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SUMMARY Mathematical formulae play an important role in many
scientific domains. Regardless of the importance of mathematical formula
search, conventional keyword-based retrieval methods are not sufficient for
searching mathematical formulae, which are structured as trees. The in-
creasing number as well as the structural complexity of mathematical for-
mulae in scientific articles lead to the necessity for large-scale structure-
aware formula search techniques. In this paper, we formulate three types
of measures that represent distinctive features of semantic similarity of
math formulae, and develop efficient hash-based algorithms for the approx-
imate calculation. Our experiments using NTCIR-11 Math-2 Task dataset,
a large-scale test collection for math information retrieval with about 60-
million formulae, show that the proposed method improves the search pre-
cision while also keeps the scalability and runtime efficiency high.
key words: tree hashing, MathML, mathematical formula search, informa-
tion retrieval

1. Introduction

Mathematical formulae play an important role in many sci-
entific domains. As a growing number of mathematical for-
mulae becomes accessible on the Web, the necessity for
mathematical information retrieval also increases. However,
conventional web search engines are designed for natural
language text and cannot properly handle mathematical for-
mulae. Math formulae on the Web are commonly repre-
sented using MathML markup language which is an XML
application specified by W3C. Existing LATEX formulae can
be converted into MathML using publicly available tools
such as LaTeXML [1].

Since each MathML formula is represented as an XML
tree structure, conventional methods for tree structure in-
dexing, such as pq-gram [2], are applicable. However, the
standard methods do not take into account features specific
to mathematical formulae. For example, Cauchy–Schwarz
inequality |u · v| ≤ ||u||||v|| has two variables u and v. We
can also describe this inequality as |x · y| ≤ ||x||||y||; while
variable names are different, the meaning of both represen-
tations is the same. However, most existing tree similarity
search algorithms cannot capture this equivalence, because
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their similarity function is sensitive to any changes in sub-
ordinate nodes (including variable renaming). On the other
hand, in certain formulae, some variable names implicitly
convey the semantics of the variable. For example, variables
used in physics often represent specific physical quantities.
In F = ma, F,m, and a stand for force, mass, and accelera-
tion, respectively. When F,m and a are subsituted with V,R
and I, the resulting equation, V = RI represents Ohm’s law,
completely different physical property. Therefore, math re-
trieval systems should also consider these variable-sensitive
cases in their search operations.

When we read mathematical formulae, often we care
most about the high-level structure, so that the nodes near
the root of the tree are the same, while possibly ignoring
substitutions that happen near to leaf level [3]. For exam-
ple, the definition of spectral radius of a matrix, taken from
NTCIR11-Math dataset [4], is ρ(A) = lim

n→∞ ||A
n||1/n, which

can be viewed as ρ(∗) = lim
n→∞ || ∗

n ||1/n, where ′∗′ can be an

arbitrary formula itself. In order to deal with these cases,
we need to index substructures of mathematical formulae
that capture functions and their arguments structures.

The field of mathematical information retrieval is still
in its early stage in analyzing users’ information need. The
complexity of similarity calculation in math formula search,
which is basically similar tree-structure search, becomes
higher for more complicated, and expectedly more effec-
tive similar measures. Therefore, effectiveness and effi-
ciency of similarity calculation cannot be completely sep-
arated. Our basic assumption in this paper is that we first
need efficient algorithms in order to further investigate the
syntax-semantic similarity of math formulae. In this pa-
per, we introduce three types of similarity measures to re-
flect math-specific users’ information needs we mentioned
above: variable name, expression structure, and alpha-
equivalence measures. We also propose efficient algorithms
to calculate the proposed measures. These algorithms per-
form similarity calculation in almost linear time to the in-
put size. In our experiments, we show the efficiency and
search accuracy of our method using NTCIR-11 Math-2
Task dataset, a large-scale test collection for math informa-
tion retrieval with about 60-million formulae expressed in
MathML.
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2. Related Work

2.1 Mathematical Formula Search

Recent development of math search systems involves sev-
eral techniques to process mathematical expressions prior
to indexing step [5], [6]. These techniques [6] include seg-
mentation, normalization (e.g. repairing broken MathML-
representation of math expressions and removing MathML
attributes), enrichment (e.g. automatic inference of metadata
from context analysis), and approximation. Based on [5],
the approximation technique may involve using thesaurus
(i.e. adding synonyms for symbols to a query), canonical
orderings, enumerating variables, replacing symbols with
their types, and simplification. Furthermore, for index-
ing purpose, current math search systems apply structured-
based indexing via substitution trees, reduction to full-text
searches, reduction to SQL, or reduction to XML-based
searches [5], [6].

