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An Algorithm for All-Pairs Regular Path Problem on External
Memory Graphs∗
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SUMMARY In this paper, we consider solving the all-pairs regular path
problem on large graphs efficiently. Let G be a graph and r be a regular path
query, and consider finding the answers of r on G. If G is so small that it
fits in main memory, it suffices to load entire G into main memory and
traverse G to find paths matching r. However, if G is too large and cannot
fit in main memory, we need another approach. In this paper, we propose a
novel approach based on external memory algorithm. Our algorithm finds
the answers matching r by scanning the node list of G sequentially. We
made a small experiment, which suggests that our algorithm can solve the
problem efficiently.
key words: graph data, regular path query

1. Introduction

Graph is being used in broad areas such as social network,
life science, Semantic Web, and so on. Recently, such
graphs are greatly increasing and their sizes are rapidly
growing. Regular path query is a popular query language for
such graphs and is being studied actively so far. In this pa-
per, we consider processing regular path queries efficiently
on large graphs. In particular, we focus on solving the all-
pairs regular path problem, which is to find all pairs (n, n′)
of nodes such that there is a path between n and n′ whose
sequence of labels matches a given regular path query.

Let us consider finding the answers of a regular path
query r on a graph G. If G is so small that it can be processed
in main memory, it suffices to load entire G into main mem-
ory, transform r into an NFA A, and find the “answer” paths
of G whose sequence of labels matches A. However, if G
is too large to be processed in main memory, the above ap-
proach is not applicable to obtaining the answers of r. Thus
we need another approach to solving the problem on large
graphs efficiently.

A possible approach to this problem is to store a graph
in some graph store and issue regular path queries on the
graph store. However, to solve the problem we have to de-
termine, for a large number of pair of nodes (n, n′), whether
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there exists a path between n and n′ matching a given reg-
ular path query. This requires fetching nodes and edges on
a disk a large number of times, and thus the approach is not
necessarily efficient for solving the problem.

Another possible approach is to use the SPARQL query
language [2]. In fact, SPARQL is added support for regular
path query processing called “Property Path” since version
1.1, and thus we can use a regular path query on RDF stores
supporting SPARQL 1.1. However, Property Path is under
“simple walk semantics” (no node appears twice on a path
except the start and the end of the path), and thus Property
Path evaluation is quite inefficient even for very restricted
queries [3], e.g., for nodes n, n′ and a query q = (aa)∗, deter-
mining whether there exists a path from n to n′ that matches
q is NP-complete.

To cope with these problems, we propose another ap-
proach based on external memory algorithm. In order to
find answer paths on a graph efficiently, our approach is
based on scanning the graph sequentially rather than fetch-
ing nodes/edges each time they are required. Let G be a
graph (file) and S be a fixed area in main memory to load a
subgraph of G. Firstly, our algorithm scans G sequentially
and repeats the following until EOF is found.

1. Load data of size |S | from G into S (thus the loaded
data is a subgraph of G) and find answers that can be
obtained by traversing S .

2. During the traversal of S , find connections among
paths inside and outside S , and store them into another
graph called “contracted graph”.

After the sequential scan, the algorithm traverses the con-
tracted graph and finds the rest of answers whose path runs
across different subgraphs, which is also done by a sequen-
tial scan.

Related Work

There are a number of studies related to regular path queries,
e.g., [4], [5] are extensive surveys on regular path queries
and related query languages. However, studies on regular
path query processing on large graphs are unexpectedly not
many. [6] proposes an algorithm for solving all-pairs regular
path problem efficiently on large graphs. This algorithm is
an in-memory algorithm and assumes that a graph fits in
main memory. [7]–[10] propose distributed approaches for
regular path query processing. These are suitable for graphs
inherently distributed over multiple machines or graphs that
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are too large to be handled in a single machine. On the other
hand, for graphs that can be handled in a single machine, we
believe that our approach is a reasonable choice for regular
path query processing.

A number of graph stores have been proposed,
e.g., Pregel [11], Sparksee† (formerly known as Dex [12]),
Grail [13], and Neo4j††, and for some of them a power-
ful query language that can simulate regular path queries
is available (Gremlin†††). However, these are not necessar-
ily suitable for the all-pairs regular path problem on large
graphs, since solving the problem on a graph store requires
fetching a large number of nodes and edges due to the high
complexity of the problem. gStore [14] is an RDF store with
an efficient query processor, but this does not support regular
path query. GraphChi [15] and TurboGraph [16] are systems
designed for large-scale graph computation in a single PC.
GraphChi uses a novel method called Parallel Sliding Win-
dow (PSW) for reducing non-sequential accesses to a disk.
However, as remarked in [15], the PSW method is not suit-
able for efficient graph traversal. TurboGraph is designed to
exploit full I/O and CPU parallelism and full overlap of CPU
and I/O processing. However, the system does not support
labeled graphs, and it is not obvious whether TurboGraph
can be extended to deal with labeled graphs and solve the
all-pairs regular path problem efficiently.

Many studies have been made for optimizing path
queries on semistructured data and XML. For example, [17]
proposes a numbering scheme for efficient regular path com-
putation, and [18] and [19] propose additional index struc-
tures. However, these studies are designed for tree struc-
tured data and cannot be applied to non-tree graphs. [20]
proposes optimization techniques for regular path queries
by using graph schemas. However, most of current graphs
have no explicit schema, and thus the techniques cannot be
applied to such graphs.

SPARQL did not support regular path query until
SPARQL 1.1, and thus a number of query language and
extensions to SPARQL for supporting regular path query
have been proposed. [21] proposes a query language called
PSPARQL supporting regular path query. However, the
paper provides only an implementation based on an in-
memory algorithm. [22] proposes the GREEN system,
which extends SPARQL so that it can handle regular path
queries. However, the system is implemented as an exten-
sion to the ARQ library, which means that its query pro-
cessing is done by iterative fetching of nodes and edges.
[23] also proposes an extension of SPARQL for regular path
query, but presents no specific query processing method.
[24] proposes an RDF query language supporting regular
path query. However, it is reported that the implementation
of the language works on only small graphs [6]. [25] pro-
poses another RDF query language SPARQLeR that sup-
ports regular path query. However, [25] reports that sev-

†http://www.sparsity-technologies.com/
††http://www.neo4j.org/
†††https://github.com/tinkerpop/gremlin

eral tens of seconds is needed even for evaluating a single-
source single-destination query on 6.6 million RDF state-
ments, which implies that it would take significantly more
time to solve the all-pairs regular path problem on larger
graphs. In 2013, SPARQL 1.1 is published as W3C rec-
ommendation. SPARQL 1.1 supports regular path query
by virtue of Property Path, and thus we can use regular
path queries on RDF stores supporting SPARQL 1.1, e.g.,
Apache Jena†††† and Sesame†††††. However, Property Path
of SPARQL 1.1 is under simple walk semantics, and thus
the complexity of regular path query evaluation is NP-hard
even for very restricted queries [3]. Therefore, such RDF
stores are not necessarily suitable for solving the all-pairs
regular path problem on large graphs either.

Several external memory algorithms have been pro-
posed in database research field, e.g., graph triangula-
tion [26], strongly connected components [27], graph reach-
ability [28], and k-bismulation [29]. To the best of our
knowledge, however, no external memory algorithm for pro-
cessing the all-pairs regular path problem has been proposed
so far.

This paper is organized as follows. Section 2 gives pre-
liminary definitions. Section 3 presents an external mem-
ory algorithm for processing regular path queries. Section 4
shows the correctness of the algorithm. Section 5 presents
the I/O and CPU costs of the algorithm. Section 6 gives
experimental results. Section 7 summarizes the paper.

2. Definitions

Let Σ be a set of labels. A labeled directed graph (graph
for short) over Σ is denoted G = (V, E,Σ), where V is a set
of nodes and E is a set of labeled edges. Let n, n′ ∈ V be
nodes. An edge from n to n′ labeled by l ∈ Σ is denoted

n
l→ n′. A path p from n to n′ is denoted n �p n′. By

l(p) we mean the sequence of labels on p. For example, if

p = n1
a→ n2

b→ n3
c→ n4, then l(p) = abc.

A regular path query is defined as a regular expression
over Σ, as follows.

