of sub-trajectory synthesis is O((n - 1) × n6).

In general, given any query trajectory Tq, the definition
of path probability P(Tq) is:

P(T q) = P(T k
1,2,··· ,k) =

k∏

i=1

pi(i+1) (11)

After defining the total transition probability in (10) and the
path probability in (11), given a query trajectory Tq, we cal-
culate the posterior probability of a user travelling from the
staring node ns to the current node nc via Tq conditioned on
the destination being in node n j by (12):

P(T q|nd = n j) =
P(T q) · pc→ j

ps→ j
(12)

where P(Tq) is the path probability of the given query tra-
jectory Tq; pc→ j is the total transition probability of people
going from the current node of Tq, nc, to a predicted des-
tination n j; and ps→ j is the total transition probability of
travelling from the starting node of Tq, ns, to a predicted
destination n j.

Lastly, the posterior probability is used when a user
issues a query to compute destination probabilities by
Bayesian inference. Formally:

P(nd = n j|T q) =
P(T q) · pc→ j

ps→ j
· P(nd = n j)

∑k
1≤k≤n2 [P(T q) · pc→k

ps→k
· P(nd = nk)]

∼ pc→ j

ps→ j
· P(nd = n j) (13)

4.3 The TPDS-EE Algorithm

TPDS-EE uses L-Z entropy estimation and TS-EE to reduce
the size of the trajectory space and enhance the regularity
of the trajectory space. For the new trajectory space, in or-
der to overcome the data sparsity problem, TPDS-EE uses
a Markov model and sub-trajectory synthesis to offline train
the total transition probabilities needed to efficiently com-
pute the posterior probability for any given query trajectory

1478
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.6 JUNE 2016

online. On these bases, the destination probabilities of all
nodes in the grid graph can be computed by Bayes rule.

Algorithm 2 Trajectory Prediction method with Data
Sparsity based on Entropy Estimation

Input: historical trajectory space Tra = {trai}ni=1, grid
granularity n, query trajectory Tq.

Output: nodes with top-k destination probabilities.

1. do trajectory synthesis based on L-Z entropy estima-
tion for the historical trajectory space Tra, and then get
the synthesized trajectory space SynTra

2. SubSynmax = n - 1 // maximum number of sub-
trajectory synthesis

3. decompose all the trajectories in SynTra into sub-
trajectories by trajectory intersections and store the
sub-trajectories in the space Dsub−tra

4. foreach pair of nodes ni and ni in grid graph do
5. M←pi j // first order transition matrix
6. MT←∑S ubS ynmax

r=2 Mr // total transition matrix
7. result← ∅ // a set to store the destination probabilities
8. construct query path probability P(Tq)
9. foreach n j in grid graph do

10. retrieve pc→ j and ps→ j from MT

11. compute P(Tq | nd = n j), and then P(nd = n j |Tq)
12. store P(nd = n j |Tq) in result
13. sort result
14. return nodes with top-k destination probabilities in re-

sult

5. Experiments Study and Analysis

In this section, we conduct an extensive experimental study
to evaluate the performance of our TPDS-EE algorithm. It is
worth mentioning that all of the experiments were run on a
commodity computer with Intel Core i5 CPU (2.3GHz) and
4GB RAM. We use a real-world large scale taxi trajectory
dataset from the T-drive project in our experiments [16]. It
contains a total of 580,000 taxi trajectories in the city of
Beijing, 15 million GPS data points from February 2, 2008
to February 8, 2008.

5.1 The Result of Trajectory Entropy

To evaluate trajectory regularity, we divide every day into
twelve periods, and then compute the average trajectory en-
tropy of each period of time on weekend and weekday re-
spectively.

The result presented in Fig. 3 clearly shows that the tra-
jectory entropies of twelve periods of time conform to the
taxi traveling path, i.e., it is the go-to-work hours between
6:00 and 8:00, and the taxi traveling path is always regular
from home to company, so the average entropy is the small-
est. Consequently, trajectory entropy can be used to evaluate
trajectory regularity.

