
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.4 APRIL 2016
989

PAPER Special Section on Data Engineering and Information Management

History-Pattern Encoding for Large-Scale Dynamic
Multidimensional Datasets and Its Evaluations∗

Masafumi MAKINO†, Nonmember, Tatsuo TSUJI††a), and Ken HIGUCHI††, Members

SUMMARY In this paper, we present a new encoding/decoding method
for dynamic multidimensional datasets and its implementation scheme.
Our method encodes an n-dimensional tuple into a pair of scalar values
even if n is sufficiently large. The method also encodes and decodes tu-
ples using only shift and and/or register instructions. One of the most
serious problems in multidimensional array based tuple encoding is that
the size of an encoded result may often exceed the machine word size for
large-scale tuple sets. This problem is efficiently resolved in our scheme.
We confirmed the advantages of our scheme by analytical and experimen-
tal evaluations. The experimental evaluations were conducted to com-
pare our constructed prototype system with other systems; (1) a system
based on a similar encoding scheme called history-offset encoding, and
(2) PostgreSQL RDBMS. In most cases, both the storage and retrieval costs
of our system significantly outperformed those of the other systems.
key words: tuple encoding, dynamic multidimensional datases, large scale
datasets

1. Introduction

In general, an n-dimensional data tuple can be mapped to
the n-dimensional coordinate of a multidimensional array
element. The coordinate can be further uniquely mapped to
its position in the array by calculating the addressing func-
tion of the array. However, in a dynamic situation where
new attribute values can emerge, a larger array is necessary
to cover the new values, and the positions of the existing
array elements must be recalculated according to the new
addressing function.

An extendible array (e.g., [10]) can extend its size
along any dimension without relocating any existing array
elements. History-offset encoding [13] is a scheme for en-
coding multidimensional datasets based on extendible ar-
rays. If a new attribute value emerges in an inserted tuple,
a subarray to hold the tuple is newly allocated and attached
to the extended dimension. A tuple can be handled with
only two scalar values, history value of the attached subar-
ray and position of the element in the subarray regardless of
the dimension n. Dynamic tuple insertions/deletions can be
performed without relocating existing encoded tuples due to

Manuscript received July 1, 2015.
Manuscript revised October 3, 2015.
Manuscript publicized January 14, 2016.
†The author is with NTT Neo-meito, Corporation, Osaka-shi,

540–0026 Japan.
††The authors are with University of Fukui, Fukui-shi, 910–

8507 Japan.
∗This paper is an extended version of [17] presented in

DASFAA 2015.
a) E-mail: tsuji@u-fukui.ac.jp (Corresponding author)

DOI: 10.1587/transinf.2015DAP0025

the underlying extendible array
Many of the tuple encoding schemes, including

history-offset encoding, use the addressing function of a
multidimensional array to compute the position. However,
there are two problems inherent in such encodings. First,
the size of an encoded result may exceed the machine word
size (typically 64 bits) for large-scale datasets. Second,
the time cost of encoding/decoding in tuple retrieval may
be high; more specifically, such operations require mul-
tiplication and division to compute the addressing func-
tion, and these arithmetic operations are expensive. To re-
solve these two problems without performance degradation,
we present a history-pattern encoding scheme for dynamic
multidimensional datasets and its implementation scheme
called History-Pattern implementation for Multidimensional
Datasets (HPMD). Our encoding scheme ensures signifi-
cantly smaller storage and retrieval costs.

Our scheme encodes a tuple into a pair of scalar values
<history value, pattern>. The core data structures for tuple
encoding/decoding are considerably small. An encoded tu-
ple can be a variable length record; the history value repre-
sents the extended subarray in which the tuple is included
and also represents the bit size of the pattern. This ap-
proach enables the output file organization of the encoded
results to be a sufficiently small sequential file. Additionally,
our scheme does not employ the addressing function, hence
avoiding multiply and divide instructions. Instead, it en-
codes and decodes tuples using only shift and and/or register
instructions. This makes tuple retrieval significantly fast and
further provides an efficient scheme for handling large-scale
tuples whose encoded sizes exceed machine word size.

In this paper, first the related work is explained, then
after history-offset encoding is outlined, our history-pattern
encoding is presented. Next HPMD and an implementa-
tion scheme for large-scale tuple sets is described. Then
the retrieval strategy using HPMD is explained. Lastly the
implemented HPMD is evaluated and compared with other
systems.

2. Related Work

Substantial research has been conducted on multidimen-
sional indexing schemes based on the mapping strategy in
which a multidimensional data point is transformed to a sin-
gle scalar value. Such mapping strategies include a space-
filling curve, such as the Z-curve [3] or the Hilbert curve [4],
which enumerates every point in a multidimensional space.

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers

990
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.4 APRIL 2016

They preserve proximity, which suggests that points near
one another in the multidimensional space tend to be near
one another in the mapped one-dimensional space. This
property of preserving proximity ensures better performance
for range key queries against a dynamic multidimensional
dataset; however, an important problem with these space-
filling curves is that retrieval performance degrades abruptly
in high-dimensional data spaces because of the required re-
cursive handling. The UB-tree [2], [5], [6] maps a spa-
tial multidimensional data point to a single value using a
Z-curve; however, a UB-tree has the critical problem that
its parameters (e.g., the range of attribute values) need to
be properly tuned for effective address mapping [6]. This
requirement restricts the usability and performance of the
UB-tree.

In contrast to these approaches, in our history-pattern
encoding scheme for an n dimensional tuple, encoding and
decoding costs are both O(n), even if n is very large, because
these operations are performed using only shift and and/or
machine instructions. Furthermore, the problem of the UB-
tree approach is not present in our encoding scheme because
of an unlimited extensibility of an extendible array.