• ε, ∅, and a ∈ Σ are regular path queries.
• If r1, r2, · · · , rn are regular path queries, then r1r2 · · · rn

and r1|r2| · · · |rn are regular path queries.
• If r is a regular path query, then r∗ is a regular path

query.

r+ and r? are abbreviations for r∗r and r|ε, respectively. By
L(r) we mean the language of a regular path query r.

A nondeterministic finite automaton (NFA) over Σ is
a quintuple A = (Q,Σ, δ, q0, F), where Q is a set of states,
q0 ∈ Q is the start state, F ⊆ Q is a set of accepting states,
and δ : Q × Σ → 2Q is a transition function. The extension
of δ, denoted δ̂, is defined as follows.

• For any q ∈ Q, δ̂(q, ε) = {q}.
††††https://jena.apache.org/
†††††http://openrdf.org/
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• For any w ∈ Σ∗ and any a ∈ Σ, δ̂(q, wa) =⋃
q′∈δ̂(q,w) δ(q

′, a).

That is, q′ ∈ δ̂(q, w) iff A enters state q′ when A reads w in
state q. The language accepted by A is defined as L(A) =
{w ∈ Σ∗ | q f ∈ δ̂(q0, w), q f ∈ F}.

In this paper, we consider finding, for a graph G =
(V, E,Σ) and a regular path query r, all pairs (n, n′) ∈ V × V
of nodes such that G contains a path n �p n′ such that
l(p) ∈ L(r).

3. The Algorithm

In this section, we first give the overview of the algorithm
and some related notions, then present the details of the al-
gorithm.

3.1 Overview

Let r be a regular path query and G = (V, E,Σ) be a graph.
The algorithm uses an area S allocated in main memory with
|S | = ε · M, where |S | denotes the size of S , M is the size
of main memory, and 0 < ε < 1. The input data to our
algorithm is a node list N (Fig. 1 (A)), which consists of the
nodes of V with some information of each node (outgoing
edges, etc.). In short, the algorithm works as follows.

1. Firstly, the algorithm reads N sequentially and repeats
the following until EOF is found.

a. Load |S | bytes of data from N into S . Thus S
contains a subgraph of G.

b. Traverse S and do the following.

i. Find the “local” answers (paths matching r)
in S that can be obtained by traversing only
S (Fig. 1 (i)).

ii. To find answer paths running across bound-
aries of S , find paths adjacent to edges
outside S , and store their connections into
another graph file called contracted graph
(Fig. 1 (ii) and (B)).

2. Then, the algorithm traverses the contracted graph ob-
tained in step (b-ii) and outputs the answers not found
in step (b-i) (Fig. 1 (iii)).

Note that, in this and the subsequent examples, for simple
and clear explanation we use a DFA as an example.

Let us give some definitions related to node list N. Let
n ∈ V be a node. By order(n) we mean the order of n in N.
For example, in Fig. 1 (A) order(n8) = 1, order(n2) = 2, and
so on. By S .min we mean the minimum order of the nodes
in S . Similarly, by S .max we mean the maximum order
of the nodes in S . For example, assuming that the second
region of N in Fig. 1 (A) is loaded into S , we have S .min =
order(n5) = 5 and S .max = order(n1) = 8. By Out(n) we

mean the set of outgoing edges of n, that is, Out(n) = {n l→
n′ | n′ ∈ V, n

l→ n′ ∈ E}. By In(n, l) we mean the set of

Fig. 1 Outline of our algorithm

source nodes of incoming edges of n labeled by l, that is,

In(n, l) = {n′ ∈ V | n′ l→ n ∈ E}. By inMax(n, l), we mean
the node having the maximum order in In(n, l), that is,

inMax(n, l) = argmax
n′∈In(n,l)

order(n′).

Similarly, we define that

inMin(n, l) = argmin
n′∈In(n,l)

order(n′).

Let r be a regular path query and A = (Q,Σ, δ, q0, F)
be an NFA such that L(A) = L(r). Suppose that |S | bytes of
data is loaded from N into S . If S contains a path n �p n′
such that l(p) ∈ L(A), then the algorithm outputs (n, n′). For
example, in Fig. 1 (A) the algorithm outputs (n3, n1) as an

answer due to n3
a→ n7

b→ n1, which can be obtained by
traversing only S . However, S contains only a subgraph of
G, and thus we also have to handle edges running across a
boundary of S appropriately, i.e., (i) edges from outside to

inside S (e.g., n4
a→ n5 in Fig. 1 (A)) and (ii) edges from

inside to outside S (e.g., n1
b→ n9 in Fig. 1 (A)). We have to

find paths matching r even if the paths contain such “bound-
ary” edges.

To find such paths, our algorithm traverses S and finds
paths n �p n′ such that q′ ∈ δ̂(q, l(p)) for some q, q′ ∈ Q
(i.e., p matches a subexpression of r), then check if p is
adjacent to a boundary edge mentioned above (i) and (ii). To
do this, for a pair (n, q) of a node n in S and a state q ∈ Q,
we define four types Tin, Tout, Tstart, and Taccept, as follows.
We write Tin(n, q) if a pair (n, q) is of type Tin (Tout, Tstart,
Taccept are denoted similarly).

• Tin(n, q) iff n has an incoming edge that enters S and
matches a state transition of A, that is, for some l ∈ Σ,
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– q ∈ δ(q′, l) for some q′ ∈ Q, and
– n has an incoming edge labeled by l enter-

ing S , that is, order(inMin(n, l)) < S .min or
order(inMax(n, l)) > S .max.

• Tout(n, q) iff n has an outgoing edge that leaves S and
that matches a state transition of A, that is, for some

n
l→ n′ ∈ Out(n),

– q′ ∈ δ(q, l) for some q′ ∈ Q, and
– n′ is a node outside S , that is, order(n′) < S .min

or order(n′) > S .max.

For the node n′ and the state q′ above, we say that
(n′, q′) is a certificate of Tout(n, q).

• Tstart(n, q) iff q = q0.
• Taccept(n, q) iff q ∈ F.

Tin and Tout are used to check if (n, q) is adjacent to a
“boundary” edge, while Tstart and Taccept are used to check if
(n, q) is a pair at which a traversal should be started/finished.

With the four types we formally define contracted
graph. We assume that a state is represented by an inte-
ger id. For pairs (n, q), (n′, q′) of nodes and states, we write
(order(n), q) < (order(n′), q′) if order(n) < order(n) or
order(n) = order(n) and q < q′. The algorithm “partitions”
node list N into

⌈ |N|
|S |

⌉
sublists and loads each sublist into S

one by one. An edge n
l→ n′ is called a boundary edge if

n and n′ are in distinct sublists. Then the contracted graph
of G, denoted cgraph, is a list of unlabeled directed edges
satisfying the following two conditions.

1. An edge (n, q)→ (n′, q′) is in cgraph iff for the sublist
N′ of N containing n, one of the following conditions
holds.

• For some n′′ ∈ V and some q′′ ∈ Q, Tstart(n, q),
Tout(n′′, q′′), N′ contains a path n �p n′′ such
that q′′ ∈ δ̂(q, l(p)), and (n′, q′) is a certificate of
Tout(n′′, q′′).

• For some n′′ ∈ V and some q′′ ∈ Q, Tin(n, q),
Tout(n′′, q′′), N′ contains a path n �p n′′ such
that q′′ ∈ δ̂(q, l(p)), and (n′, q′) is a certificate of
Tout(n′′, q′′).

• Tin(n, q), Taccept(n′, q′), and N′ contains a path
n�p n′ such that q′ ∈ δ̂(q, l(p)).

2. The edges in cgraph are listed in ascending order of the
heads of the edges (see Fig. 1 (B)). That is, (n1, q1) →
(n2, q2) precedes (n3, q3) → (n4, q4) in cgraph when-
ever (order(n1), q1) < (order(n3), q3).

The idea of Tin and Tout is analogous to the notion of in-
put/output markers used in the UnQL data model [30]. In the
data model, input/output markers are used to describe struc-
tural recursion on graphs containing cycles. Since structural
recursion cannot be directly applied to a graph containing
cycles, in the data model a graph is firstly split into small
cycle-free pieces, then structural recursion is applied on the

pieces and the results are glued together. Input/output mark-
ers are used to glue such pieces; a node with an output
marker in some piece is glued with a node with an input
marker in another piece. Similarly, in our algorithm, a node
of type Tout in a subgraph is “glued” with a node of type Tin

in another subgraph.