5.2 Compared with Baseline Algorithm

As discussed in Sect. 4.1, the only available algorithm that

Fig. 3 Trajectory entropy of different times of the day

Fig. 4 Prediction accuracy of different grid granularity obtained by Base-
line and TPDS-EE

Fig. 5 Prediction time of different grid granularity obtained by Baseline
and TPDS-EE

can perform generic destination prediction is the baseline al-
gorithm.To certify our TPDS-EE algorithm can effectively
solve the data sparsity problem, we make the comparison
between the baseline algorithm and TPDS-EE from three
aspects: Prediction Accuracy, Prediction Time and Cover-
age.The prediction accuracy is computed as the ratio be-
tween the number of correctly predicted trajectories and the
total number of trajectories. Prediction time is the time used
to predict destination for one query trajectory online. And
the coverage counts the number of query trajectories for
which some destinations are provided. We use this prop-
erty to demonstrate the difference in robustness between the
baseline algorithm and our TPDS-EE algorithm.

Figure 4 and Fig. 5 show the trend in both prediction
accuracy and prediction time with respect to grid granu-
larity. The prediction accuracy of TPDS-EE is about 5%
higher than the baseline algorithm in all grid granularities.
For the baseline algorithm, the number of query trajectories
which have sufficient destinations drops slightly as the grid

ZHANG et al.: SPARSE TRAJECTORY PREDICTION METHOD BASED ON ENTROPY ESTIMATION
1479

Fig. 6 The coverage versus the percentage of trip completed obtained by
Baseline and TPDS-EE

granularity increases due to more trajectories in the train-
ing dataset falling into different nodes. Hence query trajec-
tories are less likely to have a partial match in the trajec-
tory space. Meanwhile, the prediction accuracy of TPDS-
EE is stable (46%). We compare the runtime performance
of our TPDS-EE algorithm with the baseline algorithm in
terms of online query prediction time. Since the information
is stored during the offline training stage, TPDS-EE only
requires little extra computation when answering a user’s
query (10µs), whereas the baseline algorithm requires too
much time (100ms) to predict. Our TPDS-EE algorithm is at
least four orders of magnitude better constantly. The reason
is that the baseline algorithm is forced to make a full sequen-
tial scan of the entire trajectory space to compute the poste-
rior probability, whereas TPDS-EE can fetch most transition
probability values from the stored matrices Mr directly. It is
noted that grid granularity has little influence on the predic-
tion time of the three algorithms.

Apart from the huge advantage of TPDS-EE in predic-
tion accuracy and prediction time, its coverage is compa-
rable with that of the baseline algorithm. Figure 6 shows
the coverage versus the percentage of trip completed. For
the baseline algorithm, the amount of query trajectories
for which sufficient predicted destinations are provided de-
creases as the trip completed increases due to the fact that
longer query trajectories (i.e., higher trip completed percent-
age) are less likely to have a partial match in the training
dataset. Specifically, when trip completed percentage in-
creases towards 90%, the coverage of the baseline algorithm
decreases to almost 20%. Our TPDS-EE algorithm success-
fully copes with it as it is expected with only an unnoticeable
drop in coverage and it constantly answers almost 100% of
query trajectories. It proves that the baseline algorithm can-
not handle long trajectories because the chances of finding
a matching trajectory decrease when the length of a query
trajectory grows.

5.3 The Comparison of TPDS-EE Algorithm with SubSyn
Algorithm

To evaluate the performance of our TPDS-EE Algorithm
and SubSyn Algorithm, we use Training Time, Prediction
Accuracy, Prediction Time and Coverage as measurement.
The first is the time used to train the total transition prob-

Fig. 7 Training time of different grid granularity

Fig. 8 Prediction accuracy of different grid granularity obtained by
TPDS-EE and SubSyn

Fig. 9 Prediction time of different grid granularity obtained by TPDS-EE
and SubSyn

ability matrix. As discussed in Sect. 4.2, the time of both
TPDS-EE and SubSyn Algorithm is mainly the time to com-
pute total transition probabilities.