There were several implementations of math search
system published in NTCIR-11 Math-2 Task [4]. FSE [7]
proposed 5 similarity measure factors and evaluated those
factors individually to prove its relevance to similarity. They
considered the taxonomy of functions and operators, data-
type hierarchical level for mathematical expressions, the
depth of matching position, query coverage, and the differ-
ent importance between expression and formula (they re-
garded formula is more important than expression) as simi-
larity measure factors. ICST [8] introduced semantic enrich-
ment of mathematical formulae and used two types of for-
mula tokenizer which is similar to our proposal. IFISB [9]
extracted operators, constants, identifiers, and operators as a
formula representation and nouns and verbs from the nat-
ural language sentences which are around the formula as
the context representation. Those representations were in-
dexed using Elasticsearch [10]. KWARC [11] presented the
MathWebSearch system. It supported full-text search using
Elasticsearch [10] and formula query using trie-like tree in-
dex, which is similar to the substitution tree indexing [12].
MCAT [13] decomposed the Presentation MathML tree into
several paths from a root to a leaf. They expanded the key-
word query using the dependency graph in which vertices
represents each formula in the document. MIRMU [14] de-
veloped the search engine called Math Indexer and Searcher
(MIaS) [15]. This MIaS system applied ordering, tokeniza-
tion, variable unification, and constant unification to each
math expression. This team achieved the best MAP score
in NTCIR-11 Math task. RIT [16] handled the mathemat-
ical formula using Symbol Layout Tree, which represents
the layout relations between symbols in the formula. They
captured the structured of math expressions by generating
symbol pair tuples from this layout tree. TUW-IMP [17]
combined standard tokenizer of Lucene [18] for text search
and the tokenizer which extracts all literal and sliced subtree
in the formula tree.

According to Kamali et al. [19], mathematical formu-

lae search can be categorized into two types: one based on
exact match and the other on approximate match. The later
case can be further grouped into three approaches: substruc-
ture match, structure similarity, and keyword similarity.

The substructure match supports both exact and par-
tial matching. For a given query, a mathematical expres-
sion is retrieved by this approach if one of its subexpres-
sions exactly matches the query. In the structure similar-
ity approach, the SimSearch method proposed by [19] uti-
lized a tree-edit distance based method to calculate the sim-
ilarity of two mathematical expressions. An alternative for
matching based on structural similarity is the PatternSearch
algorithm [20], which specifies a template as the query and
returned expressions that match the template as the search
result. On the other hand, the keyword similarity approach
considers each mathematical expression as a bag of symbols
and functions, and completely ignores the structure.

Kamali et al. [19] also compared the performance and
showed that SimSearch and PatternSearch perform better
than other approaches. Comparing these two, PatternSearch
performs slightly better than SimSearch, but requires longer
execution time to process wildcard queries. Based on this,
they concluded that structural similarity is the best approach
for general cases, and pattern matching approach is advan-
tageous when a user is experienced with a target domain. In
this paper, we will focus on structural similarity.

2.2 Tree Structure Similarity

In this section, we briefly describe several studies about tree
similarity measures. Tree kernel method [21] first generates
a feature vector for each tree structure, where each element
of the vector refers to the existence of a particular subtree
component. Then, tree similarity is defined as the inner
product of these vectors. An efficient dynamic program-
ming based algorithm is applied for the calculation. Tree
kernel is used in several fields including natural language
processing [22] and bioinformatics [23].

The Tree Edit Distance (TED) [24] is an extension of
the edit distance for strings [25] and is widely used as a tree
similarity measure. In the same way as the edit distance
for strings, TED allows three operations: insertion, deletion,
and substitution of subtrees. The TED between two trees is
defined as the minimum possible number of edit operations
to transform. TEDs can be flexibly adapted to different do-
mains by adjusting the costs for editing operations. How-
ever, the calculation of TED requires O(n3) where n is the
number of nodes in the tree [26], and the complexity makes
it infeasible directly apply TED to large-scale math formula
search.

In order to overcome the computation cost problem of
TED, several approximation methods have been formulated.
Yang et al. [27] proposed a binary branch distance where a
triple, consists of a node, the leftmost child, and the right
sibling of the node, is first generated for each node on the
tree. Then, the generated triples are converted into a vector
representation of the tree whose L1 distance gives the lower
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bound to the TED. The time complexity is O(|T1| + |T2|),
where |Ti| denotes the number of nodes in the tree Ti. Aug-
sten et al. proposed pq-gram [2] where substructures of an
input tree are extracted and used as a feature set. The Jac-
card similarity of the feature set gives the lower bound of
the weight-modified TED. The time complexity of feature
set generation and Jaccard similarity calculation is O(n) and
O(n log n), respectively.

MinHash [28] is a randomized algorithm to speed up
the Jaccard similarity calculation by preprocessing. Min-
Hash reduces both the size of the memory and the time com-
plexity of the similarity calculation. Yuan et al. [29] applied
MinHash to XML document retrieval, which can be easily
extended to general tree similarity search.

3. Proposed Method

3.1 Overview

Our formulation in this paper is based on a simple search
model where a system retrieves similar math formulae to a
given math formula query and returns a ranked list based
on the similarity score. We assume that the math formu-
lae are represented using MathML Presentation and/or Con-
tent Markup languages. MathML has an annotation tag for
variables: mi in Presentation MathML, and ci in Content
MathML. As described herein, we call a node a variable
node if the parent node of the node is ci or mi.