3.2 Details of the Algorithm

We present the details of our algorithm. Let G = (V, E,Σ) be
a graph and r be a regular path query. First of all, we define
node list N: N is a list consisting of the nodes in V with
the following items for each node n ∈ V; Out(n), inMin(n),
inMax(n), and order(n).

Let us first present the main part of our algorithm. This
procedure reads N sequentially and processes each subgraph
loaded into S . For each loaded subgraph, it deletes unnec-
essary edges that need not to be visited during traversing the
subgraph (line 7), and then finds the answers obtained by
traversing S and constructs the contracted graph cgraph si-
multaneously (line 8). After the sequential scan of N, the
algorithm finds the answers obtained by traversing cgraph
(line 10).

Procedure Main
Input: Node listN of graph G= (V,E,Σ), regular path query r
Output: Pairs of nodes (n, n′) such that n�p n′ and that

l(p) ∈ L(r)

1. Create an empty file cgraph
2. Construct an NFA A = (Σ,Q, δ, q0, F) such that

L(A) = L(r)
3. Allocate an area S in main memory (|S | = ε · M)
4. Read N sequentially and do the following until EOF

is found
5. begin
6. Load |S | bytes of data from N into S
7. Prune(S , A)
8. TraverseBuf(S , A, cgraph)
9. end

10. TraverseCgraph(A, cgraph)

In the following, we present the details of TraverseBuf
(line 8), TraverseCgraph (line 10), and Prune (line 7).

3.2.1 Processing Node List

We next present TraverseBuf, which finds the “local” an-
swers in S and constructs cgraph simultaneously. Let A =
(Q,Σ, δ, q0, F) be an NFA such that L(A) = L(r). This proce-
dure works as follows. For each pair (n, q) of a node n in S
and a state q, if Tin(n, q) or Tstart(n, q), then we start a traver-
sal from (n, q)† (lines 2 to 4). Let (n′, q′) be a pair encoun-
tered in this traversal. If Tstart(n, q) and Taccept(n′, q′), then
(n, n′) is outputted as an answer (lines 6 and 7). If Tin(n, q)
and Taccept(n′, q′), then we have “(n′, q′) is reachable from
(n, q)”. To record this, (n, q) → (n′, q′) is added to cgraph
(lines 8, 9, and 13). Consider the case where Tout(n′, q′)

†Our current implementation adopts breadth first search but
any other search strategies can be applicable. Finding the best
search strategy is left as a future work.
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(line 10). By the definition of Tout, there exists a certificate
(n′′, q′′) of Tout(n′, q′), in other words, “(n′′, q′′) is reachable
from (n, q)”. To record this, for each certificate (n′′, q′′) of
Tout(n′, q′), (n, q)→ (n′′, q′′) is added to cgraph (lines 10 to
13).

Procedure TraverseBuf

Input: Subsequence of N loaded into S , NFA A =
(Q,Σ, δ, q0, F), contracted graph cgraph (empty file)

Output: Pairs (n, n′) of nodes in S such that n�p n′
and that l(p) ∈ L(r), contracted graph cgraph

1. tmp← ∅
2. for each pair (n, q) of a node n in S and q ∈ Q do
3. if Tin(n, q) or Tstart(n, q) then
4. Traverse S and compute the following set I.

I = {(n′, q′) | n�p n′, q′ ∈ δ̂(q, l(p)),
Tout(n′, q′) or Taccept(n′, q′)}.

5. for each (n′, q′) ∈ I do
6. if Tstart(n, q) and Taccept(n′, q′) then
7. Output (n, n′) as an answer
8. if Tin(n, q) and Taccept(n′, q′) then
9. tmp← tmp ∪ {(n, q)→ (n′, q′)}

10. if Tout(n′, q′) then
11. for each certificate (n′′, q′′) of

Tout(n′, q′) do
12. tmp← tmp ∪ {(n, q)→ (n′′, q′′)}
13. Add each edge in tmp to cgraph in ascending order

In line 13, the edges (n, q) → (n′, q′) in tmp are added
to cgraph in ascending order of pair (order(n), q) according
to the condition 2 of the definition of cgraph.

3.2.2 Processing Contracted Graph

Then we present TraverseCgraph, which traverses cgraph
and outputs the rest of answers. If the size of cgraph does
not exceed |S |, then it suffice to load entire cgraph into S
and find the answers by traversing S (lines 1 to 4). In line 3,
we write (n, q0) � (n′, q′) if there exists a path from (n, q0)
to (n′, q′) in S . In most cases, cgraph is small and the traver-
sal of cgraph is completed here. On the other hand, if the
size of cgraph exceeds |S |, the procedure repeats a forward
scan of cgraph (line 8) and a backward scan of cgraph (line
9) alternatively, until all the answers contained in cgraph
are found.

Procedure TraverseCgraph

Input: NFA A = (Q,Σ, δ, q0, F), contracted graph cgraph
Output: Pairs (n, n′) of nodes such that (n, q0)� (n′, q′)

for some q′ ∈ F

1. if the size of cgraph does not exceed |S | then
2. Load entire cgraph into S
3. Traverse S and find all pairs (n, n′) such that

(n, q0)� (n′, q′) and that q′ ∈ F
4. Output the pairs obtained in line 3
5. else
6. Create priority queues pq fwd and pq bwd

Initially, pq fwd and pq bwd are empty
7. do
8. ScanForward(A, cgraph, pq fwd, pq bwd)
9. ScanBackward(A, cgraph, pq fwd, pq bwd)

10. while pq fwd � ∅ or pq bwd � ∅

In the following, we present ScanForward and Scan-
Backward in lines 8 and 9 above. To describe these pro-
cedures we need some notations. Suppose that a subpart
of cgraph is loaded into S , and let (n f , q f ) → (n′f , q

′
f ) be

the first edge in S and (nl, ql) → (n′l , q
′
l) be the last edge

in S . Then we define that S .min′ = (order(n f ), q f ) and
that S .max′ = (order(nl), ql). Note that, by the ordering
of cgraph (line 13 of TraverseBuf), for any edge (n, q) →
(n′, q′) in S we have S .min′ ≤ (order(n), q) ≤ S .max′.

ScanForward and ScanBackward use two priority
queues pq fwd and pq bwd. Suppose that, during travers-
ing S , we encounter an edge (n, q) → (n′, q′) such that
(n′, q′) is outside S , i.e., (order(n′), q′) < S .min′ or
(order(n′), q′) > S .max′. Since (n′, q′) is outside S , we
have to “suspend” the traverse and “restart” it from (n′, q′)
afterwards. pq fwd and pq bwd are used to remember such
pairs for suspending and restarting. pq fwd and pq bwd are
defined as follows.

• pq fwd is an ascending priority queue w.r.t. (order(n),
q), thus pair (n, q) with the least (order(n), q) is at the
top of the queue.

• pq bwd is a descending priority queue w.r.t. (order(n),
q), thus pair (n, q) with the largest (order(n), q) is at the
top of the queue.

Now let us present ScanForward (ScanBackward is
defined similarly). The procedure reads cgraph sequen-
tially and repeats the following until EOF is found. First,
the procedure loads |S | bytes of data from cgraph into S ,
and computes set I of pairs at which a traversal should be
(re)started. At the first execution of ScanForward, for any
edge (n, q) → (n′, q′) in S , (n, q)(n) is added to I whenever
q = q0 in lines 5 and 6. Here, (n, q)(n) is called a subscripted
pair, and the subscript (n) of (n, q)(n) records the node at
which the traversal is originally started. As we will see be-
low, the subscript is used when outputting an answer. In
line 7, the “visited” mark is to prevent a subscripted pair
from being visited more than once. At the second or later
execution, any pair (n, q)(ns) in pq fwd is added to I if a
traversal can be restarted from (n, q) on the current sublist
in S , i.e., S .min′ ≤ (order(n), q) ≤ S .max′ and S contains
an edge (n, q) → (n′, q′) for some (n′, q′) (line 8). Then for
each subscripted pair (n, q)(ns) in I, a traversal on S from
(n, q) is (re)started (line 10). Let (n′, q′) be a pair encoun-
tered by this traversal. If q′ ∈ F, then (ns, n′) is outputted as
an answer, where ns is the subscript of the subscripted pair
(n, q)(ns) at which the traversal is (re)started (lines 13 and
14). If (n′, q′) is a pair outside S , then the traversal is sus-
pended and (n′, q′)(ns) is added to pq fwd or pq bwd (lines
15 to 18).