The most common scheme for mapping multidimen-
sional data points to scalar values [1] is to use a fixed-size
multidimensional array. Much research, such as [7]–[9], has
been performed using this scheme for the paging environ-
ment of secondary storage. The chunk offset scheme [9] is a
well-known scheme in which multidimensional space is di-
vided into a set of chunks; however, it is not extendible, and
a new attribute value cannot be dynamically inserted.

Extendible arrays [10]–[13] provide an efficient solu-
tion to this non-extendible problem. In [10], Otoo and
Rotem described a method for reducing the size of the aux-
iliary data structure for addressing array elements. [13] pro-
poses the history-offset encoding, by which wider applica-
tion areas such as in [16] can be developed.

One of the drawbacks inherent in the existing research
that uses the addressing function of a multidimensional ar-
ray is the time cost of decoding for tuple retrieval. The ap-
proaches presented in existing research require division op-
erations using the coefficients of the addressing functions,
which are very expensive. Such a drawback is not present
with our history-pattern encoding, and the costs are signif-
icantly small. [14] presents the basic idea of the history-
pattern encoding.

Another drawback of existing research is that the ad-
dress computed by the addressing function may exceed ma-
chine word length. Some application areas for ho-encoding
scheme are presented. [16] provides a labeling scheme of
dynamic XML trees. In these applications, however, this
address space saturation problem makes it difficult to handle
large-scale datasets. One of the popular approaches against
this problem is to use multiple precision functions such as
in [18], but they would be much time consuming. Chunk-
ing array elements is a means to expanding the address
space [9], [15], but it only delays saturation of the space.
In [15], Tsuchida et al. vertically partitioned the tuple set

to reduce dimensionality; however, overhead emerges that
increased storage costs.

This paper presents an implementation scheme of
history-pattern encoding in order to resolve or alleviate
these two drawbacks and provides an efficient implemen-
tation for large-scale multidimensional datasets as will be
confirmed by the analytical and experimental evaluations.
As far as we know, there is no research similar to ours.

3. History-Pattern Encoding

3.1 Preceding Encoding Model

As a preceding encoding model, we first introduce history-
offset encoding [13] based on an extendible array.

An n-dimensional extendible array A (see Fig. 1) has
a history counter h, history table Hi, and a coefficient ta-
ble Ci for each extendible dimension i (i = 1, . . . , n). Hi

memorizes the extension history of A. If the current size
of A is [s1, s2, . . . , sn], for an extension that extends along
dimension i, an (n − 1)-dimensional subarray S of size
[s1, s2, . . . , si−1, si+1, . . . , sn−1, sn] is attached to dimension i.
Then, h is incremented by one and memorized on Hi. In
Fig. 1, the array size is [3, 3] when h is 4. If the array is
extended along dimension 1, a one-dimensional subarray of
size 3 is attached to dimension 1, and h is incremented to
5 (and is held in H1[3]). Each history value can uniquely
identify the corresponding extended subarray.

As is well known, element (i1, i2, . . . , in−1) in an (n −
1)-dimensional fixed-size array of size [s1, s2, . . . , sn−1] is
allocated on memory using an addressing function such as:

f (i1, . . . , in−1) = s2s3 . . . sn−1i1 + s3s4 . . . sn−1i2 + . . .

+ sn−1in−2 + in−1 (1)

We call <s2s3 . . . sn−1, s3s4 . . . sn−1, . . . , sn−1> a coefficient
vector. The vector is computed at array extension and is
held in coefficient table Ci of the corresponding dimension.
Specifically, if n = 2, the subarrays are one-dimensional and
f (i1) = i1. Therefore, the coefficient tables can be void if n
is less than 3 as in Fig. 1.

Using the above three types of auxiliary tables, history-
offset encoding (denoted as ho-encoding in the follow-
ing) of array element e(i1, i2, . . . , in) can be computed as
<h, offset>, where h is the history value of the subarray in
which e is included and offset is the offset of e in the sub-
array computed by (1); e.g., element (3, 2) is encoded to

Fig. 1 Two-dimensional extendible array

MAKINO et al.: HISTORY-PATTERN ENCODING FOR LARGE-SCALE DYNAMIC MULTIDIMENSIONAL DATASETS AND ITS EVALUATIONS
991

Fig. 2 Data structures for hp-encoding

<5, 2>.
Conventional schemes for storing fixed size arrays us-

ing an addressing function like (1) above do not support dy-
namic extension of an array. Therefore addition of a tuple
including new attribute value is impossible if the number of
the existing attribute values attains to the corresponding di-
mension size. In this case, a larger fixed size array is created
and all the elements in the old array should be re-encoded
according to the new addressing function provided for the
newly created array. However, in the history-offset encod-
ing scheme, a new subarray is dynamically created to hold
the new tuple, and the existing elements in the array are not
necessary to be re-encoded.

3.2 Data Structures for History-Pattern Encoding

Figure 2 illustrates the required data structures for the
history-pattern encoding (denoted as hp-encoding in the fol-
lowing). Unlike ho-encoding, when logical extendible array
A in hp-encoding extends its size, a fixed-size subarray equal
to the size of the current A in every dimension is attached to
the extended dimension. The data structures for A consist
of the following two types of tables preserving extension
information.

(History table) For each dimension i (i = 1, . . . , n),
history table Hi is maintained. Each history value h in Hi

represents the extension order of A along the i-th dimension.
Hi is a one-dimensional array, and each subscript k (k > 0)
of Hi corresponds to the subscript range from 2k−1 to 2k − 1
of the i-th dimension of A. This range is covered by the sub-
array along the i-th dimension attached to A at the extension
when the history counter value is h. For example, as shown
in Fig. 2, since H1[3] is 5, the subscript 3 of H1 corresponds
to the subscript range from 4 to 7 of the first dimension of
A.

