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LETTER

On the Probability of Certificate Revocation in Combinatorial
Certificate Management Schemes∗

Dae Hyun YUM†a), Member

SUMMARY To enhance the privacy of vehicle owners, combinatorial
certificate management schemes assign each certificate to a large enough
group of vehicles so that it will be difficult to link a certificate to any par-
ticular vehicle. When an innocent vehicle shares a certificate with a mis-
behaving vehicle and the certificate on the misbehaving vehicle has been
revoked, the certificate on the innocent vehicle also becomes invalid and
is said to be covered. When a group of misbehaving vehicles collectively
share all the certificates assigned to an innocent vehicle and these certifi-
cates are revoked, the innocent vehicle is said to be covered. We point out
that the previous analysis of the vehicle cover probability is not correct and
then provide a new and exact analysis of the vehicle cover probability.
key words: vehicular communications, public key infrastructure, privacy,
anonymity, certificate revocation

1. Introduction

In vehicular networks, there is a strong correlation be-
tween a vehicle’s identity and that of the driver [1]. To
encourage drivers’ participation in the vehicular networks,
privacy-preservation techniques that conceal vehicles’ iden-
tity should be employed [2]. However, a conventional
public-key certificate (e.g., the ITU-T X.509 standard and
IETF RFC 5280) includes plaintext information about the
subject of the certificate which adversaries can use to track
a vehicle and to determine which messages are sent from the
vehicle.

The challenge for designing a privacy-preserving pub-
lic key infrastructure is to make public-key certificates
anonymous while meeting other design goals such as
achieving high scalability and robustness [3]. For example,
the highest level of anonymity can be easily achieved when
all vehicles use the same certificate. However, revoking the
certificate will require changes to all vehicles, making the
system unscalable.

Combinatorial certificate management schemes assign
each certificate to a large enough group of vehicles so that
it will be difficult for adversaries to link a certificate to any
particular vehicle [3]–[6]. After a certificate authority (CA)
creates a shared certificate pool, each certificate in the pool
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is assigned to multiple vehicles and each vehicle is assigned
multiple certificates. When a certificate needs to be revoked,
the CA revokes the certificate by posting its identifier (e.g.,
a serial number) on a certificate revocation list (CRL) and
making the CRL available to all vehicles. When a certificate
assigned to a misbehaving vehicle is revoked, all the other
vehicles sharing this certificate will also not be able to use
it.

When an innocent vehicle shares a certificate with a
misbehaving vehicle and the certificate has been revoked,
this certificate on the innocent vehicle is said to be covered.
A group of misbehaving vehicles may collectively share all
the certificates assigned to an innocent vehicle. When these
certificates are revoked, all the certificates assigned to the
innocent vehicle will also be revoked and the innocent vehi-
cle is said to be covered. When all the certificates assigned
to a misbehaving vehicle have been revoked, this vehicle is
said to be revoked [3].

Assume that n certificates are assigned to each vehicle
and m misbehaving vehicles are revoked. It is trivial to com-
pute the vehicle cover probability for n = m = 1. However,
if n is larger than one (or both n and m are larger than one),
then probabilistic events are no longer independent and the
computation of the vehicle cover probability becomes com-
plicated. We show that the previous analysis of the vehicle
cover probability is not correct and then provide a new and
exact analysis of the vehicle cover probability by consider-
ing all the dependency between various probabilistic events.

2. Preliminaries

The binomial coefficient
(

a
b

)
can be defined recursively by(

a
b

)
=

(
a−1
b−1

)
+

(
a−1

b

)
for all integers a, b > 0 with initial condi-

tions
(

a
0

)
= 1 for ∀a ∈ N and

(
0
b

)
= 0 for all integers b > 0. If

b � {0, 1, . . . , a}, then
(

a
b

)
= 0. The factorial formula for the

binomial coefficient is given by
(

a
b

)
= a!

b!(a−b)! for 0 ≤ b ≤ a,
where a! = Πa

i=1i and 0! = 1.
Let J ⊂ N+ be a set of positive integers. The principle

of inclusion-exclusion states that for finite sets Bj where j ∈
J, the number of elements in the union of Bj can be obtained
by the following formula:

∣∣∣⋃
j∈J

Bj

∣∣∣ = ∑
∅�K⊂J

(−1)|K|−1
∣∣∣⋂

k∈K
Bk

∣∣∣ (1)

If the size of the intersection sets in Eq. (1) depend only on
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the number of sets in the intersections and not on which sets
appear, i.e., |K1| = |K2| implies |⋂k∈K1

Bk | = |⋂k∈K2
Bk |,

then we have∣∣∣⋃
j∈J

Bj

∣∣∣ = ∑
∅�K⊂J

(−1)|K|−1
∣∣∣⋂

k∈K
Bk

∣∣∣

=

|J|∑
s=1

(−1)s−1

(|J|
s

)
ds (2)

where ds is the cardinality of the intersection of s finite sets
Bk for |K| = s, i.e., ds = |⋂k∈K Bk | for every s-element set K.

More information about the binomial coefficient and
the principle of inclusion-exclusion can be found in [7].

3. Vehicle Cover Probability

3.1 Previous Analysis

We review the previous analysis of the vehicle cover
probability in the combinatorial certificate management
scheme [3, Chapter 16], [4], [6].

For a set of indices I = {1, 2, . . . ,N}, the CA creates a
shared certificate pool of C = {Ci | i ∈ I} = {C1,C2, . . . ,CN}
where Ci denotes a certificate. Each vehicle is given n (≤ N)
certificates with their associated private and public keys
from the shared certificate pool. If m misbehaving vehi-
cles have been revoked, the probability that any given certifi-
cate on an innocent vehicle is not covered will be (1 − n

N )m.
Therefore, the probability that an innocent vehicle is cov-
ered is

Pr cover(N, n,m) =
(
1 −

(
1 − n

N

)m)n

. (3)

Remark 1. In the literature, Eq. (3) is sometimes described
as an approximation. However, we checked that the pre-
vious analysis of Eq. (3) was always derived as an exact
formula rather than an approximation. For example, [4]
cites [8] as the origin of Eq. (3) and one can find that Eq. (3)
was derived as an exact formula in [8]; specifically, see the
second equation of Lemma 6 in [8].

3.2 Counterexample

We revisit the validity of Eq. (3) with a simple counterex-
ample of (N, n,m) = (3, 2, 1). Without loss of general-
ity, suppose that the CA generates a shared certificate pool
C = {C1,C2,C3} and gives {C1,C2} to an innocent vehicle.
For vehicle cover probability, we compute the probability
that both C1 and C2 are covered when a misbehaving vehi-
cle is revoked. Let α be the event that the innocent vehicle
is covered and αi (i = 1, 2) be the event that the certificate
Ci on the innocent vehicle is covered when a misbehaving
vehicle is revoked. Then, the vehicle cover probability is

Pr[α] = Pr[α1 ∧ α2] = Pr[α1] Pr[α2|α1] (4)

where Pr[α2|α1] denotes the conditional probability of α2

given α1.
Let (C j,Ck) be the certificates assigned to the misbe-

having vehicle. As (C j,Ck) is chosen randomly from the
shared certificate pool C = {C1,C2,C3}, (C j,Ck) will be
one of three pairs (C1,C2), (C1,C3), (C2,C3). Therefore,
the probability that C1 on the innocent vehicle is covered
is 2

3 , i.e., Pr[α1] = 2
3 ; similarly we can get Pr[α2] = 2

3 .
We now turn to Pr[α2|α1]. What is the probability that C2

on the innocent vehicle is covered when C1 has already
been covered? Since C1 has been covered (or the event α1

has already occurred), we know that (C j,Ck) will be either
(C1,C2) or (C1,C3) and thus Pr[α2|α1] = 1

2 . Note that two

events α1 are α2 are not independent because
(
Pr[α2] = 2

3

)
�(

Pr[α2|α1] = 1
2

)
. Finally, the vehicle cover probability is

Pr[α] = Pr[α1] Pr[α2|α1] = 2
3 · 1

2 =
1
3 
 0.33.

Unlike the above analysis, the previous analysis Eq. (3)

gives Pr cover(3, 2, 1) =
(
1 −

(
1 − 2

3

))2
=

(
2
3

)2
= 4

9 
 0.44.
What is wrong with Eq. (3)? The previous analysis in

Sect. 3.1 computes Pr[α1] = 2
3 and concludes Pr[α] =

(
2
3

)2
.