Figure 7 shows that the training time of both our TPDS-
EE algorithm and SubSyn algorithm rises rapidly due to
a larger matrix and more matrix multiplication in a fine
grid, and with the increase of grid granularity n, the train-
ing time of TPDS-EE algorithm is less than the time of
SubSyn. In a typical where n = 50, the training time of
TPDS-EE is only half of SubSyn. The reason is that Sub-
Syn algorithm decomposes historical trajectories into sub-
trajectories just comprising two adjacent nodes, but TPDS-
EE decomposes historical trajectories into sub-trajectories
which include at least two nodes (the finer grid graph, the
longer sub-trajectories) by trajectory crosses, so the time
of matrix multiplication of SubSyn is more than the time
of matrix multiplication of TPDS-EE. Therefore, TPDS-EE
can obtain better runtime efficiency than SubSyn. Accord-

1480
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.6 JUNE 2016

Fig. 10 The coverage versus the percentage of trip completed obtained
by TPDS-EE and SubSyn

ing to Fig. 8, the prediction accuracy of TPDS-EE is a little
higher than SubSyn algorithm (about 3%). Where the bad
effect of abnormal trajectories have been removed from the
trajectory space by TS-EE so that the new trajectory space
is more credible for trajectory prediction.

In Fig. 9 and Fig. 10, the prediction time (10µs) and
coverage (100%) of both our TPDS-EE and SubSyn algo-
rithm is same. Because our TPDS-EE and SubSyn algo-
rithm adopt similar learning way in prediction. It makes
their prediction time and coverage consistent.

6. Conclusions

In this paper, we propose an improved TPDS-EE algo-
rithm to address the data sparsity problem. TPDS-EE al-
gorithm uses L-Z entropy estimation to compute a trajec-
tory’s entropy and does trajectory synthesis based on a
trajectory’s entropy which can make the trajectory space
smaller and more credible. And TPDS-EE uses Markov
model and Bayesian inference to predict destination based
on the new trajectory space that generated by TS-EE. Exper-
iments based on the real dataset have shown that our TPDS-
EE algorithm can predict destinations for almost all query
trajectories, so it has successfully addressed the data spar-
sity problem. Comparing with SubSyn algorithm, TPDS-EE
needs less training time. At the same time, our TPDS-EE al-
gorithm also requires less time to predict and runs over four
orders of magnitude faster than the baseline algorithm.

Acknowledgements

This work was supported by the Fundamental Research
Funds for the Central Universities (2014XT04).

References

[1] World Telecommunication/ICT development report, 2010, Interna-
tional Telecommunication Union, available from http://www.itu.Int/
ITU-D/ict/publications/wtdr 10/index.html

[2] D.J. Patterson, L. Liao, D. Fox, and H. Kautz, “Inferring high-level
behavior from low-level sensors,” Proc. 5th Int. Conf. on Ubiquitous
Computing (UbiComp), pp.73–89, Seattle, USA, Oct. 2003.

[3] A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti, “Wherenext: a
location predictor on trajectory pattern mining,” Proc. 15th ACM
SIGKDD Int. Conf. on Knowledge discovery and data mining,
pp.637–646, Paris, Franch, June 2009.

[4] W. Groves, E. Nunes, and M. Gini, “A framework for predicting
trajectories using global and local information,” Proc. 11th ACM
Conf. on Computing Frontiers, no.37, Cagliari, Italy, May 2014.

[5] M. Lin and W.-J. Hsu, Brownian Bridge Model for High Resolution
Location Predictions, vol.8444, pp.210–221, Springer International
Publishing, 2014.

[6] Q. Peng, Z. Ding, and L. Guo, “Prediction of trajectory based on
Markov chains,” J. Computer Science, vol.37, no.8, pp.189–193,
2010.

[7] L. Guo, Z. Ding, Z. Hu, and C. Chen, “Uncertain path prediction
of moving objects on road networks,” J. Computer Research and
Development, vol.44, no.1, pp.104–112, 2010.