(Boundary vector table) The boundary vector table B
is a single one-dimensional array whose subscript is a his-
tory value h. It plays an important role for hp-encoding.
Each element of B maintains the extended dimension and
the boundary vector of the subarray when the history
counter value is h. More specifically, the boundary vector

represents the past size of A in each dimension when the
history counter value is h. For example, the boundary vec-
tor in B[3] is <2, 1>; therefore, the size of A at the history
counter value 3 is [22, 21] = [4, 2]. Together with the bound-
ary vectors, B also maintains the dimension of A extended
at the given history counter value. A includes only the ele-
ment (0, 0, . . . , 0) at its initialization, and the history counter
is initialized to 0. B[0] includes 0 as its extended dimension
and <0, 0, . . . , 0> as its boundary vector.

Let h be the current history counter value, and B[h] in-
cludes <b1, b2, . . . , bi, . . . , bn> as its boundary vector. When
A extends along the i-th dimension, B[h+1] includes i as its
extended dimension and <b1, b2, . . . , bi + 1, . . . , bn> as its
boundary vector.

(Logical size and real size) In hp-encoding, A has two
size types, i.e., real and logical. Assume that the tuples in
n-dimensional dataset M are converted into the set of coor-
dinates. Let s be the largest subscript of dimension k and
b(s) be the bit size of s. Then, the real size of dimension
k is s + 1, and the logical size is 2b(s). The real size is the
cardinality of the k-th attribute; for example, in Fig. 2, the
real size is [6, 4], whereas the logical size is [8, 4]. In Fig. 3
later, the real size is [6, 6], and the logical size is [8, 8]. Note
that in ho-encoding logical and real size are the same.

(Array extension) Suppose that a tuple whose k-th at-
tribute value emerged for the first time is inserted. This in-
sertion increases the real size of A in dimension k by one. If
the increased real size exceeds the current logical size 2b(s),
A is logically extended along dimension k. That is, current
history counter value h is incremented by one, and this value
is set to Hk[b(s+1)]. Moreover, the boundary vector in B[h]
is copied to B[h + 1] and dimension k of the boundary vec-
tor is incremented by one; k is set to the extended dimension
slot in B[h + 1], as illustrated in Fig. 2.

Note that h is one-to-one correspondent with its bound-
ary vector in B[h]; this uniquely identifies the past (logi-
cal) shape of A when the history counter value is h. To
be more precise, for history value h > 0, if the bound-
ary vector in B[h] is <b1, b2, . . . , bn>, the shape of A at
h is [2b1 , 2b2 , . . . , 2bn]. For example, in Fig. 2, because the
boundary vector for the history value 3 is <2, 1>, the shape
of A when the history counter value was 3 is [22, 21] = [4, 2].
Note that h also uniquely identifies the subarray attached to
A at extension when the history counter value was h−1. This
subarray will be called the principal subarray on dimension
k at h. For example, in Fig. 2, the principal subarray on
dimension 2 at h = 4 is the subarray specified by [0..3, 2..3].

3.3 History-Patten Encoding/Decoding

Using the data structures described in Sect. 3.2, an n-
dimensional coordinate I = (i1, i2, , in) can be encoded
to the pair <h, p> of history value h and bit pattern p of
the coordinate. The history tables Hi (i = 1, . . . , n) and the
boundary vector table B are used for the encoding. The

992
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.4 APRIL 2016

history value h for I is determined as max{Hk[b(ik)] | k =
1, . . . , n }, where b(ik) is the bit size of the subscript ik in
I. For each history value h, the boundary vector B[h] gives
the bit pattern size of each subscript in I. According to this
boundary vector, the coordinate bit pattern p can be obtained
by concatenating the subscript bit pattern of each dimension
by placing in descending order of dimensions on the storage
for p from the lower to the higher bits of p. The storage for
p can be one machine word length; typically, 64 bits.

For example, consider the array element (4, 3) in Fig. 2.
According to the above encoding procedure, H1[b(4)] >
H2[b(3)] because H1[b(4)] = H1[b(100(2))] = H1[3] = 5
and H2[b(3)] = H2[b(11(2))] = H2[2] = 4. So h is proved to
be H1[3] = 5, and element (4, 3) is known to be included in
the principal subarray (Sect. 3.2) on dimension 1 at history
value 5. Therefore, the boundary vector to be used is <3, 2>
in B[5]. So the subscript 4 of the element (4, 3) forms the
upper 3 bits of p as 100(2) and the subscript 3 of the element
forms the lower 2 bits of p as 11(2). Therefore, p becomes
10011(2) = 19. Eventually, the element (4, 3) is encoded
to <5, 19>. Generally, the bit size of the history value h is
much smaller than that of pattern p.

Conversely, to decode the encoded pair <h, p> to the
original n-dimensional coordinate I = (i1, i2, , in), first
the boundary vector in B[h] is known. Then the subscript
value of each dimension is sliced out from p according to
the boundary vector. For example, consider the encoded pair
<h, p> = <5, 19>. The boundary vector in B[h] is <3, 2>,
so p = 10011(2) can be divided into 100(2) and 11(2). There-
fore <5, 19> can be decoded to the coordinate (4, 3).

Note that as in history-offset encoding, re-encoding ex-
isting array elements is not necessary even if a tuple is in-
serted including a new attribute value which causes the array
to be extended.

In both of ho-encoding and hp-encoding, dynamic ad-
dition of a new attribute is possible with a very small
cost. When a new attribute is added dynamically to an
n-dimensional extendible array, the array becomes n + 1-
dimesional. The array before the extension is specified by
the subscript 0 of the new dimension (the n+1-th dimension)
of the extended subarray. A history table for the new dimen-
sion is prepared and initialized. The detail can be found in
[18]. This dynamic addition of a new attribute will not be
treated in this paper.

3.4 Hp-Property

From the construction procedure of the boundary vector ta-
ble B in Sect. 3.2, the following simple, but important prop-
erty for our hp-encoding can be known. This property will
be called hp-property in the following.

[Property 1 (hp-property)] Let <h, p> be an encoded
history-pattern of a tuple. h is the total sum of the element
values of the boundary vector in B[h] and represents the bit
size of the coordinate pattern p for an arbitrary element in
the subarray at h.