Procedure ScanForward
Input: NFA A = (Q,Σ, δ, q0, F), contracted graph cgraph,

priority queues pq fwd, pq bwd
Output: Pairs (n, n′) such that (n, q0)� (n′, q′) and that

q′ ∈ F obtained by scanning cgraph forward

1. Do the following until EOF is found
2. begin
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3. I ← ∅
4. Load |S | bytes of data from cgraph
5. if this is the first execution of ScanForward then
6. I ← {(n, q)(n) | (n, q)→ (n′, q′) is an edge in S ,

q = q0}
7. Mark (n, q)(n) as “visited” for each (n, q)(n) ∈ I
8. Remove all pairs (n, q)(ns) such that

S .min′ ≤ (order(n), q) ≤ S .max′ from pq fwd.
For each removed pair (n, q)(ns), add (n, q)(ns) to I if
S contains an edge (n, q)→ (n′, q′) for some (n′, q′)

9. for each (n, q)(ns) ∈ I do
10. Traverse S from (n, q) and find all pairs (n′, q′)

such that (n, q)� (n′, q′) in S and that
(n′, q′)(ns) is unvisited.
Let T be the resulting set.

11. Mark (n′,q′)(ns) as “visited” for each (n′,q′)(ns) ∈T
12. for each (n′, q′)(ns) ∈ T do
13. if q′ ∈ F then
14. Output (ns, n′) as an answer
15. if (order(n′), q′) < S .min′ then
16. Add (n′, q′)(ns) to pq bwd
17. else if (order(n′), q′) > S .max′ then
18. Add (n′, q′)(ns) to pq fwd
19. end

Let us explain ScanForward and ScanBackward by
examples. According to TraverseCgraph, ScanForward
is executed first, then ScanBackward is executed, and so
on. Firstly, for any edge (n, q) → (n′, q′) in S , ScanFor-
ward starts a traversal from (n, q) if q = q0 (lines 6 and
9). For example, consider an edge (n12, q0) → (n10, q1) in
Fig. 2 (A). Since the state q0 of (n12, q0) is the start state,
we start a traversal from this edge. However, as shown
in Fig. 2 (A), (n10, q1) → (n2, q2) is outside S (in a back-
ward direction), i.e., (order(n10), q1) < S .min′. Thus we
have to “suspend” the traversal and “restart” it from (n10, q1)
later. To record this, we add (n10, q1)(n12) to pq bwd in
lines 15 and 16. As an another example, consider an edge
(n9, q0) → (n8, q1) in S (Fig. 2 (A)). The edge is adjacent
to (n8, q1) → (n11, q2), which is outside S (in a forward
direction), i.e., (order(n8), q1) > S .max′. Thus (n8, q1)(n9)

is added to pq fwd (lines 17 and 18). We use pq fwd
and pq bwd separately according to scanning directions.
Since pq fwd is an ascending priority queue, ScanForward
looks pq fwd to obtain pairs at which traversals should be
restarted in line 8 (i.e., the scanning direction coincides with
the node ordering of pq fwd). On the other hand, pq bwd
is a descending priority queue, and thus ScanBackward
looks pq bwd to obtain pairs at which traversals should be
restarted.

After the first execution of ScanForward, ScanBack-
ward is executed in which cgraph is scanned in a backward
direction (Fig. 2 (B)). Here, for each edge (n, q) → (n′, q′)
in S , if (n, q)(ns) is contained in pq bwd, then we “restart”
the traversal from (n, q). And if a pair (n′′, q′′) with q′′ ∈ F
is found during the traversal, then this is outputted as an an-
swer. For example, consider an edge (n10, q1) → (n2, q2) in
Fig. 2 (B). Then (n10, q1)(n12) is contained in pq bwd due to
the previous ScanForward execution, and thus the traversal
is restarted. We repeat such scans until both pq fwd and
pq bwd become empty.

Fig. 2 ScanForward and ScanBackward

Fig. 3 A path from n to n′

Actually, cgraph can be traversed by ScanForward
only, although the algorithm uses both ScanForward and
ScanBackward. The reason why we use ScanBackward
as well as ScanForward is that “upward” paths can be tra-
versed more efficiently by using ScanBackward. For ex-
ample, consider the path from n to n′ in Fig. 3, which runs
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Fig. 4 Loading sublists of cgraph into S

across k boundaries. Then only one ScanBackward is re-
quired to traverse the path. On the other hand, without Scan-
Backward we need k ScanForwards’ to traverse the path.

Finally, we note that a little care needs to be taken
when loading a sublist into S in line 4 of ScanForward. If
cgraph contains more than one edge having the same head,
say e1 = (n1, q1) → (n2, q2) and e2 = (n1, q1) → (n3, q3),
then e1 and e2 may be put into distinct sublists. If this hap-
pens, however, the “restart” of a traversal does not work ap-
propriately. For example, if we find a pair (n1, q1)(n) in a
priority queue during processing the sublist containing e2,
then a traversal is restarted at e2 but it fails to visit e1 since
e1 is not contained in the sublist. To cope with this prob-
lem, sublists of cgraph are loaded into S in the following
manner. We say that an edge e is a bottom edge of S if e is
the last edge in S or the head of e coincides with that of the
last edge of S . As shown in Fig. 4, when C1 is loaded into
S , ScanForward processes the edges in S except the bottom
edges. When it is completed, the bottom edges are copied
to the top of S , and then C2 is loaded into S just below the
copied edges. Then ScanForward processes the edges in S
except the bottom edges, and so on.

3.2.3 Pruning Edges

In line 7 of Main, Prune(S , A) deletes edges unnecessary
w.r.t. NFA A from S . Let n be a node. This procedure deter-
mines (i) which outgoing edges of n can be pruned accord-
ing to the transition function of A and the incoming edges of
n and (ii) which incoming edges of n can be pruned accord-
ing to the transition function of A and the outgoing edges
of n. For simplicity, we explain this procedure by an exam-
ple. Consider pruning outgoing edges of n1 in Fig. 5 (b). It

is clear that n1
f→ n7 can be pruned since f does not ap-

pear in NFA A in Fig. 5 (a). On the other hand, n1
a→ n4

is not pruned since δ(q0, a) � ∅ and thus this edge is re-

Fig. 5 Pruning outgoing/incoming edges

quired for a traversal starting from (n1, q0) (lines 2 and 3 of

TraverseBuf). n1
b→ n5 is not pruned either since we have

q2 ∈ δ̂(q0, ab) and n2
a→ n1

b→ n5, i.e., (n5, q2) is reachable
from (n2, q0). Finally, n1

c→ n6 is pruned since the incoming

edge n2
a→ n1 is labeled by a but δ̂(q0, ac) = ∅.

Incoming edges are pruned similarly. Consider the

incoming edges of n′1 in Fig. 5 (c). First, n′3
b→ n′1 is

not pruned since n′1 has an outgoing edge n′1
c→ n′5 and

q3 ∈ δ̂(q1, bc), i.e., (n′5, q3) is reachable from (n′3, q1). Then

consider n′2
a→ n′1. (n′1, q1) is reachable from (n′2, q0) and we

have δ(q1, b) = {q2}, but n′1 has no outgoing edge labeled by

b (any traversal is stopped here). Thus n′2
a→ n′1 is redundant

and it is pruned.

4. Correctness of the Algorithm

In this section, we show the correctness of the algorithm.
We first show that the edges of cgraph are obtained cor-
rectly (Lemma 1). Then we show that cgraph is traversed
correctly (Lemma 2). By using these lemmas we show the
correctness of the algorithm (Theorem 1).