In our framework, all math formulae are first converted
to fixed size binary vectors, which are then used for similar-
ity calculation. An overview of the procedure is shown in
Fig. 1. The procedure method consists of three steps: First,
an XML parser is applied to the input MathML representa-
tion. We consider the resulting tree strucuture as a rooted
ordered labeled tree, a tree with a root node where each
node has an ordered list of its children, and is labeled with a
string. Second, subtree structures are extracted using three
types of algorithms we define in Sect. 3.2. Third, randomly
generated N minhash functions are applied to the obtained
subtree set and the returned values are stored in an inverted
index to speed up the similarity calculation [28].

3.2 Semantic Similarity Measures for Math Formulae

In this paper, we introduce three types of similarity mea-
sures to capture math-specific semantic similarity. These
measures are based on substructure matching. In substruc-
ture matching, an input tree is converted into a set of sub-
structures. We call this set a feature set of a tree. The tree
similarity is defined as the set similarity of the feature sets.
As is already mentioned in Sect. 3.1, we used Jaccard coef-
ficient for the set similarity.

• Variable Name Measure
The goal of the variable name measure is to capture
the implicit semantics represented by variable names.
The feature set consists of all the subtrees of the input

Fig. 1 Overview of the procedure.

tree. All variable names are treated as a label of the
corresponding node.

• Function Structure Measure
The goal of the function structure measure is to cap-
ture the semantics of structures or patterns in the for-
mulae. For instance, the structure of y = x2 indicates a
quadratic equation, which in this example the left-hand
side variable (y) is defined as the square of another vari-
able (x). Thus, based on this measure, both y = x2 and
b = a2 have the same semantic. The feature set of this
measure consists of all the substructures of a specified
depth d rooted on any node of the tree. When d = 2,
this measure is equivalent to the generalized term used
in [3].

• Alpha-Equivalence Measure
The goal of the alpha-equivalence measure is to pro-
vide a metric which is invariant to variable names.
Alpha-equivalence is the equivalence relation used in
lambda calculus or programming language theory. In
math formula, alpha equivalent transformation corre-
sponds to renaming of variables. For an example, this
measure can capture the mathematician’s intuition that
x = x has fundamentally a similar meaning to y = y,
but not to x = y, for any value of x and y. The feature
set consists of subtrees of the input tree where all the
variables are renamed according to their appearance or-
der.

Mathematical formula is an abstract representation
whose semantics has syntax-semantic duality. MathML
markup language is designed to express both the syntax
and semantic structures. The later, the semantic structure
representation, is closely related to the lambda calculus,
one of the well-known formal models of computing. In
fact, well-written MathML formulae can be directly exe-
cuted by Mathematica†. The three types of similarity mea-
sures considered in our paper, variables, expression struc-
ture, and alpha-equivalence, are not ad hoc, but correspond
to the variables, function application, and alpha equivalence
of the lambda calculus. Since mathematical formulae are
widely used in many scientific domains, mathematical for-
mula search is not only for mathematicians. Users often do

†https://www.wolfram.com/mathematica/
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not have clear distinction between syntax and semantics, and
search semantically similar formula using syntactic similar-
ity. Therefore, we used our algorithms to calculate the syn-
tax similarity as well. Although we haven’t systematically
analyzed mathematicians perception of similarity in this pa-
per, we expect that some of the similarity issues can be han-
dled by the formal semantic model. In the next section, we
present three hash functions, subtree hash, modular trick,
and SIGRE hash, corresponding to variable name, function
structure, and alpha-equivalence measures, respectively.

4. Algorithm

4.1 Subtree Hash

Subtree Hash is a hash function that takes a tree as an in-
put and returns a feature set. The pseudocode for Subtree
Hash is shown in Algorithm 1. This algorithm is intuitively
a depth-first pre-order traversal to construct hash codes, vis-
iting each node once, and at each node having to combine
(already computed) hash codes from children. The input for
this algorithm is a root node of a tree, which is represented
by n in the pseudocode. The main part of this algorithm is
implemented in S T Hrec function. This function returns not
only x, the hash value corresponding to the subtree rooted
in n, but also H, the set of hash values which correspond to
all the subtrees included in the tree rooted at n (including x).
If n is a leaf, S T Hrec function returns a, the hash value of
the label of n, and {a}, the set which contains a as its only
element, as x and H respectively (from l.5 to l.8). If n has
any child nodes, the set of child nodes is used as an argu-
ment for the recursive call to the S T Hrec function (from
l.12 to l.13). Each returned x is kept in the array X. This
array is used to calculate the hash value of the tree rooted
at n (l.14, l.16). To compute the hash value, Rolling Hash
algorithm [30] is used (from l.18 to l.22). a is used as the
parameter for Rolling Hash algorithm. H is the union of all
H returned from recursive calls and x, the hash value which
corresponds to the tree rooted at n (l.17). Time complex-
ity of this algorithm is O(N), where N denotes the number
of nodes included in the input tree. For each node in the
tree, S T Hrec function is called exactly once, and its amor-
tized complexity [31] is O(1). The heaviest process in this
function is calling the RollingHash function, and its time
complexity is O(L), where L denotes the length of array.
However, the sum of the length of array used in whole pro-
cess of Subtree Hash is equal to N − 1, because each hash
value corresponding to a subtree appears exactly once in
array, except for the hash value of the whole tree. There-
fore, amortized complexity (i.e. the total expense divided by
the number of invocations) of RollingHash is O(1), and the
time complexity of S ubtreeHash is O(N).

