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Mixture Hyperplanes Approximation for Global Tracking

Song GU†a), Member, Zheng MA†, and Mei XIE††, Nonmembers

SUMMARY Template tracking has been extensively studied in Com-
puter Vision with a wide range of applications. A general framework is
to construct a parametric model to predict movement and to track the tar-
get. The difference in intensity between the pixels belonging to the current
region and the pixels of the selected target allows a straightforward predic-
tion of the region position in the current image. Traditional methods track
the object based on the assumption that the relationship between the in-
tensity difference and the region position is linear or non-linear. They will
result in bad tracking performance when just one model is adopted. This
paper proposes a method, called as Mixture Hyperplanes Approximation,
which is based on finite mixture of generalized linear regression models to
perform robust tracking. Moreover, a fast learning strategy is discussed,
which improves the robustness against noise. Experiments demonstrate the
performance and stability of Mixture Hyperplanes Approximation.
key words: template tracking, Mixture Hyperplanes Approximation, fast
learning, regression

1. Introduction

Object tracking has many applications in computer vision
such as surveillance, vision-based control and visual recon-
struction. Many tracking approaches focus on selecting
one of the moving object’s features as in [1]–[3]. These
methods construct a classifier according to the features of
the object and the background to distinguish them, and are
called feature-based tracking. On the other hand, global-
based tracking approaches depend their ability to treat com-
plex templates or patterns that cannot be modeled by local
features. They are robust and have been extensively used.
Some very successful learning based template trackers are
proposed by [4], [5]. They are based on learning linear pre-
dictors to efficiently compute template warp parameter up-
dates. Thanks to extensive training, these methods are very
fast and tend to avoid local minima. They treat the tracked
object (template) as a whole, and find the relationship be-
tween the intensity difference of the target and the moving
parameters in two consecutive frames. Traditional global-
based tracking methods such as [4], [5] abstract directly the
template’s color as feature, and construct a motion model
by warping function. The object is tracked based on the as-
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sumption that the relationship between the intensity differ-
ence and the warping parameters in two successive frames
is linear. This will result in large error in real-time tracking.
[6] proposed a second-order approximation of the image dif-
ference and achieved a higher convergence rate. However,
it still suffers from high complexity which makes it unsuit-
able for real-time tracking. In addition, an appropriate high-
order model is hard to select. In this paper, we propose a
new framework that addresses this problem.

This paper proposes a novel global-based tracking ap-
proach based on a mixture of generalized linear models by
allowing the approximation of the parameters in a data-
driven way without specifying the distribution approxima-
tion in advance. Mixture model estimation and generalized
linear model theory are utilized with Expectation Maximiza-
tion (EM) algorithm to regress the object motion model. In
current global-based tracking approaches, such as [4], the
computation of the linear predictors requires the costly in-
version of a large, template specific matrix. Instead of com-
puting the inversion of the whole matrix, a high dimension
matrix is mapped to a low rank space by simple matrix trans-
formation in this paper. The proposed fast learning strat-
egy decreases the time consuming of the inverse operation.
Moreover, all noise outside of the low rank space has no ef-
fect when the fast learning strategy is implemented. This
will increase the robustness against noise in our framework.
We will prove this in our experiments.

2. Mixture Hyperplanes Approximation

Our proposed approach is based on finite mixture models
algorithm which can express a global information of the
ground truth model more accurately than single model. In
this section, Mixture Hyperplanes Approximation will be
analyzed in detail. We adopt almost identical notations as
those proposed by [4], [7] in order to make the reading eas-
ier.

2.1 Template and Motion Model

We select a region in the first frame of a video sequence,
which defines the region of interest as target region that we
want to track. The location of the target region in an image
is defined by R which stores the position of all the corner
points. Without loss of generality, the target region is de-
fined by a rectangle in this paper. Suppose I(R, t) is a vector
of the brightness values of np sample points within target
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Fig. 1 Example of template and motion model

region instead of all the pixels in it at time t. Note that R is
different at each time. Then I(R, t0) is the brightness values
of target region in the first frame, which is defined as the
template, t0 is the initial time. The relative motion between
the object and the camera induces the change in the position
of the template in the image. The motion can be modeled by
a parametric motion model f (R, µt), where µt denotes a set
of parameters at time t. In our implementation, homography
is used. Homography motions can be modeled by using an
eight parameters model, given by the following matrix