In our hp-encoding, the favorable property of an ex-
tendible array is reflected in the hp-property above. Namely,
for the tuples inserted in the subarrays created at the early
stage of array extension occupy smaller storage. Conse-
quently, the size of p can be much smaller than in the usual
case where each subscript value occupies fixed size storage.
It should be noted that the boundaries among the subscript
bit patterns in p can be flexibly set to minimize the size of
p.

Moreover, the hp-property states that h represents the
bit pattern size of p. This simple property together with
shift and and/or register instructions for encoding/decoding
makes our encoding scheme to be applied for implementa-
tion of large scale multidimensional datasets efficiently with
no significant overhead. From this property even if the bit
size of p is doubled, h increases only by 1. For example, if
the p’s current bit size is 255 bits, h is only 1 byte. There-
fore our hp-encoding scheme can provide unlimited (log-
ical) history-pattern space size for large and high dimen-
sional dataset with a very small additional storage cost for
keeping h.

3.5 Comparison of the Two Encoding Schemes

In this section, we compare hp-encoding with ho-encoding.
Let the real size of the extendible array be [s1, s2, . . . , sn] for
both encodings.

(1) Storage Costs for Core Data Structures
For ho-encoding, the core data structures are the his-

tory tables and the coefficient tables presented in Sect. 3.1;
for hp-encoding, they are the history tables and the bound-
ary vector table presented in Sect. 3.2. These data structures
guarantee the extensibility of an extendible array.

In ho-encoding, let m and c be the fixed size in bytes
of the max history value and coefficient values in the coef-
ficient tables respectively. We estimate the storage cost of
core data structures for ho-encoding as follows:

(a) History tables: m ∗ (s1 + s2 ++sn)
(b) Coefficient tables: c ∗ (n − 2)(s1 + s2 ++sn)

(n > 2)
For hp-encoding, the storage cost is as follows:

(c) History tables: �log2 s1+1�+ �log2 s2+1�++
�log2 sn + 1�

(d) Boundary vector table:

n ∗ (�log2 s1� + �log2 s2� + + �log2 sn� + 1)

Table 1 shows the seven extendible arrays used in the

Table 1 Used extendible arrays

MAKINO et al.: HISTORY-PATTERN ENCODING FOR LARGE-SCALE DYNAMIC MULTIDIMENSIONAL DATASETS AND ITS EVALUATIONS
993

Table 2 Max. history value

Table 3 Storage costs for the core data structures (bytes)

comparison of ho-encoding and hp-encoding, For both en-
coding schemes, Table 2 shows the maximum history values
for each extendible array in Table 1, when it is extended to
the specified dimension size. We can notice that the history
value of hp-encoding is suppressed very small even if the
dimension sizes become large due to the hp-property stated
in the previous section.

Table 3 shows the storage costs for history tables, coef-
ficient tables (ho-enconding) and boundary vector table (hp-
encoding) computed according to the equations in (a)∼(d)
above. We can observe that the coefficient tables in ho-
encoding become very large when the dimension sizes be-
come large. Note that in the array (10-4), the coefficient vec-
tor size overflows 64 bits, so the offset space of ho-encoding
overflows 64 bits and ho-encoding is not applicable.

(2) Encoding and Decoding Performance
In hp-encoding, encoding/decoding are performed using
only shift and and/or register instructions. These in-
structions do not refer to memory addresses, so encod-
ing/decoding can be executed quickly compared with ho-
encoding in which multiplications and divisions are re-
quired. In Sect. 7.3, this will be experimentally confirmed
in tuple access and retrieval times.

4. Implementation of History-Pattern Encoding

4.1 Implementation of Core Data Structures

HPMD is an implementation scheme based on hp-encoding
for n-dimensional dataset M. In addition to the core data
structures presented in Sect. 3.2, HPMD includes the fol-
lowing additional data structures:

(1) CVTi (1 ≤ i ≤ n) is implemented as a B+ tree. The
key value is an attribute value of dimension i; the data
value is the corresponding subscript of the extendible
array.

Table 4 Insertion of the two-dimensional tuples

Fig. 3 HPMD data structure

(2) Ci (1 ≤ i ≤ n) is a one-dimensional array serving as the
attribute value table. If attribute value v is mapped by
CVTi to subscript k, the k-th element of Ci keeps v. The
element further includes the number of tuples in M,
whose attribute value of dimension i is v. This number
is used to detect the retrieval completion, which will be
described in Sect. 6.2.

Note that M can be also implemented based on ho-encoding
using (1) and (2) above. We call this implementation scheme
as HOMD.

Table 4 shows an example in which two-dimensional
tuples are successively inserted. Figure 3 shows the con-
structed HPMD using the inserted tuples in Table 4. By
carefully inspecting the Table 4 and Fig. 3, we can trace the

994
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.4 APRIL 2016

Fig. 4 Storing variable length encoded tuples sequentially in ETF

change in the related data structures and the produced en-
coded results generated by each insertion.

4.2 Output File Organization of Encoded Results

In ho-encoding, as discussed in Sect. 3.1, both the history
value and offset of an encoded tuple occupies fixed-size stor-
age, which degrades storage performance. In contrast, in
our hp-encoding scheme, we adopt variable length storage
scheme according to the pattern size of the encoded results
based on the hp-property given in Sect. 3.4.

We can ensure the hp-property by observing h and p
in Table 4 and boundary vector table B in Fig. 3. By this
property, the history value h can be used as a header of co-
ordinate bit pattern p. It represents p’s bit size. Therefore,
<h, p> can be treated as a variable length record with size
known by h. The hp-property enables to store encoded re-
sults in a sequential output file called Encoded Tuple File
(ETF), as illustrated in Fig. 4. The encoded results are stored
sequentially in the insertion order of the tuples, similar to a
conventional RDBMS. Compared with the size of p, the size
of h is sufficiently small, and its size should be fixed. Typ-
ically, the size of h is 1 byte and can specify p up to 255
bits.