In other words, the previous analysis implicitly assumes
that the events α1 and α2 are independent (i.e., Pr[α2] =
Pr[α2|α1]) and wrongly computes the vehicle cover proba-
bility as Pr[α] = Pr[α1] Pr[α2].

Remark 2. Actually, the above counterexample can be com-
puted directly; if the innocent vehicle has (C1,C2) and the
misbehaving vehicle has one of (C1,C2), (C1,C3), (C2,C3),
the innocent vehicle is covered only in the case of (C j,Ck) =
(C1,C2) and therefore Pr[α] = 1

3 .

3.3 New Analysis

To derive the exact formula for the vehicle cover probabil-
ity, we must consider the dependency between probabilistic
events. Recall that each vehicle is given n (≤ N) certifi-
cates from the shared certificate pool C = {Ci | i ∈ I} =
{C1,C2, . . . ,CN} where I = {1, 2, . . . ,N}. Suppose that an
innocent vehicleV is given n certificates {Cλ1 ,Cλ2 , . . . ,Cλn }
where λi ∈ I for 1 ≤ i ≤ n. Let α be the event that the in-
nocent vehicleV is covered. We compute the vehicle cover
probability Pr[α] that all n certificates {Cλ1 ,Cλ2 , . . . ,Cλn } are
covered when m misbehaving vehicles are revoked.

Let βJ be the event that the m misbehaving vehicles
collectively possess {C j | j ∈ J} for J ⊂ I. As each vehicle
is assigned n certificates and some certificates can be repeat-
edly assigned, the size of J is n ≤ |J| ≤ mn. When m mis-
behaving vehicles are revoked, all certificates in {C j | j ∈ J}
are revoked. In this case, the innocent vehicleV is covered
if and only if {Cλ1 ,Cλ2 , . . . ,Cλn } ⊂ {C j | j ∈ J}. Therefore,

we have Pr[α|βJ] = (|J|n )
(N

n)
where

(|J|
n

)
is the number of ways

of choosing n innocent certificates {Cλ1 ,Cλ2 , . . . ,Cλn } from
{C j | j ∈ J} and

(
N
n

)
is the total number of ways of choos-

ing n innocent certificates from the shared certificate pool
C = {C1,C2, . . . ,CN}. With conditional probabilities, the
vehicle cover probability can be expressed as follows.



1106
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.5 MAY 2015

Pr[α] =
∑

J

Pr[α|βJ] Pr[βJ] =
∑

J

(|J|
n

)
(

N
n

) Pr[βJ] (5)

where J ⊂ I and n ≤ |J| ≤ mn.
For the event βJ to occur, two conditions should be sat-

isfied; (1) n certificates of each misbehaving vehicle should
belong to {C j | j ∈ J} and (2) all certificates in {C j | j ∈ J}
should be assigned to the misbehaving vehicles. With the
two conditions, how many ways of choosing certificates of
m misbehaving vehicles do we have? Let WJ be the set
of ways of choosing certificates of m misbehaving vehicles
only from {C j | j ∈ J}, i.e., |WJ | =

(|J|
n

)m
. Even though any

case belonging to WJ satisfies the first condition, WJ also
includes the case that some certificates in {C j | j ∈ J} are not
assigned to the misbehaving vehicles. Therefore, we should
subtract from WJ the cases that do not satisfy the second
condition. The cases (in WJ) where there is at least one cer-
tificate in {C j | j ∈ J} that is not assigned to the misbehaving
vehicles can be expressed as

⋃
j∈J WJ−{ j}. The probability

Pr[βJ] can be computed as follows.

Pr[βJ] =
|WJ | − |⋃ j∈J WJ−{ j}|

|WI |

=

(|J|
n

)m − |⋃ j∈J WJ−{ j}|(
N
n

)m (6)

where WI is the set of ways of choosing certificates of m
misbehaving vehicles from the shared certificate pool C =
{C1,C2, . . . ,CN} and the size of WI is |WI | =

(|I|
n

)m
=

(
N
n

)m
.