H =

 a11 a12 a13

a21 a22 a23

a31 a32 1

 (1)

So µt is an 8 × 1 vector and is defined as µt =

[a11, a12, a13, a21, a22, a23, a31, a32]T . In the motion model,
function f can be written as a product of matrices

f (x, µt) = H(µt)x (2)

where x ∈ R is written with homogeneous coordinates
x=(sx,sy,s) and H is a 3×3 matrix. We define I( f (R, µt), t) as
the brightness values of transformed target region because
of the relative motion, and I( f (R, µt0 ), t0) as the brightness
values of initial transformed target region to template. Fig-
ure 1 shows an example of template and motion model.

2.2 Mixture Hyperplanes Approximation

Given a target region in the first frame, the corresponding
transformations and brightness values are stored in µt0 and
I( f (R, µt0 ), t0), respectively. From [4], we can get the warp-
ing parameter updates function formulated

δµ = Aδi (3)

where δµ = µt − µt0 and δi = I( f (R, µt0 ), t0) − I( f (R, µt), t).
The key of tracking object correctly is to find a suitable

hyperplane approximation matrix A. However, from sim-
ple numerical application in [4], we know that the relation-
ship between both parameters is not linear completely. If we
solve this problem simply by a single linear model, it will re-
sult in larger error. Certainly, we can construct a nonlinear
model to solve this question as [6]. Although, faster conver-
gence rates for larger convergence areas can be additionally

obtained by using a high-order instead of a first-order ap-
proximation of the error function, it is difficult in finding an
appropriate nonlinear model to regress the predictor in dif-
ferent magnitudes of displacements and different template
size. [8] has showed an experiment where linear predictors
are superior to [6]. Moreover, an inappropriate high-order
model is more sensitive to noise than linear model. It is
illustrated in our experiments. Based on our opinion, it is
often found that improved performance can be obtained by
combining multiple linear models together. We consider M
linear model components, each governed by its own predic-
tor Am. Then the warping parameter updates Eq. (3) can be
modified as

δµ =

M∑
m=1

πmAmδi (4)

where πm is a weight for each component. It also can be
viewed as the confidence of each component, and it satisfies∑M

m=1 πm = 1 and πm > 0,∀m.

2.3 Hyperplane Approximation Learning

The key of our approach is to find appropriate parameters
Am and πm for each component during the learning phase,
where Am is an 8 × np matrix and πm is a scalar. The learn-
ing process uses nt random transformations on the template,
where nt ≫ np. These transformations are small distur-
bances δµi = µt0 − µi

t0 , i = 1, 2, . . . , nt to the initial trans-
formed parameters. As a consequence, this introduces a
change in the image brightness values to template, δii, where
δii = I( f (R, µt0 )) − I( f (R, µi

t0 )), i = 1, 2, . . . , nt. We con-
struct matrix Y = [δµ1, δµ2, . . . δµnt ] = [y1, y2, . . . , ynt ] and
H = [δi1, δi2, . . . , δint ] = [x1, x2, . . . , xnt ], where H is an
np × nt matrix, Y is an 8 × nt matrix. Inspired by [9], the
assumption that the dependent variable follows a Gaussian
distribution is relaxed in the generalized linear model frame-
work. This signifies that y|x ∼ N(y|µ, β−1), where N(•) is
the multivariate Gaussian distribution, µ is the mean vec-
tor which is equal to Amx with respect to each component,
and β−1 is covariance matrix. Then the mixture distribu-
tion of target can be written as p(y|θ) = ∑M

m=1 πmN(y|µ, β−1),
where θ is the vector of all parameters which consists of the
component weights and the component specific parameters.
Given a data set of observations {xn, yn} n = 1, 2, . . . , nt, the
log likelihood function for this model, then takes the form
lnp(Y |θ) = ∑nt

n=1 ln(
∑M

m=1 πmN(yn|Amxn, β
−1)).

In order to maximize this likelihood function, EM al-
gorithm [9] is adopted to obtain the following parameters

πm =
1
nt

nt∑
n=1

γnm (5)

Am = YRmHT (HRmHT )−1 (6)

1
β
=

1
nt

nt∑
n=1

M∑
m=1

γnm(yn − Amxn)2 (7)
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where

γnm = E[znm] = p(y|x, θ j) =
πmN(yn|Amxn, β

−1)∑M
l=1 πlN(yn|Alxn, β−1)

(8)

To improve invariance to illumination changes, normaliza-
tion is used on the extracted image data by imposing zero
mean and unit standard deviation.