5. Implementation for Large Scale Datasets

Unfortunately, in hp-encoding, the history-pattern space
often exceeds machine word length for high-dimensional
and/or large volume datasets. In this section, we provide
a scheme to handle such a large history-pattern space with
minimal degradation in encoding/decoding speed.

5.1 Extending History-Pattern Space

To handle large-scale tuple datasets using hp-encoding, the
coordinate bit patterns can range over multiple machine
words to eliminate the pattern size limitation. For ex-
ample, Fig. 5 shows the layout for a 162-bit coordinate
pattern according to boundary vector <25, 16, 13, 23, 15, 8,
6, 10, 7, 20, 15, 4> of 12 dimensions; this requires three 64-
bit words. Compared with a bit pattern within a single word,
no storage cost overhead arises with this multiword bit pat-
tern. Furthermore, encoding to and decoding from this mul-
tiword bit pattern do not cause significant overhead, since
they can be performed by using only shift, mask, or reg-
ister instructions as in a single bit pattern with a little cut
and paste cost. We omit the details. In contrast, over-
head caused by using a multi-precision library such as [19]
in ho-encoding would significantly degrade retrieval perfor-
mance. Note that the hp-property introduced in Sect. 3.4 is
also guaranteed for multiword bit patterns.

Fig. 5 Layout for 162-bit coordinate pattern

Fig. 6 Node block lists in ETF

5.2 Further Storage Optimizations

Here, we present two optimization strategies for storing en-
coded results in ETF.

(1) Sharing history value
Due to the hp-property, the set of the encoded <h, p>

pairs can be partitioned into the subsets depending on h. The
pairs in the same subset have the same history value h, so h
can be shared among these pairs and the bit size of their
pattern p equals to h. Thus the p’s of the same h are stored
in the same node block list as in Fig. 6. Since h is one-to-one
correspondent with its subarray, the node block list keeps all
patterns of the elements in the subarray. If the size of h is
one byte, and the total number of tuples is m, a total of m−1
bytes can be saved by this optimization.

(2) Multi-boundary vector
For the multiword bit patterns described in Sect. 5.1,

two types of arrangement of the bit patterns in a node block
are considered; (a) byte-alignment, (b) word-alignment.

In (a), storage cost can be saved, but retrieval cost
would increase. But, the situation is just converse in (b).
We present the following method to avoid the retrieval over-
head inherent in (a) but take advantage of its storage cost
savings.

Assume that the machine word occupies w bytes, and
p bytes are necessary to store a single coordinate bit pattern.
Let l be the least common multiple of w and p, and let bv be
the boundary vector for a single coordinate bit pattern de-
scribed in Sect. 5.1. Multi-boundary vector mbv is a set of
single boundary vectors bvs and can be obtained by recal-
culating and arranging bv sequentially l/p times. Here we
omit the description of its details. Note that mbv can be used
as if it were a single boundary vector. Using mbv, l/p single
coordinate bit patterns can be stored consecutively in a node
block in ETF by byte alignment, while they can be retrieved
by word alignment.

A storage scheme based on the above multi-boundary
vector increases the size of the boundary vector table;
however, the size is negligibly small compared with ETF
size. Consequently, this multi-boundary vector further

MAKINO et al.: HISTORY-PATTERN ENCODING FOR LARGE-SCALE DYNAMIC MULTIDIMENSIONAL DATASETS AND ITS EVALUATIONS
995

contributes to generate ETFs compactly without degradation
of retrieval performance. We refer to HPMD based on the
multiword bit pattern scheme described in Sect. 5.1 simply
as HPMD, and the HPMD based on the multi-boundary vec-
tor using node block lists as M-HPMD.

6. Tuple Retrieval

6.1 History Value Dependency

We can notice the following important property in both
HPMD and M-HPMD.

[Property 2] Let h be the history value of the princi-
pal subarray PS (see Sect. 3.2) of the subscript k on dimen-
sion i. The array elements with subscript k on dimension i
are included only in PS or the subarrays with history values
greater than h and extended along the dimension other than
dimension i.

This property is shown in Fig. 7. The dotted line repre-
sents the real size of the extendible array, and the grey col-
ored parts are the candidates of retrieval. We can see that it is
not necessary to decode all the elements in ETF, but only the
grey colored parts due to the above property. An element in
the non-grey subarrays can be checked by its history value,
and can be skipped without decoding the pattern part. The
total size of the grey parts depends on the history value of
the principal subarray of the subscript to be retrieved. This
leads to the following property.

[Property 3 (history value dependency)] The subar-
rays to be decoded for the retrieval of an attribute value v
depends on the history value corresponding to v.

6.2 Tuple Retrieval

In HPMD, like in a conventional RDBMS all tuples in ETF
should be searched sequentially. Nevertheless, according to
Property 2, non-candidate tuples can be skipped without in-
specting bit pattern part p by only examining the history
value part. In M-HPMD, each tuple is classified in terms
of its history value and is stored in the corresponding node
block list. Therefore, even the check of a history value can
be avoided in the candidate node block lists.

Let age be an integer attribute. For a single value re-
trieval, such as age = 20, first the specified attribute value

Fig. 7 Tuple retrieval in HPMD

is searched in CVTage to obtain its subscript value i. Both in
HPMD and M-HPMD, the history values for candidates of
retrieval are determined according to Property 2. If a candi-
date <h, p> is encountered, p is decoded to get the subscript
of dimension age. If it is i, <h, p> is included in the retrieval
results.

For a range value retrieval, such as 10 ≤ age < 20, the
set of subscripts covered by the range is obtained by search-
ing the sequence set of CVTage. Based on the obtained sub-
script set S, the set of the history values for candidates of
retrieval are determined according to Property 2. In HPMD,
if a candidate <h, p> is encountered, p is decoded to get the
subscript i of dimension age. For the attribute value table
(see Sect. 4.1(2)) Cage, if 10 ≤ Cage[i] < 20, <h, p> is in-
cluded in the retrieval results. Note that while single value
retrieval requires only subscript matching, range value re-
trieval requires references to the attribute value table.