The probability |⋃ j∈J WJ−{ j}| can be computed by us-
ing the principle of inclusion-exclusion (i.e., Eq. (2)) as fol-
lows.∣∣∣⋃

j∈J

WJ−{ j}
∣∣∣ = ∑

∅�K⊂J

(−1)|K|−1
∣∣∣⋂

k∈K
WJ−{k}

∣∣∣

=

|J|∑
s=1

(−1)s−1

(|J|
s

)(|J| − s
n

)m

(7)

where
∣∣∣ ⋂k∈K WJ−{k}

∣∣∣ is equal to the number of ways of
choosing certificates of m misbehaving vehicles only from
{Ci | i ∈ J − K} and we get

∣∣∣ ⋂k∈K WJ−{k}
∣∣∣ = (|J|−s

n

)m
for any

s-element set K (i.e., |K| = s).
Finally, we can get the following formula for the vehi-

cle cover probability from Eq. (5), Eq. (6), and Eq. (7).

Pr new
cover(N, n,m)

= Pr[α]

=
∑

J

(|J|
n

)
(

N
n

) Pr[βJ] (for J ⊂ I and n ≤ |J| ≤ mn)

=
∑

J

⎛⎜⎜⎜⎜⎜⎜⎜⎝
(|J|

n

)
(

N
n

) ·
(|J|

n

)m − |⋃ j∈J WJ−{ j}|(
N
n

)m

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=
∑

J

⎛⎜⎜⎜⎜⎜⎜⎜⎝
(|J|

n

)
(

N
n

) ·
(|J|

n

)m −∑|J|
s=1(−1)s−1

(|J|
s

)(|J|−s
n

)m

(
N
n

)m

⎞⎟⎟⎟⎟⎟⎟⎟⎠

Table 1 Sample values of err(10000, 5,m).

m Eq. (3) Eq. (8) err(10000, 5,m)
1 3.125E-17 1.201E-18 2501.6
2 9.988E-16 3.023E-16 230.4
3 7.575E-15 3.598E-15 110.5
4 3.188E-14 1.855E-14 71.8
5 9.717E-14 6.350E-14 53.0
6 2.415E-13 1.701E-13 42.0
7 5.213E-13 3.870E-13 34.7
8 1.015E-12 7.835E-13 29.6
9 1.827E-12 1.453E-12 25.7

10 3.090E-12 2.517E-12 22.8

=

mn∑
γ=n

⎛⎜⎜⎜⎜⎜⎜⎜⎝
(
N
γ

)
·
(
γ
n

)
(

N
n

) ·
(
γ
n

)m −∑γ
s=1(−1)s−1

(
γ
s

)(
γ−s

n

)m

(
N
n

)m

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (8)

where
(

N
γ

)
in the last equation is the number of γ-element

sets J with J ⊂ I and n ≤ |J| ≤ mn. Note that the bino-
mial coefficient in Eq. (8) should be evaluated as defined in
Sect. 2. For example,

(
a
0

)
= 1 for ∀a ∈ N and

(
0
b

)
= 0 for all

integers b > 0. If b � {0, 1, . . . , a}, then
(

a
b

)
= 0.

3.4 Numerical Comparison

To evaluate the numerical difference between the previous
formula (Eq. (3)) and the new formula (Eq. (8)), we define a
function err(N, n,m) as follows.

err(N, n,m) =

(
Eq. (3) − Eq. (8)

Eq. (8)

)
× 100 (%) (9)

In Table 1, we provide the numerical values for the parame-
ter N = 10000 and n = 5 of the baseline system in [6].

Table 1 shows that the difference between two formulas
is very large for small values of m and becomes smaller (but
not negligible) as m grows. Therefore, Eq. (3) can only be
used for a loose upper bound of the vehicle cover probability
and Eq. (8) should be used to compute the exact probability.

4. Conclusion

When a misbehaving vehicle in the combinatorial certificate
management scheme is revoked, shared certificates on an in-
nocent vehicle also become invalid. Even though the com-
putation of the vehicle cover probability may seem to be
easy and simple at first, it turns out that the computation is
relatively complicated. This is because various probabilistic
events are not independent but affect each other. Therefore,
care should always be taken on the computation of probabil-
ities when various dependent events are considered. In ad-
dition to the vehicle cover probability, there also have been
other problems in which old analysis was recently corrected
by revisiting the dependency between probabilistic events;
e.g., [9]–[11].
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