2.4 A Fast Learning Strategy

Considering Eq. (6), the result of HRmHT is a np × np ma-
trix, and usually np is a large number. So it is evident that the
computation of Am is time-consuming due to the inverse of
HRmHT . To increase the learning speed, we propose to use
the inverse of small matrix instead of the one of large matrix.
Setting C = YRmHT and B = HRmHT , it leads to C = AmB.
Transforming Eq. (6), we obtain I = AmBCT (CCT )−1. Set-
ting D = BCT (CCT )−1, we obtain I = AmD, where D is an
np × 8 matrix. To learn Am, we compute

Am = (DT D)−1DT (9)

Note that Rm is a diagonal matrix, it leads to RmHT =

(HRm)T .
It is noteworthy to mention that the computation of the

matrix Am involves two matrix inverse such as (CCT )−1 and
(DT D)−1. Both are 8 × 8 matrices. The advantage of fast
learning strategy is as follows:

• Computing the inverse of two 8 × 8 matrices is much
faster than computing the one of an np × np matrix,
especially when np is a large number.

• The np is a variable with respect to the size of target re-
gion. However, the rows of matrix Y is constant when
homography is used. That is to say that original learn-
ing speed is related with the size of target region, but
the fast learning speed is unrelated with it.

• Considering Eq. (6), note that Rm is a diagonal ma-
trix again, YRm corresponds to weight for each col-
umn of matrix Y , and YRmHT corresponds to orthog-
onally project weighted Y on H. Similarly, since
BCT = HRmHT HRmYT , where RmHT HRm is a diago-
nal matrix, Eq. (9) corresponds to orthogonally project
weighted H on Y . Given that we project weighted H on
Y , all noise outside of the low rank space represented
by Y has no effect. This makes Eq. (9) less sensitive to
noise than Eq. (6). We will illustrate the tracking per-
formance against noise of our fast learning approach in
experiments section.

Inspired by [10], we divide all data set into M groups
randomly, and then initialize each component predictor Am

based on these groups. The computing of initialization is
based on [4]. β is initialized to the reciprocal of the true
variance of the set of target values yi. Note that the error of
each data set takes the form yi − Amxi with respect to each
component. πm is initialized as 1

M . In learning stage, the
maximum iteration times are 5 times. Alg.1 formalizes the

Algorithm 1 Mixture Hyperplanes Learning
input: H, Y , M
output: Am , πm

function Learning(H,Y,M)
Divide the matrix Y and H into M subsets by randomly selecting the

columns of them correspondingly
Compute Am by [4]
Initialize other parameters such as:πm ← 1

M and β
for iteration = 1. . . do

Compute γnm by Eq. (8)
Update πm by Eq. (5)
Estimate Am by Eq. (9)
Update β by Eq. (7)

end for
end function

applied learning approach.

2.5 Mixture Hyperplanes Tracking

Tracking stage proposed in [4] is adopted as our tracking
algorithm. We slightly modify [4] and instead Eq. (3) as
warping parameter update function with Eq. (4). By experi-
ments, we find that updating motion parameter µt iteratively
can improve the tracking performance as well. The iteration
number is 3 in our approach.

3. Experiments

We conduct three experiments. The first experiment pro-
vides quantitative comparisons between our two approaches
(original learning and fast learning) and two alternative ap-
proaches, HA [4] and ESM [6], in different types of mo-
tions and levels of noise. The second experiment evaluates
the performance of our approaches and two alternative ap-
proaches in challenge sequence. The performance of each
experiment is measured by calculating

1
4

4∑
i=1

∥ x⃗ti − x⃗gi ∥2 (10)

where x⃗ti is the one of the four-tracked corner points coor-
dinate, and x⃗gi is the one of the benchmark. We illustrate a
real time tracking example of our approach in the last exper-
iment.

For the implementation of HA, we programmed bina-
ries by ourselves based on [11]. Homography warping algo-
rithm is from [11] which is publicly available. To improve
invariance to illumination changes, normalization is used.
ESM algorithm is also programmed by ourselves based on
the publicly available binaries. All of the algorithm and our
proposed algorithm are implemented in MATLAB 7.10.0.