We give a detailed example of how Subtree Hash
works. Let us consider that the input formula is
g( f (x, y), f (y, z)) and it is converted into the tree shown
in Fig. 2, and we assume that p = 11, hash(x) = 5,
hash(y) = 6, hash( f ) = 3, and hash(g) = 4. For exam-

Algorithm 1 SubtreeHash(n)
1: function SubtreeHash(n)
2: x,H ← S T Hrec(n)
3: return H

4: function STHrec(n)
5: C ← {c | c is child of n}
6: a← hash(label(n))%p
7: if |C| = 0 then
8: return (a, {a})
9: else

10: X ← newVector()
11: H ← {}
12: for c in C do
13: (xsub,Hsub)← S T Hrec(c)
14: X.append(xsub)
15: H ← H ∪ Hsub

16: x← RollingHash(a, X)
17: return (x,H ∪ {x})

18: function RollingHash(a, array)
19: x← 0
20: for h in array do
21: x← (x ∗ a + h)%p

22: return x

Fig. 2 Example of subtree hash.

ple, let us consider the left subtree rooted in a node with
label f . Hash value of this node is calculated as follows:
(31 · 5+ 30 · 6)%11 = 10 using RollingHash function. Right
side of the node with label f is processed in the same way,
resulting in 3. As for the root node, the hash value is calcu-
lated as (41 · 10 + 40 · 3)%11 = 10. Note that the hash value
is different if the original subtree is different, therefore this
hash value represents a subtree.

4.2 Modular Trick

Modular Trick is a tree similarity metric designed to capture
the similarity of high level hierarchy, as we mentioned as
function structure measure in Sect. 3.

This algorithm is obtained by slightly modifying the
algorithm of Subtree Hash. Its pseudocode is shown in Al-
gorithm 2.

In this algorithm, only RollingHash function part is
modified from Subtree Hash. The modified lines are l.21
and l.22. A new parameter b is added to the algorithm. The
MTrec function is identical to the S T Hrec function defined
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Algorithm 2 ModularTrick(n)
1: function ModularTrick(n)
2: x,H ← MTrec(n)
3: return H

4: function MTrec(n)
5: C ← {c | c is child of n}
6: a← hash(label(n))%p
7: if |C| = 0 then
8: return (a, {a})
9: else

10: X ← newVector()
11: H ← {}
12: for c in C do
13: (xsub,Hsub)← MTrec(c)
14: X.append(xsub)
15: H ← H ∪ Hsub

16: x← RollingHash(a, X)
17: return (x,H ∪ {x})

18: function RollingHash(a, array)
19: x← 0
20: for h in array do
21: x← (x ∗ (a|1) + h)%p

22: return (x ∗ b + a)%p

in Algorithm 1, except that it calls the modified RollingHash
function. Using this algorithm, we can extract the subtree
which consists of a node and its descendants with distance
smaller than or equal to logp b if we specify parameters b
and p appropriately.

This theorem is the key for this algorithm.

Theorem 1: Let MT Hash(t) be the first element of
MTrec(t). If bs%p = 0, MT Hash(t) is invariant under mod-
ification to any descendant d such that the distance between
d and t is greater than or equal to s.

Theorem 1 expresses that we can hash a subtree to a desired
depth s by choosing b and p such that bs%p = 0 holds. We
can prove this theorem by analyzing how a descendant d
affects the value MT Hash(t). We can describe MT Hash(t)
mathematically as follows.

MT Hash(t) = (b
|C|∑
i=1

(a|1)i−1hi + a)%p (1)

By recursively applying this formula to hi that is an an-
cestor of the node d, we obtain this equation, where dist(t, d)
is the distance between t and d.

MT Hash(t) = b(. . . + b(. . . (. . . + MT Hash(d)))

. . . + a)%p

= (. . . + bdist(t,d)MT Hash(t))%p

If bdist(t,d)%p = 0, MT Hash(d) and d are eliminated, and
have no effect on MT Hash(t). QED.

As mentioned above and discussed in detail in
Sect. Appendix, p and the Rolling Hash parameter b should
optimally be co-prime. Given the above, this algorithm
works well with the following parameter values:

Fig. 3 Example of modular trick.

p = 264

b = 232, 222, 216, . . . , 1, 0

Different b result in different subtree pruning depths. For
example, when b is set to 222, the subtrees will be hashed to
the depth of 3 (i.e. nodes at depth greater than log222 264 =

2.90909 . . . would be pruned away). The parameter of
Rolling Hash in Algorithm 2 is forced to be odd in l.21, us-
ing the | operator (bit-OR). Therefore, p and the parameter
are always co-prime when using p = 264.