Note also that in both HPMD and M-HPMD, before
checking all candidate tuples, when the number of matched
tuples reaches the “number of tuples” kept in the related at-
tribute value table, the retrieval can be terminated.

7. Evaluation Experiments

In this section, performance evaluations are shown for
HPMD and M-HPMD described in Sect. 5.2 on the imple-
mented prototype system. These are compared with HOMD
and PostgreSQL, which is one of the conventional RDBMS.
They all output the tuples sequentially to the output file, and
the tuple retrieval is also sequentially performed.

7.1 Evaluation Environment

Construction times, storage sizes, and retrieval times
are measured under the following 64 bits computing
environment.

CPU: Intel Core i7 (2.67GHz), Main Memory: 12GB,
OS: CentOS5.6 (LINUX),
PostgreSQL: Version 8.4.4 (64-bit version)

In the measurement of the retrieval times for PostgreSQL,
the timing command was used. The command invokes the
LINUX system call gettimeofday() and we also used this
system call for HOMD, HPMD and M-HPMD. The retrieval
time in these implementations includes the time to get the
decoded tuples that satisfy the query condition. To sup-
press the performance deterioration caused by transaction
processing in PosgreSQL, the transaction isolation level is
set to the lowest level.

7.2 Evaluation Using Large Scale Dataset

The LINEITEM table (Table 5) in TPC-H benchmark
data [20] is employed. The size of the input tuple file gen-
erated by TPC-H is about 2.43 GB in csv formatted includ-
ing 23,996,604 tuples. Actually L COMMENT column is
variable length text. Since such data type is currently not
supported in our implementations, the column was dropped

996
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.4 APRIL 2016

Table 5 LINEITEM Table

Fig. 8 Storage cost

Table 6 Construction cost (sec)

out.
Note that HOMD cannot implement such large table

due to the history-offset space overflow.
(1) Storage Cost
The total storage required to store a multidimensional
dataset includes data structures for encoding/decoding
shown in Fig. 3 and ETF to store the encoded tuples. In
HPMD, ETF is a sequential file and in M-HPMD, it is a
file of node block lists. Figure 8 shows the total required
storage sizes for HPMD, M-HPMD, PostgreSQL (denoded
by PSQL in the following). In HPMD and M-HPMD the
breakdown of the total size is shown. “aux tables” are the
history tables, boundary vector table and attribute value ta-
bles in Fig. 3. The maximum history value in the constructed
HPMD and M-HPMD was 141 (3 machine words).

As can be seen in Fig. 8, the total sizes for HPMD and
M-HPMD are about one-sixth of the size for the PSQL. This
indicates that our hp-encoding scheme realizes significant
reduction of the storage cost. In M-HPMD the size of ETF
is 5% smaller than that in HPMD due to the sharing history
value in M-HPMD stated in Sect. 5.2. It can be noted that
while the size for PSQL is about 1.6 times larger than that
for the csv f ormatted file, the size for HPMD or M-HPMD
is about 30% of the csv file size.
(2) Construction Time

Table 6 shows the times spent for constructing
databases from the csv source file. The spent times for

Fig. 9 Retrieval times of single value queries

HPMD and M-HPMD are about 71% and 80% of that for
PSQL. The difference owes to the reduction of output I/O
cost; output ETF file size of HPMD and M-HPMD is far less
than the output file size of PSQL. It can be observed that the
time spent for M-HPMD is 13% larger than that for HPMD.
This owes to the time of M-HPMD spent for construction of
node block lists.
(3) Retrieval time
(3-1) Retrieval for single value queries

Figure 9 shows the retrieval times of single value
queries for LINEITEM table. The left side scale is for
HPMD and M-HPMD and the right one is for PSQL. Each
history value on the horizontal axis represents the leftmost
subscript of the principal subarray (see Sect. 3.2) on the di-
mension 1 and 6. The retrieval time for the attribute value
corresponding to the subscript was measured. We adopt the
dimensions since the larger cardinality can better exhibit the
properties of our schemes. As was mentioned in Sect. 5.2,
both in HPMD and M-HPMD the retrieval can be terminated
without checking all the candidate tuples in ETF by using
“num. of tuples” in the attribute value table (See Fig. 3). The
measurement was also done in the case all the candidate tu-
ples are checked without using “num. of tuples”. We will
denote this case as HPMDa and M-HPMDa, and the case
using “num. of tuples” as HPMDb and M-HPMDb. The de-
notations HPMD and M-HPMD will be used for both cases.

In PSQL and HPMDa, the retrieval times are nearly
constant irrespective of the queried attribute values, since
all the tuples are scanned through. The average times of
HPMDa in dim. 1 and dim. 6 are 8.33 and 10.73 times faster
than that of PSQL, respectively. In contrast, in M-HPMD
only the candidate tuples are scanned and decoded. There-
fore the history value dependency described in Sect. 6.1 can
be better observed in M-HPMD than in HPMD as shown in

MAKINO et al.: HISTORY-PATTERN ENCODING FOR LARGE-SCALE DYNAMIC MULTIDIMENSIONAL DATASETS AND ITS EVALUATIONS
997

Table 7 Max. and min. ratios of retrieval times

Table 8 Attribute value ranges used in the experiment

Fig. 9 (b). In M-HPMD the time decreases at the maximum
history value in both dimension 1 (141) and dimension 6
(139).

The principal subarrrays corresponding to these history
values are located at the end of the logical extendible array.
So, the reason of the decrease is that the real size of the
logical extendible array in these dimensions is less than that
of the logical size, so the tuples in these subarrays do not fill
out its logical space.