Let G = (V, E,Σ) be a graph, r be a regular path query,
and A = (Q,Σ, δ, q0, F) be an NFA such that L(A) = L(r).
We say that (n′, q′) is reachable from (n, q) in G (w.r.t. A)
if there is a path n �p n′ in G such that q′ ∈ δ̂(q, l(p)). In
particular, if the path p contains no boundary edge, then we
say that (n′, q′) is 0-reachable from (n, q) in G.

Lemma 1: If (n′, q′) is 0-reachable from (n, q) in G, then
the following four conditions hold.

1. If Tstart(n, q) and Tout(n′, q′), then for any certifi-
cate (n′′, q′′) of Tout(n′, q′), cgraph contains an edge
(n, q)→ (n′′, q′′).

2. If Tstart(n, q) and Taccept(n′, q′), then (n, n′) is outputted
as an answer.

3. If Tin(n, q) and Tout(n′, q′), then for any certifi-
cate (n′′, q′′) of Tout(n′, q′), cgraph contains an edge
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(n, q)→ (n′′, q′′).
4. If Tin(n, q) and Taccept(n′, q′), then cgraph contains an

edge (n, q)→ (n′, q′).

Proof: Assume that (n′, q′) is 0-reachable from (n, q) in G.
Then there is a path n �p n′ in G such that q′ ∈ δ̂(q, l(p))
and that p contains no boundary edge. Since p contains no
boundary edge, TraverseBuf finds p and adds appropriate
edges to cgraph and/or outputs answers according the an-
tecedents of the above conditions 1 to 4. �

We next show that cgraph is correctly traversed by
TraverseCgraph. If there is a path from (n, q) to (n′, q′) in
cgraph, then we say that (n, q) is c-reachable from (n′, q′).

Lemma 2: (n′, q′) is c-reachable from (n, q0) for some q′ ∈
F iff TraverseCgraph outputs (n, n′) as an answer.

Proof: If the size of cgraph does not exceed |S |, the lemma
follows from lines 1 to 4 of TraverseCgraph. Consider the
case where the size of cgraph exceeds |S |. In the following,
we consider the sufficient condition of the lemma. Traver-
seCgraph partitions cgraph into

⌈ |cgraph|
|S |

⌉
sublists. For two

edges (n, q) → (n′, q′) and (n′, q′) → (n′′, q′′), if the edges
are in distinct sublists, then we say that (n, q) → (n′, q′)
is a boundary edge. Let p be a path containing a boundary
edge. Then p can be denoted (n, q)� (n′, q′)→ (n′′, q′′)�
(n′′′, q′′′), where (n′, q′)→ (n′′, q′′) is a boundary edge. We
say that (n′′, q′′) is a boundary pair of p. For a path p in
cgraph, by bp(p) we mean the number of boundary pairs in
p.

Suppose that (n′, q′) is c-reachable from (n, q0). Then
there is a path (n, q0) �p (n′, q′) in cgraph. Here, suppose
that a boundary pair, say (n′′, q′′), occurs in p twice. Then p
can be denoted as follows.

(n, q0)� (n′′, q′′)� (n′′, q′′)� (n′, q′).

By skipping the subpath between the boundary pairs, we
obtain

(n, q0)� (n′′, q′′)� (n′, q′).

Therefore, if (n′, q′) is c-reachable from (n, q0), then there
is a path from (n, q0) to (n′, q′) such that no boundary pair
occurs more than once. For a path p, if no boundary pair
occurs more than once in p, then we say that p is b-simple.
Note that for any b-simple path p, bp(p) ≤ |cgraph|.

In the following, we show that if (n′, q′) is c-reachable
from (n, q0) with q′ ∈ F, then the algorithm finds a b-simple
path from (n, q0) to (n′, q′). We need a few definitions. We
write (n, q)�b

k (n′, q′) if (i) k = 0 and (n, q) = (n′, q′) or (ii)
k ≥ 1 and there is a b-simple path (n, q)�p (n′, q′) such that
bp(p) ≤ k and that (n′, q′) is a boundary pair. Similarly, we
write (n, q) �a

k (n′, q′) if there is a b-simple path (n, q) �p

(n′, q′) such that bp(p) ≤ k and that q′ ∈ F.
We show by induction on k that the following condi-

tions hold.

1. If (n, q0)�b
k (n′, q′), then (n′, q′)(n) is added to pq fwd

or pq bwd.

2. If (n, q0) �a
k (n′, q′), then (n, n′) is outputted as an an-

swer.

Basis: Let k = 0. Consider the condition 1. By lines
5 and 6 of ScanForward, for every edge (n, q) → (n′′, q′′),
(n, q)(n) is added to pq fwd whenever q = q0. As for the
condition 2, (n, q0) �a

0 (n′, q′) implies that there is a path
(n, q0) �p (n′, q′) such that bp(p) = 0 and that q′ ∈ F.
Since bp(p) = 0, (n, n′) is outputted as an answer by lines
13 and 14 of ScanForward.

Induction: Consider the condition 1 (the condition 2
can be shown similarly). Assume as the induction hypoth-
esis that if (n, q0) �b

k−1 (n′, q′), then the condition 1 holds.
Suppose that (n, q0) �b

k (n′, q′). Then there is a b-simple
path (n, q0) �p (n′, q′) such that bp(p) ≤ k and that (n′, q′)
is a boundary pair. Then p can be denoted

p2︷���������������������︸︸���������������������︷
(n, q0)� (n′′, q′′)� (n′′′, q′′′)→ (n′, q′)︸�����������������︷︷�����������������︸

p1

,

where (n′′, q′′) and (n′, q′) are boundary pairs, (n′′′, q′′′) →
(n′, q′) is a boundary edge, bp(p1) ≤ k − 1, and bp(p2) = 1
(i.e., p2 contains no boundary pair except (n′′, q′′)). Since
bp(p1) ≤ k − 1 and (n′′, q′′) is a boundary pair, we have
(n, q0) �b

k−1 (n′′, q′′). Thus by the induction hypothesis
(n′′, q′′)(n) is added to pq fwd/pq bwd. Since (n′′, q′′)(n) can
be found in pq fwd/pq bwd, the traversal of p is restarted
from (n′′, q′′). Moreover, since p2 contains no boundary pair
except (n′′, q′′) and (n′, q′) is a boundary pair occurring in
neither p1 nor p2, (n′, q′)(n) is added to pq fwd/pq bwd by
lines 15 to 18 of ScanForward. �

We now have the following theorem.

Theorem 1: Let n, n′ ∈ V be nodes and q′ ∈ F be an ac-
cepting state. Then (n′, q′) is reachable from (n, q0) in G iff
the algorithm outputs (n, n′).

Proof: The necessary condition can be shown easily. In the
following, we consider the sufficient condition. If (n′, q′) is
0-reachable from (n, q0) in G, then (n, n′) is outputted as an
answer by the condition 2 of Lemma 1. Consider the case
where (n′, q′) is reachable from (n, q0) but not 0-reachable.
Then there is a path n �p n′ in G such that q′ ∈ δ̂(q0, l(p))
and that p contains at least one boundary edge. Let k be the
number of boundary edges in p. Then p can be denoted

n�p1 n1
l1→ n2 �p2 n3

l2→ n4 �p3 · · ·
lk→ n2k �pk+1 n′,

where pi is a path containing no boundary edge (1 ≤ i ≤
k + 1) and n2i−1

li→ n2i is a boundary edge (1 ≤ i ≤ k). Then
since q′ ∈ δ̂(q0, l(p)) and q′ ∈ F, for some q1, q2, · · · , q2k ∈
Q we have the following.

P1: p1 satisfies that Tstart(n, q0), q1 ∈ δ̂(q0, l(p1)), and that

Tout(n1, q1), and n1
l1→ n2 is a boundary edge with q2 ∈

δ(q1, l1).
Pi: For every 2 ≤ i ≤ k, pi satisfies that Tin(n2i−2, q2i−2),

q2i−1 ∈ δ̂(q2i−2, l(pi)), and that Tout(n2i−1, q2i−1), and
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n2i−1
li→ n2i is a boundary edge with q2i ∈ δ(q2i−1, li).

Pk+1: pk+1 satisfies that Tin(n2k, q2k), q′ ∈ δ̂(q2k, l(pk+1)),
and that Taccept(n′, q′).