This algorithm is a generalization of “generalized
term” proposed in [3] and Subtree Hash. It is equivalent
to generalized term or Subtree Hash when b is set to 232 or
1, respectively.

We give a detailed example of how Modular Trick
works. Let us consider that the input formula is
a(b(b, a), a(b, a)) and it is converted into the tree shown in
Fig. 3, and we assume that b = 22, p = 24, hash(a) = 9
and hash(b) = 5. For example, let us consider the left sub-
tree under the root, rooted in the node labeled b. The hash
value of this node is calculated as follows: ((51 · 5 + 50 · 9) ·
4 + 5)%16 = 13 using modified RollingHash function. The
right subtree rooted in a is processed in same way, resulting
in 1. As for the root node, its hash value is calculated as
((91 · 13+ 90 · 1) · 4+ 9)%16. Note that the hash value of the
root node and the a node in the second level are equal, since
no descendants at depth log22 24 = 2 or deeper contribute to
the hash.

4.3 SIGURE Hash

SIGURE Hash† is the algorithm for the alpha-equivalence
similarity measure. The pseudocode is shown in Algo-
rithm 3, 4. We also provided an example of SIGURE Hash
calculation in Fig. 4.

This algorithm splits the hash value into two parts, V
and X. V manages the variable names and their order of ap-
pearance. X represents the hash value in polynomial form,
consisting of a vector of polynomial coefficients Xv for each
variable v in V , and a constant number c. When X and V are
fixed, the hash value is determined uniquely by evaluating

†Structural Information Greedy Unify REcursive Hash. Pro-
nounced the same way as the Japanese word 時雨 (shigure, driz-
zling rain)
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Algorithm 3 SIGUREHash(n)
Require: n : root node of the tree
1: function SIGUREHash(n)
2: (X,V,H)← S Hrec(n)
3: return H
4: function SHrec(n)
5: V ← newHashMap()
6: Xv ← newHashMap()
7: if isVariableNode(n) then
8: V[label(n)]← length(V)
9: Xv[label(n)]← 1

10: X ← (Xv, 0)
11: return (X,V, {Eval(X,V)})
12: C ← {c | c is child of n}
13: a← hash(label(n))
14: if |C| = 0 then
15: X ← (Xv, a)
16: return (X,V, {Eval(X,V)})
17: else
18: X ← (Xv, 0)
19: H ← {}
20: for c in C do � Traverse from left child.
21: (Xsub,Vsub,Hsub)← S Hrec(c)
22: X,V ← Merge(X,V, Xsub,Vsub, a)
23: H ← H ∪ Hsub

24: return (X,V,H ∪ {Eval(X,V)})

Algorithm 4 Auxiliary function used in SIGUREHash
1: function Eval(X,V)
2: (Xv, c)← X
3: h← c
4: for v in key(V) do
5: h← h + Xv[v] ∗ hash(V[v])
6: return h
7: function Merge(X,V, Xsub,Vsub, a)
8: Xv,ret ← newHashMap()
9: Vret ← newHashMap()

10: Xv, c← X
11: Xv,sub, csub ← Xsub

12: for v in key(V) do � Traverse from the key which has the smallest
value.

13: Vret[v]← length(Vret)
14: Xv,ret[v]← Xv[v] ∗ a

15: for v in key(Vsub) do � Traverse from the key which has the
smallest value.

16: if v not in key(V) then
17: Vret[v]← length(Vret)
18: Xv,ret[v]← 0

19: Xv,ret[v]← Xv,ret[v] + Xv,sub[v]

20: cret ← c ∗ a + csub

21: return ((Xv,ret , cret),Vret)

the polynomial using variable values from V . This calcula-
tion is done in the Eval function (l.5 in Algorithm 4).

The main part of this algorithm is implemented in the
S Hrec function. This function returns not only H, set of
hash values which corresponds to all the subtrees included
in the tree rooted at n (including itself), but also X and V
as explained above. If the input n is a leaf node contain-
ing a variable, V will have a only one element, label(n) as
key and 0 as value, which means that label occurs 0-th (0
index) in the subtree, and Xv will also have only one ele-

Fig. 4 Example of SIGURE hash.

ment, which means the polynomial consists of a single term
1 · hash(0) (from l.7 to l.11 in Algorithm 3). If n is not
variable node but is leaf node, V and Xv are empty, and the
constant a is set as the hash value of the label of the node n
(from l.14 to l.17 in Algorithm 3). If n has child nodes, the
hash value is calculated in the same way as Subtree Hash.
However, the recursive call does not return a hash value, but
the (X,V) tuple; therefore, we have to modify the Rolling
Hash process. The modified process is implemented as the
Merge function. This function corresponds to the operation
of the single step in Rolling Hash. It takes the hash of the
label of n, and two (X,V) tuples. The first tuple, (X,V), is
the accumulated result of already traversed subtrees, while
the second one, (Xsub.Vsub) is the result of the subtree which
is being merged. Merging X is rather simple, because we
just treat it as a set of polynomial coefficients (l.14 and l.19
in Algorithm 4). However, in order to merge V , we have
to consider the traversal order. All variables which appear
in V are earlier in preorder than the variables in Vsub be-
cause S Hrec function traverses the tree in preorder and V
is generated earlier than Vsub. Therefore, what we have to
do to merge V is to add the variables which occur in Vsub