It can be observed that using “num. of tuples” in the
attribute value table of dim. 1 is effective. Since the car-
dinality of dim. 1 is very large and its attribute values are
uniformly distributed, the number of tuples of each attribute
value is very small; i.e., less than 10. In HPMD, the attribute
values of the same dimension are converted to the dimen-
sion subscripts in the ascending order, namely the earlier an
attribute value appears, the smaller subscript is assigned to
the attribute value. Since the encoded results are stored se-
quentially in the ETF file, the attribute values covered by the
smaller history values are stored earlier in the ETF file, so
the number of the tuples satisfying the query quickly attains
to “num. of tuples”. In M-HPMD, the tuples of the same
history value can be directly accessible and in dim. 1 they
can be confined in a single node block, so the retrieval times
are almost 0. For dim. 6, the cardinality is smaller than that
of dim. 1, and the attribute values are not so uniformly dis-
tributed as those of dim. 1, the above advantages for dim. 1
is decreased in both HPMDb and M-HPMDb as can be ob-
served in Fig. 9 (b).

For HPMDb and M-HPMb the maximum and mini-
mum ratios of the retrieval times to those of PSQL are shown
in Table 7. It can be seen that the ratios are under 11%, and
that the maximum retrieval times of M-HPMD are about a
half of that of HPMD. This proves the benefit of M-HPMD
described in Sect. 6.2.
(3-2) Retrieval for Range Queries

Table 8 shows the ranges of the attribute values for
the range queries, on which the retrieval times were mea-
sured. The selectivities of the ranges R1, R2 and R3 on
each dimension are about 3%, 10%, 20% respectively. Fig-

Fig. 10 Retrieval times of range queries

Table 9 Ratios of retrieval times for range queries

Table 10 Used dataset

ure 10 shows the retrieval times for the range queries on
dimension 1 and 6. It can be known from Fig. 10 (a) that
the retrieval times for HPMDa is much larger than those of
HPMDb. This also dues to the reason described in (3-1). For
HPMDb and M-HPMDb, Table 9 shows the ratios of the re-
trieval times to those of PostgreSQL on the range queries
in Table 8. It should be noted that in both HPMDb and
M-HPMDb, dimension subscripts are assigned in ascending
order. So, the subscript range corresponding to its attribute
value range may often spread over wider than the attribute
value range. This might alleviate the benefits of our HPMD
and M-HPMD in some degree; as can be observed in Ta-
ble 9, the performance on dim. 2 are degraded.

7.3 Comparison of HOMD and HPMD

The ho-encoding is a competitor of our hp-encoding.
Its HOMD implementation cannot deal with large scale
datasets without considerable degradation of retrieval per-
formance. In this section, by using a moderate-scale dataset
whose history-offset space is within the machine word size,
we briefly compare the performance among HOMD, HPMD
and PSQL. The dataset is artificially created. The specifica-
tions are shown in Table 10.

998
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.4 APRIL 2016

Table 11 Storage cost and construction time

Fig. 11 Retrieval times for single value queries on the 5th dim.

Tuples in the dataset is uniformly distributed in the
history-offset or history-pattern space to evaluate the basic
performance of each scheme. In HOMD the maximum his-
tory value and offset size are 2556 and 36 bits respectively,
while in HPMD the maximum history value and coordinate
pattern size are 45 and 45 bits respectively. Therefore in
HOMD, the size of history value and offset value are fixed in
2 and 8 bytes respectively, and in HPMD, the history value
size is fixed in 1 byte and that of coordinate pattern is vari-
able according to the history value. Both in HOMD and
HPMD, the encoded results are output sequentially in the
ETF files.

Table 11 shows the storage costs for ETF and database
construction time. We can observe that the ETF size in
HOMD is much larger than that of M-HPMD. This owes
to the advantage of the M-HPMD implementation, in which
the encoded tuples in ETF is variable length records ar-
ranged in byte alignment. The construction time in HOMD
is about 2.9 times larger than that of HPMD due to the re-
quired encoding time.

Figure 11 shows the retrieval times for single value
queries on the 5th dimension. We can see that the retrieval
times in HPMDb and M-HPMDb are almost constant irre-
spective of queried attribute values like in PSQL. This is
because that the tuples are uniformly distributed over the at-
tribute domain. On the other hand, the retrieval times for
HOMDb are depending on the queried attributes in spite of
the uniform tuple distribution due to the attribute value sen-
sibility of HOMD.

8. Consideration on Order Preserving Property

It should be noted that our hp-encoding does not always
guarantee the minimal storage cost. For example, consider
the element (5, 1) in Fig. 2. Since the element can be known
to be included in the subarray of history 5, the boundary
vector <3, 2> is used for encoding (5.1). Therefore, 5 and
1 is encoded to 101.01(2). Note that the subscript 1 of the
second dimension is prefixed by the redundant 0. Such kind
of redundancy is inevitable in our hp-encoding.

On the other hand, such redundancy makes our

hp-encoding very simple and fast. In particular, the hp-
property in Sect. 3.4 affords an efficient sequential output
file organization of the encoded tuples. Moreover, very
small fixed size history value can treat a long sized variable
length pattern. This makes a pattern to be associated with its
history value with additional small storage cost and enables
HPMD to preserve the input order of tuples in ETF. How-
ever, in M-HPMD this ordering information is lost because
the encoded patterns are separated from their history values
and classified according to their history values irrespective
of their input order (see Fig. 6). Namely, the lower storage
cost obtained by sharing a history value in M-HPMD is real-
ized at the sacrifice of losing the order-preserving property.

This order preserving property is essential for some
applications such as sensor stream data, in which receiv-
ing time order is necessary for analysis, or document pro-
cessing, in which preserving sentence order in a document
is required [16]. Important work includes formulation and
analysis of these order preserving and non-order preserving
implementation schemes for hp-encoding or other similar
encodings.