By Lemma 1, any edges corresponding to P1, Pi, Pk+1 are
contained in cgraph, and cgraph is processed correctly by
Lemma 2. Hence the theorem holds. �

5. I/O and CPU Costs of the Algorithm

In this section, we briefly present the I/O and CPU costs of
the algorithm (more details can be found in the appendix).
Let G = (V, E,Σ) be a graph, r be a regular path query, and
A = (Q,Σ, δ, q0, F) be an NFA such that L(A) = L(r).

5.1 I/O Cost

Following External Memory Model [31], we assume that
data is transferred between HDD and main memory in
blocks of size B.

Since node list N contains Out(n), order(n), and
inMax(n, l) and inMin(n, l) for each node n, the size of N is
in O(|E| + |V |). Thus, the I/O cost of reading N sequentially
is in O((|E|+|V |)/B). Moreover, the cost of writing cgraph is
in O(|cgraph|/B). Suppose that the size of cgraph does not
exceed |S |. Then TraverseCgraph reads cgraph only once,
where |cgraph| < |S | < |N|. Let Ans be the set of answers.
Taking the cost of outputting Ans into account, the total I/O
cost of Main is

O((|E| + |V | + output(|Ans|))/B). (1)

Here, |Ans| is in O(|Vs(r)||Va(r)|), where Vs(r) is the set of
“possible start nodes” and Va(r) is the set of “possible ac-
cepting nodes”, that is,

Vs(r) = {n ∈ V | n l→ n′ ∈ E, δ(q0, l) � ∅},
Va(r) = {n′ ∈ V | n l→ n′ ∈ E,

δ(q, l) ∩ F � ∅ for some q ∈ Q}.
Suppose next that the size of cgraph exceeds |S |. Then we
can show that TraverseCgraph requires O(|cgraph|2/B) I/O
read cost. Thus the total I/O cost of Main is

O((|E|+|V |+ |cgraph|2+output(|Ans|))/B). (2)

Here, |cgraph| is in

O(|Vin(r)||E(r)||Δ|), (3)

where Vin(r) = {n′ ∈ V | n
l→ n′ ∈ E(r)}, E(r) = {n l→

n′ ∈ E | l appears in r}, and Δ = {(q, q′) ∈ Q × Q | q′ ∈
δ̂(q, w), w ∈ Σ∗}.

This suggests that cgraph does not become too large
whenever Prune deletes enough number of unnecessary
edges.

5.2 CPU Cost

Since N is partitioned into k =
⌈ |N|
|S |

⌉
sublists, lines 5 to 9

of Main are repeated k times. For each sublist, since the
number of edges in S is in O(|E|/k), Prune in line 7 can be
done in O(|E||Δ|/k) time. Consider TraverseBuf in line 8 of
Main. Let

Vout(r) = {n ∈ V | n l→ n′ ∈ E(r)}.
Then we can show that TraverseBuf processes each sub-
list in O(|Vout(r)||E(r)||Q||Δ|/k) time. Thus the cost of Main
except TraverseCgraph is in

O(k(|E||Δ|/k + |Vout(r)||E(r)||Q||Δ|/k))

= O(|E||Δ| + |Vout(r)||E(r)||Q||Δ|).
Consider next the cost of TraverseCgraph. The numbers of
nodes and edges in cgraph are in O(|cgraph|). Lines 1 to
4 can be done by a BFS traversal for each pair (n, q0) with
n ∈ Vs(r), which is in

O(|Vs(r)|(|cgraph| + |cgraph|)) = O(|Vs(r)||cgraph|).
On the other hand, the total cost of lines 6 to 10 requires
dealing with the priority queues as well as the traversal of
cgraph, whose total cost is in

O(|cgraph||Vs(r)| log(|cgraph||Vs(r)|)).
Therefore, if |cgraph| < |S |, then the total cost of Main

is in

O(|E||Δ| + |Vout(r)||E(r)||Q||Δ|
+ |Vs(r)||cgraph|), (4)

otherwise the cost is in

O(|E||Δ| + |Vout(r)||E(r)||Q||Δ|
+ |cgraph||Vs(r)| log(|cgraph||Vs(r)|)). (5)

6. Experimental Results

We implemented the algorithm in C++ and made evalua-
tion experiments on I/O cost, execution time, and the size of
cgraph. We made two experiments under datasets generated
by SP2Bench [32] and DBPSB [33], respectively. These two
datasets are contrasting. SP2Bench generates synthetic data
based on DBLP, and thus it is under a small schema and
strictly structured. On the other hand, DBPSB is based on
a subset of DBPedia. Thus it has no explicit schema and is
more loosely structured.

To obtain query sets for the experiments, we made a
query generator for regular path queries. In short, this pro-
gram generates a sequence of labels and operators randomly,
and constructs regular path queries by combining these el-
ements. However, if a sequence of labels were generated
completely randomly, the answers of most queries would be
empty. Therefore, the program generates a sequence of la-
bels so that adjacent labels are “connected”, e.g., a sequence
“l1 l2” is generated only if there exists at least one node n
such that an incoming edge of n is labeled by l1 and that an
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Table 1 Summary of the SP2Bench dataset

5m 20m 50m 100m 200m

Resources (internal nodes) 911,493 3,472,940 8,698,023 17,823,525 36,447,413
Literals (leaf nodes) 2,693,483 10,506,697 25,880,271 51,298,417 101,914,699
|V | (resources+ literals) 3,604,976 13,979,637 34,578,294 69,121,942 138,362,112
|E| 5,000,630 20,000,686 50,000,863 100,000,374 200,000,016
|E|/|V | 1.39 1.43 1.45 1.45 1.45
|Σ| 74 74 76 77 77
Size of N (GBytes) 0.14 0.57 1.46 3.04 6.28

Fig. 6 Experimental results for the SP2Bench dataset

outgoing edge of n is labeled by l2.
All the evaluations were executed on a machine with

Intel Core i7 3.5GHz CPU, 8GB RAM, 2TB SATA HDD,
and Linux OS (CentOS 7). In order to verify that our algo-
rithm works in small memory, we limited the size of main
memory available to each process to 4GB. Also, |S | is set
to 400MB unless otherwise stated. Since Linux OS has a
buffer cache to store previously accessed files, we cleared
the cache prior to each query execution.

6.1 Experiment for SP2Bench

In the first experiment, we generated five RDF files of dif-
ferent sizes by SP2Bench, and constructed node lists N from
the RDF files. Table 1 presents a summary of the dataset.

Throughout this experiment, we used 25 regular path queries
generated by the above query generator. The average size of
the queries is 12.0 (6.5 labels and 5.5 operators), and 16 out
of the 25 queries have non-empty answers.

Figure 6 (a) plots the average execution time of the 25
queries. As shown in the figure, the execution time is al-
most liner to graph size |E|. Table 2 lists (a) the average
I/O time and (b) the average execution time ((b) coincides
with Fig. 6 (a)). This result suggests that the design of our
algorithm, based on sequential scans of N and cgraph, is
effective to keep the I/O time considerably small. Table 3
lists the numbers of edges that are not deleted by Prune.
This shows that more than 90 percent of the edges in E are
deleted by Prune.

Figure 6 (c) plots the execution times of the 25 queries
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Table 2 I/O time

5m 20m 50m 100m 200m

(a) I/O (read + write) time (sec) 0.12 0.44 1.14 2.42 5.56
(b) Execution time (sec) 2.92 8.88 22.48 49 119
(a)/(b) 0.041 0.050 0.051 0.049 0.046

Table 3 The number of edges not deleted by Prune

5m 20m 50m 100m 200m

Average number of edges R not deleted by Prune 394369 1569674 4162446 8998095 19151186
|R|/|E| 0.079 0.078 0.083 0.090 0.096

Table 4 Number of queries for which |cgraph| exceeds |S |
5m 20m 50m 100m 200m

0 0 0 0 5

on the 200m graph. 20 queries are executed in about 100
seconds (group B), while five queries require more than 200
seconds (group A). Here, we have |cgraph| > |S | for the five
queries in group A, and as shown in Table 4, the queries in
group A are the only queries for which |cgraph| exceeds |S |.
The difference between groups A and B can be explained
as follows. Some of the labels in SP2Bench occur very fre-
quently, e.g., every node has a “type” edge indicating the
class in which the node belongs to, and the five queries in
group A contain such “frequent” labels. As a result, if a
query contains a frequent label, smaller number of edges are
deleted by Prune and more time is required for executing the
query.