but do not occur in V to V while preserving their order of
appearance in Vsub (l.13 and l.17 in Algorithm 4). As you
can see in Algorithm 4, there are only two types of the op-
eration applied to a hash value, multiplication by constant a
and addition. This means the hash value polynomial is al-
ways first-order, and therefore |V | <= |X| always holds. The
time complexity of this algorithm is O(NK) where N is the
size of the input tree and K is the number of unique variable
names in the tree. Both Eval and Merge function are called
at most N times. The time complexity of Eval and Merge
are both O(K), because of those for-loops. Therefore entire
time complexity is O(N)K. K could be O(N) in artificial
input and it means time complexity could be O(N2). How-
ever, this algorithm works on almost linear time to the size
of input because K is much smaller than N in real-data.

We give a detailed example of how SIGURE Hash
works. Let us consider that the input formula is
g( f (x, y, y), f (y, z, 2)) and it is converted into the tree shown
in Fig. 4 with all leaf nodes marked as variable nodes, and
we assume that hash( f ) = 3, hash(g) = 4 and hash(2) = 6.
For example, let us consider the left subtree, rooted in the
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node labeled f . The hash polynomial of this node is calcu-
lated as 32x+31y+30y = 9x+4y using the Merge function,
with the variable order being V = {x→ 0, y→ 1}. The right
subtree rooted in another node labeled f is processed as fol-
lows: 32y + 31z + 30 · 6 = 9y + 3z + 6 (V = {y→ 0, z→ 1}).
As for the top node, the hash polynomial is calculated as
41(9x + 4y) + 40(9y + 3z + 6) = 36x + 25y + 3z + 6, with V
merging to {x → 0, y → 1, z → 2}. The actual hash value,
which does not contain variables, is calculated by substitut-
ing the hash of the values from V into the polynomial.

5. Experiments

5.1 Experimental Setup

The experiments conducted in this paper used a dataset
released by NTCIR-11 Math-2 [4]. The dataset contains
105,120 scientific papers that are segmented into 8,301,578
search units with about 60 million formulae. The size of
the document collection is about 180 GB. The dataset also
contains 50 queries, each of which consists of mathematical
formulae and natural language keywords. For each query,
50 relevance judgment results are also provided.

In this experiment, we investigated the combination of
the three algorithms proposed in the previous section: Sub-
tree Hash, Modular Trick, and SIGURE Hash. We used
b = 232, 222, 216 for Modular Trick. As a baseline, we con-
sidered the pq-gram similarity method [2] where p = q = 2.
All search methods are implemented using Python 2.7 and
used the same XML parser and MinHash module. The num-
ber of MinHash function is set to be 30. The computation re-
source used was four Intel Xeon E7-4870 @2.40GHz cores
and 1TB RAM. The query-formula similarity calculation in
all search methods was parallelized into 32 processes.

5.2 Retrieval Performance

In the experiment, top 1,000 retrieval units were first ob-
tained for each algorithm for each given query. Next,
the retrieval performance was calculated considering only
the retrieval units with relevance judgment. We used the
Preicision-at-5 (P’@5), Precision-at-10 (P’@10), and Mean
Average Precision (MAP’) at maximum depth of 50 as the
metrics. These metrics are widely used for evaluating infor-
mation retrieval systems [32].

Table 1 shows the result. Although the performance of
Subtree Hash, Modular Trick, and SIGURE Hash did not ex-
ceed the one of pq-gram, the combined method outperforms
pq-gram in all metrics, i.e., P’@5, P’@10, and MAP’. We
will later analyze the characteristics of formulae retrieved
by each algorithm.

Among the Modular Trick runs, Modular Trick with
b = 232, i.e. subtree depth is 2, achieved the best P’@5,
P’@10, and MAP’. By definition, Subtree Hash is equiva-
lent to Modular Trick with b = 20(= 1), and as the depth of
subtree becomes larger, the performance of Modular Trick
converges to the performance of Subtree Hash.

Table 1 Comparison of retrieval performance.

Algorithm P’@5 P’@10 MAP’

Subtree 0.3320 0.2220 0.1670
Mod. Trick (b = 232) 0.3560 0.2680 0.2253
Mod. Trick (b = 222) 0.3160 0.2260 0.1992
Mod. Trick (b = 216) 0.3480 0.2300 0.1764

SIGURE 0.2680 0.1960 0.1515
Combined 0.3560 0.2800* 0.1936
pq-gram 0.3080 0.2140 0.1714

*statistically significant (p < 0.05 in two-tailed t-test)
compared to pq-gram.