9. Conclusion

We have presented a novel encoding/decoding scheme for
dynamic multidimensional datasets. The advantage of the
scheme lies in the following two points. One is that
the scheme provides the minimal encoding/decoding costs
avoiding multiplications and divisions inherent in the exist-
ing schemes based on multidimensional arrays. The other
is that the scheme provides an efficient method to handle a
large-scale dataset by alleviating the problem of the address
space limitation. These advantages have been confirmed by
the experimental evaluations in construction time, storage
size, and retrieval time.

References

[1] R. Zhang, P. Kalnis, B.C. Ooi, and K.-L. Tan, “Generalized multidi-
mensional data mapping and query processing,” ACM Transactions
on Database Systems, vol.30, no.3, pp.661–697, 2005.

[2] R. Fenk, R. Markl, and R. Bayer, “Interval Processing with the
UB-Tree,” Proc. IDEAS, pp.12–22, 2002.

[3] J.A. Orenstein and T.H. Merrett, “A class of data structures for asso-
ciative searching,” Proc. PODS, pp.181–190, 1984.

[4] C. Faloutsos and S. Roseman, “Fractals for secondary key retrieval,”
Proc. PODS, pp.247–252, 1989.

[5] R. Bayer, “The universal B-tree for multidimensional indexing:
General concepts,” Proc. Worldwide Computing and Its Applica-
tions, pp.198–209, 1997.

[6] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, and R.
Bayer, “Integrating the UB-tree into a database system kernel,” Proc.
VLDB, pp.263–272, 2000.

[7] K.E. Seamons and M. Winslett, “Physical schemas for large mul-
tidimensional arrays in scientific computing applications,” Proc.
SSDBM, pp.218–227, 1994.

[8] S. Sarawagi and M. Stonebraker, “Efficient organization of large
multidimensional arrays,” Proc. ICDE, pp.328–336, 1994.

[9] Y. Zhao, P.M. Deshpande, and J.F. Naughton, “An array based
algorithm for simultaneous multidimensional aggregates,” Proc.
SIGMOD, pp.159–170, 1997.

http://dx.doi.org/10.1145/1093382.1093383
http://dx.doi.org/10.1109/ideas.2002.1029652
http://dx.doi.org/10.1145/588011.588037
http://dx.doi.org/10.1145/73721.73746
http://dx.doi.org/10.1007/3-540-63343-x_48
http://dx.doi.org/10.1109/ssdm.1994.336945
http://dx.doi.org/10.1109/icde.1994.283048
http://dx.doi.org/10.1145/253262.253288

MAKINO et al.: HISTORY-PATTERN ENCODING FOR LARGE-SCALE DYNAMIC MULTIDIMENSIONAL DATASETS AND ITS EVALUATIONS
999

[10] E.J. Otoo and D. Rotem, “A Storage Scheme for Multi-dimensional
Databases Using Extendible Array Files,” Proc. STDBM, pp.67–76,
2006.

[11] E.J. Otoo and D. Rotem, “Efficient Storage Allocation of Large-
Scale Extendible Multi-dimensional Scientific Datasets,” Proc.
SSDBM, pp.179–183, 2006.

[12] E.J. Otoo, D. Rotem, and S. Seshadri, “Optimal chunking of
large multidimensional arrays for data warehousing,” Proc. DOLAP,
pp.25–32, 2007.

[13] K.M. Azharul Hasan, T. Tsuji, and K. Higuchi, “An Efficient Im-
plementation for MOLAP Basic Data Structure and Its Evaluation,”
Proc. DASFAA, pp.288–299, 2007.

[14] T. Tsuji, H. Mizuno, M. Matsumoto, and K. Higuchi, “A Proposal
of a Compact Realization Scheme for Dynamic Multidimensional
Datasets,” DBSJ Journal, vol.9, no.3, pp.1–6, 2009.

[15] T. Tsuchida, T. Tsuji, and K. Higuchi, “Implementing Vertical Split-
ting for Large Scale Multidimensional Datasets and Its Evaluations,”
Proc. DaWaK, pp.208–223, 2011.

[16] T. Tsuji, K. Amaki, H. Nishino, and K. Higuchi, “History-Offset
Implementation Scheme of XML Documents and Its Evaluations,”
Proc. DASFAA, pp.315–330, 2013.

[17] M. Makino, T. Tsuji, and K. Higuchi, “History-pattern implementa-
tion for large-scale dynamic multidimensional datasets and its eval-
uations,” Proc. DASFAA, pp.275–291, 2015.

[18] Y. Chiba, S. Kitajima, T. Tsuji, and K. Higuchi, “An Implementa-
tion Scheme for Tuple Datasets Incorporating Dynamic Addition of
Attributes,” Proc. 77th National Convention of IPSJ, 1N-06, pp.1-
611–1-612, 2015.

[19] Free Software Foundation, GMP, “The GNU Multiple Precision
Arithmetic Library,” http://gmplib.org, 2013.

[20] Transaction Processing Performance Council: TPC-H, http://www.
tpc.org/tpch, 2014.

Masafumi Makino received his M.E. de-
gree in Information Science from University of
Fukui in 2014. He is currently with NTT Neo-
maito Corporation.

Tatsuo Tsuji received his Ph. D. degree in
Information and Computer Science from Osaka
University in 1978. He has been a professor in
the Graduate School of Engineering, University
of Fukui until 2015, and is currently a senior fel-
low of the same university. His research inter-
ests include database management system. He is
a member of the IEICE, the IPSJ and the DBSJ.

Ken Higuchi received his Ph D. degree
in communication and system engineering from
the University of Electro-Communications in
1997. He is currently an associate professor in
the Graduate School of Engineering, University
of Fukui. His research interests include parallel
and distributed database systems. He is a mem-
ber of the IEICE, the IPSJ and the DBSJ.

http://dx.doi.org/10.1109/ssdbm.2006.24
 http://dx.doi.org/10.1145/1317331.1317337
http://dx.doi.org/10.1007/978-3-642-23544-3_16