Let us compare the result of this experiment and the
cost estimations in Sect. 5. Figure 6 (d) plots the average ex-
ecution times of the following: the 25 queries (equivalent to
Fig. 6 (a)), the queries in group A, and the queries in group
B. First, the execution time of group B is linear to the size
of input graph, which reasonably falls below the CPU cost
estimation (4). Consider next group A. Recall that the last
term |cgraph||Vs(r)| of the CPU cost estimation (4) changes
to |cgraph||Vs(r)| log(|cgraph||Vs(r)|) when |cgraph| exceeds
|S |. This suggests that the execution time of a query notice-
ably increases when |cgraph| exceeds |S |. In fact, the slope
between 100m and 200m in Fig. 6 (d) becomes remarkably
larger than the slope between 5m to 100m. On the other
hand, as shown in Fig. 6 (e), there is no significant gap be-
tween the I/O costs of groups A and B. This suggests that the
third term |cgraph|2 of (2), which is added to (1) due to the
fact that |cgraph| > |S |, may have only a small affect on the
I/O cost. In summary, these results largely fit in the I/O and
CPU cost estimations, but further investigations for graphs
larger than the 200m graph should be made as a future work.

Consider the size of cgraph. Figure 6 (f) plots the aver-
age size of cgraph of the 25 queries. As shown in the figure,
cgraph grows almost linearly to the size of input graph. We
also examined how the size of S affects the size of cgraph
and the execution time of the algorithm. In this examination,
we used the 200m graph and changed the size of S from
100 to 400 Mbytes (Fig. 6 (g)). Both the execution time and

the size of cgraph hardly change as the size of S changes.
These results suggest that the size of S has little impact on
the execution time of the algorithm unless S is extremely
small.

Finally, Table 5 lists the average execution time of our
algorithm and that of the algorithm in [6]† for the 25 queries.
The algorithm in [6] was implemented in Java and we exe-
cuted it in Java 1.7 environment. As the result, the algorithm
in [6] did not work on the 20m and larger graphs due to Out-
OfMemory error, even if the 4GB memory limit is disabled
and Java’s heap size is extended to 8GB. This suggests that
our external memory approach is effective to solve the all-
pairs regular path problem on large graphs in a single PC
environment.

6.2 Experiment for DBPSB

In the second experiment, we used four DBPSB graphs de-
noted “15m”, “77m”, “154m”, “279m”, named after the size
of E (Table 6)††. We used the same query generator as above
and generated 25 regular path queries. The average size of
the queries is 11.12 (5.84 labels and 5.28 operators), and 19
queries have non-empty answers.

Figure 7 shows the results of this experiment. The
overall tendency is similar to the first experiment, and
thus we focus on the points different to the first one. As
shown in Figs. 7 (a) to (c), the slopes of the execution time,
|cgraph|, and the I/O cost between 154m and 279m are no-
ticeably larger than the corresponding slopes between 15m
and 154m. A possible reason for this is that the 279m graph
contains more nodes, especially resources, relative to |E|
than the other three graphs (as shown in Table 6, the num-
ber of resources increases drastically at the 279m graph).
In fact, the cost estimations (1) to (5) in Sect. 5 depend
on |V |, |Vin(r)|, |Vout(r)|, and |Vs(r)| as well as |E|, which
largely accounts for the above increases of the execution
time, |cgraph|, and the I/O cost at the 279m graph.

Figure 7 (d) plots the execution times of the 25 queries
on the 279m graph. The 24 queries in group B are executed
in about 110 seconds, while the query in group A requires
191 seconds. Here, the query in group A is the only one

†We use the implementation at https://www.informatik.
hu-berlin.de/de/forschung/gebiete/wbi/resources/rpq.
††These files are obtained from benchmark {10,50,100,

200}.nt.bz2 available at http://benchmark.dbpedia.org/.
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Table 5 Execution times of our algorithm and the algorithm of [6]

5m 20m 50m 100m 200m

Our algorithm (sec) 2.92 8.88 22.48 49.08 118.56
The algorithm in [6] (sec) 13 - - - -

Table 6 Summary of the DBPSB dataset

15m 77m 154m 279m

Resources (internal nodes) 2,086,681 6,170,357 7,283,873 38,401,650
Literals (leaf nodes) 7,596,421 37,542,809 76,879,431 136,728,332
|V | (resources+ literals) 9,683,102 43,713,166 84,163,304 175,130,002
|E| 15,373,842 76,868,931 153,737,801 278,913,740
|E|/|V | 1.59 1.76 1.82 1.59
|Σ| 14,130 22,147 23,344 39,675
Size of N (GBytes) 0.47 1.97 3.40 9.41

Fig. 7 Experimental results for the DBPSB dataset

Table 7 The number of edges not deleted by Prune

15m 77m 154m 279m

Average number of edges R not deleted by Prune 45204 203344 407036 983968
|R|/|E| 0.0029 0.0026 0.0026 0.0035

for which the size of cgraph exceeds |S |, caused by a fre-
quent label. Note that group A of this experiment consists
of only one query while group A of the first experiment con-
sists of five queries. A possible reason for this difference is
that, as shown in Tables 1 and 6, the size of Σ of DBPSB is
much larger than that of SP2Bench, and thus a query under
DBPSB is less likely to contain a frequent label.

Figures 7 (e, f) plot the execution times and the I/O
costs of groups A and B. Similarly to the first experiment,
the gap between the execution times of groups A and B un-
der the 279m graph is remarkably larger, while there is little
gap between the I/O costs of groups A and B.

Table 7 lists the numbers of edges not deleted by Prune.
The ratios listed in this table are significantly smaller than

those of Table 3. This is because, as shown in Tables 1
and 6, the size of Σ of DBPSB is much larger than that of
SP2Bench, and thus Prune can delete relatively more edges
under the DBPSB graphs to the SP2Bench graphs. More-
over, although the size of the 279m graph (DBPSB) is larger
than that of 200m (SP2Bench), the average execution times
of the two graphs are almost the same. This implies that the
execution time of a query is affected by the size of Σ as well
as the size of input graph.

Finally, the algorithm of [6] did not work due to Out-
OfMemory error even on the 15m graph, even if the 4GB
memory limit is disabled and Java’s heap size is extended to
8GB.
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7. Conclusion

In this paper, we proposed an external memory algorithm
for the all-pairs regular path problem. Our algorithm finds
the answers matching r by scanning the node list of G se-
quentially, which avoids random accesses to disk and thus
makes regular path query processing efficient. The exper-
iments suggest our approach is effective in solving the all-
pairs regular path problem on large graphs.

However, this work has just started and we still have
a lot things to do. First, we need to investigate the per-
formance of our algorithm by using much more kinds of
datasets as well as SP2Bench and DBPSB. Second, we have
to compare our algorithm with more graph stores. Third,
we have to consider node ordering of N. For example, [34]
proposes a node ordering which achieves an efficient child
and descendant traversal on tree structured data. We need to
consider node ordering of N that makes the algorithm more
efficient.
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Appendix: I/O and CPU Costs of the Algorithm

Let G = (V, E,Σ) be a graph, r be a regular path query, and
A = (Q,Σ, δ, q0, F) be an NFA such that L(A) = L(r).

A.1 I/O Cost

We assume that data is transferred between HDD and main
memory in blocks of size B.

Consider first the cost of constructing node list N. To
construct node list N, for each node n ∈ V , we have to
collect Out(n), and inMax(n, l) and inMin(n, l) for each la-
bel l. Collecting Out(n) of all the nodes n can be done in
O(scan(|E|)). Collecting inMax(n, l) and inMin(n, l) of all
the nodes n can be done by sorting E w.r.t. the target node
of each edge and then scanning the sorted edge list, which
requires O(sort(|E|)+scan(|E|)) = O(sort(|E|)) I/O cost. The
nodes with collected information are inserted into an exter-
nal B+-tree and then exported as node list N, which can be
done in O(|V | logB |V |). Thus the I/O cost of constructing N
is

O(sort(|E|) + |V | logB |V |).
Let us next consider the I/O cost of the algorithm.