5.3 Query-Wise Comparison

In this section, we analyze the performance of our algo-
rithms over several queries to find their strengths and weak-
nesses. Table 2 illustrates the precision comparison of our
algorithms over 6 queries. The first two queries are the
queries in which Subtree Hash has better MAP’ than SIG-
URE Hash. The next two queries are the queries in which
Modular Trick has better MAP’ than Subtree Hash. The re-
maining two queries are the queries in which SIGURE Hash
has better MAP’ than Subtree Hash.

Let us consider the first two query formulae, in which
Subtree Hash performs better than SIGURE Hash. The first
formula is found in physics article, and the second in mathe-
matics. The variable names φ and ĈH are often used to rep-
resent specific concepts, i.e. quantum field and arithmetic
Chow group, respectively. As a consequence, the meaning
of each formula strongly depends on these variable names.
Substituting these variables with arbitratry variables will al-
ter the meaning of the formulae. From the query perfor-
mance, we can see that Subtree Hash can capture the mean-
ings of the variable names very well.

Next, let us examine the results of Modular Trick al-
gorithm in the next two queries. In these queries, Modu-
lar Trick significantly outperforms the other two algorithms.
Variable names in those queries are almost meaningless.
Furthermore, the relations between variables are not de-
scribed in those formulae. However, their high level struc-
ture has significant meanings. For example, the expression
which represents the definition of the spectral radius on ma-
trices has the high level structure that represents ρ as a func-
tion defined by the limiting value. It is difficult for Subtree
Hash or SIGURE Hash to capture this type of semantic.

In the last two query formulae in which SIGURE Hash
delivers the best MAP’, each variable name does not repre-
sent any specific entity. However, the relation of variables
is essential for these formulae. For example, let us consider
the formula that appears in the definition of Cauchy Schwarz
inequality. It is difficult for Subtree Hash to retrieve this for-
mula, because the relevant formulae may have the variable
names u and v changed. Modular Trick also encounter the
same difficulty, because the top level structure of this for-
mula (i.e. two subexpressions connected with “greater than
or equal to” symbol) is a quite common structure. On the
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Table 2 Examples of query-wise MAP’ performance.

Query Formula Keywords Subtree Mod. Trick (b =
232)

SIGURE

φ4 Quantum, Field, Theory 0.8218 0.5983 0.0208
ĈH

p
(A) � Y arithmetic, Chow, group 0.4354 0.0500 0.1039

ρ(A) = lim
n→∞ ||A

n ||1/n spectral radius, matrix 0.5714 0.7857 0.6429

xn + yn = zn, x, y, z, n ∈ N Diophantine equations 0.0000 0.8750 0.0000
|u · v| ≤ ||u||||v|| Cauchy, Schwarz 0.2500 0.0000 0.4167

||x + y||p ≤ ||x||p + ||y||p minkowski, inequality 0.3077 0.3372 0.5307

other hand, SIGURE Hash can retrieve it because it drops
the variable name noise. As we have shown above, each
of three algorithms we developed has its own strengths and
weaknesses.

5.4 Processing Time

In the experiments using NTCIR-11 Math-2 dataset, the
index construction time was 25, 223 seconds for the pro-
posed method (i.e. the combination of Subtree Hash, Modu-
lar Trick, and SIGURE Hash) and 112, 388 seconds for the
pq-gram. The difference reflects that for an input tree with
N nodes, Subtree Hash, Modular Trick, and SIGURE Hash
generate a feature set with N elements while the pq-gram
generates a feature set with (p + q)N elements. As for the
average query response time, the combined method and pq-
gram took 6.91 and 3.68 seconds, respectively. The com-
bined method took longer time because it has larger index
size and consequently longer index scan time. Our method
produced many terms that represent short subexpressions,
such as notation “x” (which quite often appears in math for-
mulae). Therefore, if there is a query which contains term(s)
matching such short subexpressions, our method have to re-
trieve and score a very long document list that contains these
subexpressions. On the other hand, pq-gram does not suffer
from this issue, since its produced terms vary by the sur-
rounding subexpressions.

5.5 Retrieval Performance Using Wikipedia Dataset

Up to this point, we used NTCIR-11 Math-2 Main Task
dataset for evaluation. It is large enough to prove the scal-
ability of our method, but it is not fair to use this dataset
to compare our method to other participants in the main
task. Our proposed method focuses on the formula search
while this main task allowed participants to exploit the key-
word query, which drastically improved their accuracy. In
this section, we report the evaluation result of our system
in the NTCIR-11 Math-2 Wikipedia subtask [33]. This sub-
task generates formula queries in three steps: choosing seed
formula randomly from the dataset, injecting the query vari-
ables into the formula, and finally generating the XML top-
ics using LaTeXML [1]. In total, there are 100 queries gen-
erated in this subtask. In addition, there are two types of
evaluation conducted: page-centric evaluation, which re-
gards a hit as correct if the seeding page was found, and
formula-centric evaluation, where a hit is correct if a for-

Table 3 Comparison of retrieval performance using Wikipedia dataset.