3.1 Basic Motions Comparison

In this section, we analyze the performance of our ap-
proaches on the robustness of tracking with respect to dif-
ferent basic transformations such as rotate, translate, scale
(zoom in and zoom out) and view point change. Especially
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Fig. 2 Basic transformation examples

view point change is the rotation about the vertical axis.
Figure 2 shows the image and the target region we want to
track. The size of target region is 150 × 150. For decreas-
ing the number of sample data, subsample is adopted on the
target region. The step of subsample is 10, and the length
of the input vector δi is 225. The left column of Fig. 2 illus-
trates the performance of four approaches when no noise is
induced, and the right column shows the performance when
images is corrupted by Gaussian distribution noise. When
no noise is induced, our original approach and HA perform
better than other approaches, and our fast learning approach
has a slightly worse tracking robustness as shown in the left
column of Fig. 2. However, our fast learning approach per-
forms almost similarly regardless of noise and outperforms
the other approaches in terms of sensitivity to noise as illus-

Fig. 3 Successive movements examples. 3(a) and 3(b) show two exam-
ples of tracking result by four different methods: the region marked by
yellow is the ground truth; the region marked by red is HA; green is ESM;
blue is our fast approach; cyan is our original approach. 3(c) and 3(d) show
the quantitative comparison of the tracking performance by four different
methods.

trated in the right column of Fig. 2.

3.2 Successive Movements Comparison

In this section, a sequence of 100 images with small inter-
frame displacements is constructed. † Figure 3(c) illustrates
the performance of the four approaches without any added
noise, and Fig. 3(d) shows the performance with Gaussian
distribution noise. Although the four methods perform al-
most the same result when no noise is induced, ESM per-
forms the worst in this sequence when noise is induced as
Fig. 3(d). It suggests that high-order model is more sensi-
tive to noise than linear model. Moreover, when Gaussian
distribution noise is added in the sequence, the disturbance
is more stable in our fast learning approach than HA and
our original approach. From Fig. 3(d), our fast learning ap-
proach improves the tracking performance when noise is in-
duced.

Recently, some other tracking methods have proposed.
In [12], ASIFT image matching algorithm extends the SIFT
method to a fully affine invariant device. Although it permits
to reliably identify features that have undergone very large
affine distortions, the number of key points in target region
will affect the performance of tracking system. A lack of
key points will decrease the system’s tracking performance
especially when the target object region is small. In [13],
a consistent low-rank sparse tracker is proposed that builds
upon the particle filter framework for tracking. To allevi-

†www.robots.ox.ac.uk/ cmei/SingleViewpointTracking.html
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Fig. 4 Examples of real time tracking

ate the problem of misalignment between dictionary tem-
plates and particles, a dense sampling of the object and the
background solution is adopted. When the target object re-
gion is large and the number of samples is not large enough,
the system’s tracking performance will be decreased also.
Our approach fits for the object of arbitrary size because it
only uses the simple global information of the object. It al-
lows the approximation of the parameters in a data-driven
way without specifying the distribution approximation in
advance. Moreover, our fast learning strategy makes it pos-
sible to learn large templates and large affine distortions.

3.3 Real Time Tracking

In this section, a real time tracking is performed by our fast
learning approach. The target region is defined as Fig. 4(a).
From Fig. 4, our approach can track the object accurately.

4. Conclusion

To the best of our knowledge, our approach is the first dis-
cussion on homography-based tracking by finite mixture hy-
perplane models. In this paper, we have shown an original
improvement of the tracking algorithm proposed by [4]. The
key idea is to regress the ground truth model using mixture
hyperplanes instead of a single one. The advantages of mix-
ture models are that they do not require the distribution to
be specified in advance, and they can express a global in-
formation of the ground truth model more accurately than
single model. Moreover, we propose a fast learning strat-
egy not only to overcome the dimension disaster, but also
to decrease the effect of noise. Experiments demonstrated

that our approach outperforms single model solutions.
In this paper, the mixing parameters are independent of

the input variables. For example, each πm is responsible for
all samples in our approach. Allowing the mixing parame-
ters to depend on the input data will yield better result. We
suspect more is to come.
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