Since node list N contains Out(n), order(n), and inMax(n, l)
and inMin(n, l) for each node n, the size of N is in O(|E| +
|V |). Thus, in Main, the I/O cost of reading N sequentially is
in O((|E| + |V |)/B). Moreover, the cost of writing cgraph is
O((|cgraph|)/B). Suppose that the size of cgraph does not
exceed |S |. Then TraverseCgraph reads cgraph only once,
where |cgraph| < |S | < |N|. Let Ans be the set of answers.
Taking the cost of outputting Ans into account, the total I/O
cost of Main is

O((|E| + |V | + output(|Ans|))/B).

Here, |Ans| is in O(|Vs(r)||Va(r)|), where Vs is the set of “pos-
sible start nodes”, that is,

Vs(r) = {n ∈ V | n l→ n′ ∈ Out(n), δ(q0, l) � ∅},
and Va(r) is the set of “possible accepting nodes”, that is,

Va(r) = {n′ ∈ V | n l→ n′ ∈ E,

δ(q, l) ∩ F � ∅ for some q ∈ Q}.
Then consider the case where the size of cgraph ex-

ceeds |S |. Each ScanForward/ScanBackward execution re-
quires O(|cgraph|/B) I/O read cost. Lines 7 to 10 of Tra-
verseCgraph are repeated at most |cgraph| times (the length
of the possible longest answer path is |cgraph|, which is a
very extreme case although). Therefore, the I/O read cost of

TraverseCgraph is in O(|cgraph|2/B). Hence the total I/O
cost of Main in this case is

O((|E| + |V | + |cgraph|2 + output(|Ans|))/B).

Let us consider the size of cgraph. Let E(r) = {n l→
n′ ∈ E | l appears in r} and Δ = {(q, q′) ∈ Q × Q | q′ ∈
δ̂(q, w), w ∈ Σ∗}. Let us consider how many edges are cre-
ated and added to cgraph by Main. Main “partitions” N into
k =

⌈ |N|
|S |

⌉
sublists. In the following, we assume that the num-

ber of boundary edges in N is proportional to k. Let Ni be
the i-th sublist of the k sublists, and consider the following
sets of edges generated by Main when Ni is loaded into S .
We write n ∈ Ni if node n is contained in Ni.

• E1(Ni) is the set of edges between Tin and Tout. That
is, (n, q) → (n′′, q′′) ∈ E1(Ni) iff Tin(n, q), Tout(n′, q′),
Ni contains a path n �p n′, q′ ∈ δ̂(q, l(p)), n′

l→ n′′ ∈
Out(n′), q′′ ∈ δ(q′, l), and n′′ � Ni.

• E2(Ni) is the set of edges between Tstart and Tout.
That is, (n, q) → (n′′, q′′) ∈ E2(Ni) iff Tstart(n, q),
Tout(n′, q′), Ni contains a path n �p n′, q′ ∈ δ̂(q, l(p)),

n′
l→ n′′ ∈ Out(n′), q′′ ∈ δ(q′, l), and n′′ � Ni.

• E3(Ni) is the set of edges between Tin and Taccept. That
is, (n, q) → (n′, q′) ∈ E3(Ni) iff Tin(n, q), Taccept(n′, q′),
Ni contains a path n�p n′, and q′ ∈ δ̂(q, l(p)).

Consider E1(Ni). Let

Vin(r) = {n ∈ V | n′ l→ n ∈ E(r)}.
Moreover, let

Vin(Ni) = {n ∈ Ni | n′ l→ n ∈ E(r), n′ � Ni}.
Then |Vin(Ni)| is in O(|Vin(r)|/k). Let

Eout(Ni) = {n′ l→ n′′ ∈ E(r) | n′ ∈ Ni, n
′′ � Ni}.

By the above assumption, the number of boundary edges
in E(r) is εk|E(r)| for some ε < 1. Thus |Eout(Ni)| is in
O((εk|E(r)|)/k) = O(|E(r)|). Let

D(Ni) = {(q, q′) | Tin(n, q),Tout(n
′, q′), q′ ∈ δ̂(q, w),

w ∈ Σ∗, n, n′ ∈ Ni}.
Then |D(Ni)| is in O(|Δ|). Thus |E1(Ni)| is in

O(|Vin(Ni)||Eout(Ni)||D(Ni)|)
= O

( |Vin(r)||E(r)||Δ|
k

)
. (A· 1)

We can also show that E2(Ni) and E3(Ni) are in (A· 1). Thus
|cgraph| is in

O(
∑

k

(|E1(Ni) + E2(Ni) + E3(Ni)|))

= O(|Vin(r)||E(r)||Δ|). (A· 2)

Thus, cgraph is not too large whenever a number of unnec-
essary edges are deleted by Prune.

http://dx.doi.org/10.1007/978-3-642-25073-6_29
http://dx.doi.org/10.1109/icde.2010.5447848
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In fact, this is still an overestimation and in general the
size of cgraph is much smaller than (A· 2). For example,

consider E1(Ni). Let n ∈ Vin(Ni), n′
l→ n′′ ∈ Eout(Ni), and

(q, q′) ∈ D(Ni) such that Tin(n, q) and that Tout(n′, q′). Then
the above estimation assumes that Ni “always” contains a
path n�p n′ such that q′ ∈ δ̂(q, l(p)) whenever Tin(n, q) and
Tout(n′, q′). However, in general the probability of existing
such a path from n to n′ is very low and thus |E1(Ni)| is
significantly smaller than (A· 1). Identifying a tighter upper
bound is left as a future work.

A.2 CPU Cost

Let us next consider the CPU cost of the algorithm. Since
N is partitioned into k =

⌈ |N|
|S |

⌉
sublists, lines 5 to 9 of Main

are repeated k times. For each sublist, since the number of
edges in S is in O(|E|/k), Prune in line 7 can be done in
O(|E||Δ|/k) time. Consider TraverseBuf called in line 8 of
Main. Let

Vout(r) = {n ∈ V | n l→ n′ ∈ E(r)}.
Then the for loop in line 2 of TraverseBuf repeats
O(|Vout(r)||Q|/k) times, and lines 3 to 12 can be done
by a BFS traversal over the edges in S plus the edges
leaving S , which is in O(|E(r)||Δ|). Thus, for each sub-
list of N loaded into S , the cost of TraverseBuf is
in O((|Vout(r)||Q|/k)|E(r)||Δ|) = O(|Vout(r)||E(r)||Q||Δ|/k).
Thus, the cost of Main except TraverseCgraph is in

O(k(|E||Δ|/k + |Vout(r)||E(r)||Q||Δ|/k))

= O(|E||Δ| + |Vout(r)||E(r)||Q||Δ|). (A· 3)

Consider the cost of TraverseCgraph. Then the numbers of
nodes and edges in cgraph are in O(|cgraph|). Lines 1 to
4 can be done by a BFS traversal for each pair (n, q0) with
n ∈ Vs(r), which is in

O(|Vs(r)|(|cgraph| + |cgraph|))
= O(|Vs(r)||cgraph|). (A· 4)

On the other hand, the total cost of lines 6 to 10 is the sum
of

1. the cost of traversing nodes in cgraph for each pair
(n, q0) with n ∈ Vs(r), and

2. the cost of adding/deleting pairs to/from the priority
queues.

The cost of 1 is in O(|Vs(r)||cgraph|) and the cost of 2 is in
O(|cgraph||Vs(r)| log(|cgraph||Vs(r)|)). Thus the total cost of
lines 6 to 10 is in

O(|cgraph||Vs(r)| log(|cgraph||Vs(r)|)). (A· 5)

Consequently, if |cgraph| < |S |, then by (A· 3) and
(A· 4) the total cost of Main is in

O(|E||Δ| + |Vout(r)||E(r)||Q||Δ| + |Vs(r)||cgraph|).
Otherwise, by (A· 3) and (A· 5) the cost is in

O(|E||Δ| + |Vout(r)||E(r)||Q||Δ|
+ |cgraph||Vs(r)| log(|cgraph||Vs(r)|)).
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