Team Name
Page Centric Formula Centric

Recall MRR Recall MRR

NII (our team) 97 76 94 82
TUB 91 73 87 68
KWARC 75 82 - -
RHMS 48 2 - -
RIT(Tangent-2) 88 80 78 86
MIaS 65 76 63 81
TUW 97 82 93 88

Post NTCIR-11
RIT (Tangent-3) 100 83 89 85

mula with exactly the same TEX input was found. Further-
more, there are two metrics for each evaluation type: the
percentage of seed formulae found (recall over all hit, top-
∞) and the mean reciprocal rank (MRR). Table 3 shows the
result of all participants in Wikipedia subtask. In this task,
our team and TUW were the best performer with regard to
the number of found seeds. However, the MRR of our sys-
tem was considered moderate. In page-centric evaluation,
both team had 97% recall, but TUW achieved slightly higher
MRR (82%) than our team (76%). In formula-centric eval-
uation, our team delivered 94% recall with MRR = 82%,
while TUW gave 93% recall with MRR = 88%. After
the NTCIR-11, the updated Tangent system [34] from RIT
improved its performance. It achieved perfect recall in
page-centric evaluation, but still gave under 90% recall in
formula-centric.

5.6 Discussion

In our current implementation, we combined the proposed
three algorithms simply by taking the join of the Minhash
values. As a consequence, all feature elements are consid-
ered equally important. However, the discrimination power
may differ much: For example, x is less important than
P(Y |X)P(X)

P(Y) and should be weighted less in Subtree Hash. For
this purpose, we can use the conventional term weighting
methods used in full text search. Also, improving the uni-
fication ability will increase the recall of SIGURE Hash.
In our current formulation, SIGURE Hash can handle only
variable unification. Since it does not support subexpression
unification, (x1 − y1)2 + (x2 − y2)2 = d2 cannot be retrieved
when a2 + b2 = c2 is given as the query. Since such term to
variable substitution is commonly observed in scientific lit-
erature, significant portion of possibly similar formulae may
be overlooked.
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6. Conclusion

In this paper, we first defined three different similarity mea-
sures for math formula search and developed an efficient se-
mantic search method with time complexity almost linear to
the input size. In the evaluation using NTCIR-11 Math-2
dataset, our algorithm outperformed pq-gram, a commonly
used state-of-the-art tree similarity search algorithm. Fur-
ther analysis of individual query result showed that the pro-
posed similarity measures capture different characteristics
of the semantic similarities.

Future work includes enhancing the current method
with weighted indexing and subexpression unification to
improve the search performance. Another obvious direc-
tion is integrating the proposed method with conventional
keyword-based search to exploit natural language keywords
in the queries. Exploring their potential ability in other tasks
of tree similarity search will be another possible future work
as well.
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Appendix: Analysis of Subtree Hash

As Subtree Hash is a hash function, there exists a risk of col-
lision, where two different subtrees are hashed into the same
value. We prove that hash value of Subtree Hash distributes
uniformly random. Thus, the risk of collision is minimized.
We give some definitions and assumptions needed in the
proof.

Definition 1: Let TreeHash(n) be the first element of
STHrec(n).

TreeHash function returns hashed value which corresponds
to the subtree rooted at the given node.

Assumption 1: The hash function used in Subtree Hash
(l.7 in Algorithm 1) returns uniformly random value if the
input (label(n) in Algorithm 1) is uniformly random string.

This assumption means that hash function used in Algo-
rithm 1 is good enough uniformity. The probability of min-
imum collision follows from the uniformity.

The goal of this section is Theorem 2 and it is shown
below.

Theorem 2: if all labels in the tree distribute uniformly
random, the value TreeHash(n) also distributes uniformly
random for any p which is coprime with any possible a (l.7
in Algorithm 1).

This theorem states that Subtree Hash has a good property,
that is the probability of hash collision is minimized if an
appropriate p is used.

We use mathematical induction on the height of input
tree to prove Theorem 2. Base case of mathematical in-
duction is simple, because it follows directly from Assump-
tion 1. Some lemmas are prepared for the proof of inductive
step of the mathematical induction.

Lemma 1: Let X be a discrete uniform distribution on
[0, p − 1]. Let a ∈ N be coprime with p. aX % p is also
a discrete uniform distribution on [0, p − 1]

Lemma 2: Let X,Y be a discrete uniform distributions on
[0, p − 1]. (X + Y)%p is also a discrete uniform distribution
on [0, p − 1].

Now we have all tools needed to prove the inductive
step. By definition of Algorithm A· 1, Eq. (A· 1) holds. In
this equation, t represents the root node of the tree whose
height is n > 1, |C| denotes the number of children of t, and
hi = TreeHash(ci) where ci is i-th children of t.

TreeHash(t) =
|C|∑
i=1

ai−1hi (A· 1)

By the assumption of inductive step of mathematical induc-
tion, hi distributes uniformly random. We can prove that
ai−1hi also distributes uniformly random using Lemma 1 Fi-
nally, we can prove that TreeHash(t) distributes uniformly
random using Lemma 2, and this is what we want to prove.

Thus, we can prove Theorem 2. As we mentioned, this
theorem assures that the hash collision probability is mini-
mized where the input tree is random.
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