[8] A.Y. Xue, R. Zhang, Y. Zheng, X. Xie, J. Huang, and Z. Xu, “Desti-
nation prediction by sub-trajectory synthesis and privacy protection
against such prediction,” Proc. 2013 IEEE International Conf. on
Data Engineering (ICDE), pp.254–265, Brisbane, Australia, April
2013.

[9] Y. Gao, I. Kontoyiannis, and E. Bienenstock, “Estimating the en-
tropy of binary time series: methodology, some theory and a simu-
lation study,” J. Entropy, vol.10, no.2, pp.71–99, 2008.

[10] C. Song, Z. Qu, N. Blumm, and A. Barabási, “Limits of predictabil-
ity in human mobility,” J. Science, vol.327, no.5968, pp.1018–1021,
2010.

[11] J. McInerney, S. Stein, A. Rogers, and N.R. Jennings, “Exploring
Periods of Low Predictability in Daily Life Mobility,” Proc. 10th
Intl. Conf. on Pervasive Computing (Pervasive’12), Newcastle, UK,
June 2012.

[12] J. Krumm and E. Horvitz, “Predestination: Inferring destinations
from partial trajectories,” Proc. 8th Int. Conf. on Ubiquitous Com-
puting (UbiComp), Orange Country, CA, pp.243–260, Sept. 2006.

[13] L.-Y. Wei, Y. Zheng, and W.-C. Peng, “Constructing popular routes
from uncertain trajectories,” Proc. 18th ACM SIGKDD Int. Conf. on
Knowledge discovery and data mining, pp.195–203, BeiJing, China,
Aug. 2012.

[14] D. Ashbrook and T. Starner, “Using GPS to learn significant loca-
tions and predict movement across multiple users,” J. Personal Ubiq-
uitous Computing, vol.7, no.5, pp.275–286, 2003.

[15] J.A. Alvarez-Garcia, J.A. Ortega, L. Gonzalez-Abril, and F. Velasco,
“Trip destination prediction based on past GPS log using a hidden
markov model,” J. Expert Systems with Applications, vol.37, no.12,
pp.8166–8171, 2010.

[16] T-drive trajectory data sample, Aug. 2011, M. Research, available
from http://research.microsoft.com/apps/pubs/?id=152883

Lei Zhang was born in 1977 and received
the Ph.D. degree in Computer Application Tech-
nology from Nanjing University of Aeronautics
and Astronautics in 2006. He is now an asso-
ciate professor in the School of Computer Sci-
ence and Technology, China University of Min-
ing Technology. He has published more than
20 papers in international conferences and jour-
nals. His research interests include trajectory
data analysis and mining.

http://dx.doi.org/10.1007/978-3-540-39653-6_6
http://dx.doi.org/10.1145/1557019.1557091
http://dx.doi.org/10.1145/2597917.2597934
http://dx.doi.org/10.1007/978-3-319-06605-9_18
http://dx.doi.org/10.1109/icde.2013.6544830
http://dx.doi.org/10.3390/entropy-e10020071
http://dx.doi.org/10.1126/science.1177170
http://dx.doi.org/10.1007/11853565_15
http://dx.doi.org/10.1145/2339530.2339562
http://dx.doi.org/10.1007/s00779-003-0240-0
http://dx.doi.org/10.1016/j.eswa.2010.05.070

ZHANG et al.: SPARSE TRAJECTORY PREDICTION METHOD BASED ON ENTROPY ESTIMATION
1481

Leijun Liu received the B.E. degree in
Computer Science and Technology from China
University of Mining Technology in 2010. He
is currently working as a M.E. student in the
School of Computer Science and Technology,
China University of Mining Technology. His
main research interests include trajectory data
analysis and mining.

Wen Li is currently a PhD candidate in
the School of Computer Science and Technol-
ogy, China University of Mining and Technol-
ogy. Her main areas of interests are trajectory
data mining and pattern recognition.

