
1706
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.9 SEPTEMBER 2015

LETTER

Isolated VM Storage on Clouds∗

Jinho SEOL†a), Student Member, Seongwook JIN†, and Seungryoul MAENG†, Nonmembers

SUMMARY Even though cloud users want to keep their data on clouds
secure, it is not easy to protect the data because cloud administrators could
be malicious and hypervisor could be compromised. To solve this prob-
lem, hardware-based memory isolation schemes have been proposed. How-
ever, the data in virtual storage are not protected by the memory isolation
schemes, and thus, a guest OS should encrypt the data. In this paper, we ad-
dress the problems of the previous schemes and propose a hardware-based
storage isolation scheme. The proposed scheme enables to protect user data
securely and to achieve performance improvement.
key words: cloud computing, storage device, storage isolation

1. Introduction

With a cloud computing service, cloud users can use com-
puting resources by leasing them rather than owning them.
To manage computing resources efficiently, a cloud provider
allocates virtual machines (VMs) to cloud users. Enabling
several VMs to co-exist in a single cloud node, virtual ma-
chine monitor (VMM; hypervisor) provides management
for the resources and isolation between VMs. However, in
such a virtualized environment, it is hard to protect the pri-
vate data of cloud users because VMM can be compromised
due to its vulnerabilities and can misbehave with a root
privilege of cloud administrators. To protect private data
of cloud users against such an environment, several studies
have been proposed [1]–[3]. As the prior studies protect the
memory of guest VMs by hardware isolation, the memory
of guest VMs can be protected even though VMM is com-
promised.

Even though such an approach protects the memory of
guest VMs efficiently, the hardware does not support any
mechanism for storage devices. Thus, guest VMs are in
charge of protecting their private data by encrypting them.
Even though the encryption scheme enables to protect the
data against a compromised VMM and malicious cloud ad-
ministrators, there exist two problems. First, even though
user data protection should be provided by a cloud ser-
vice provider, a guest OS has a duty of protecting the data.
Second, overheads are incurred during cryptographic opera-
tions.

To deal with such problems, this paper proposes

Manuscript received February 26, 2015.
Manuscript publicized June 8, 2015.
†The authors are with the Computer Science Department,

KAIST, Korea.
∗This work was supported by the IT R&D program of

MSIP/IITP [10041313, UX-oriented Mobile SW Platform].
a) E-mail: jhseol@calab.kaist.ac.kr (Corresponding author)

DOI: 10.1587/transinf.2015EDL8048

a hardware-based storage isolation architecture called H-
SVM+, which extends the previously proposed memory iso-
lation hardware [1], [3]. The proposed architecture isolates
storage access from VMM and cloud administrators, and the
private data of cloud user can be protected without crypto-
graphic operations. With the proposed architecture, a cloud
user can use VM storage transparently and be free from
cryptographic overheads.

2. Motivation and Background

2.1 Assumption and Threat Model

VMM plays the essential role of VM isolation and resource
allocation. The modern VMM has been constantly increas-
ing its functionality, and thus, it becomes more complex.
Such complex functionality makes VMM more powerful,
while it makes VMM more vulnerable because it is hard
to verify a huge body of code [4]. Therefore, our threat
model assumes that VMM is untrustworthy and may try to
leak private data of guest VMs. Moreover, an individual
cloud administrator may be malicious whereas a cloud ser-
vice provider tries to protect cloud user data.

Since this paper proposes a hardware-based architec-
ture, the architecture cannot resist hardware attacks such
as bus-probing and cold-boot attacks. However, a cloud
provider equips proper defense mechanisms such as surveil-
lance systems and access doors to prevent hardware attacks.
Therefore, we assume that hardware attacks are unfeasible.

2.2 Hardware Based Memory Isolation

Since VMM can be compromised and cloud administra-
tors can be malicious, hardware based memory isolation
schemes such as H-SVM [1], [3] and HyperWall [2] have
been proposed to provide strong memory isolation. A tra-
ditional VMM is in charge of both resource allocation and
protection functions whereas such schemes decouple mem-
ory protection functions from VMM and move the functions
into hardware as depicted in Fig. 1 (a). Accordingly, the
memory of guest VMs can be protected even with a mali-
cious VMM. However, since the storage of guest VMs is
not directly protected by the proposed hardware, an OS in
guest VMs has a duty for protecting the storage data with
cryptographic operations.

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers



LETTER
1707

Fig. 1 Memory and storage isolation

2.3 Implications of Cryptographic Operations

With a hardware based memory isolation architecture, guest
VMs should perform cryptographic operations for storage
data. The hardware supports special storage where crypto-
graphic keys are stored and delivers the key to an OS of a
guest VM. Then, the OS performs actual cryptographic op-
erations with the key. Such an architecture has two impli-
cations for cloud users. First, the responsibility of protect-
ing user data is unfairly placed to cloud users. Even though
cloud users does not perform cryptographic operations for
their data, the data should be protected. However, the pre-
vious schemes merely rely on the cryptographic operations
by the guest OS. It means that a cloud user is responsible
for protecting their storage data. Shifting the responsibility
onto cloud users may result in an evasion of responsibility
of a cloud provider. When information leakage happens on
clouds, the cloud provider can insist that the root cause of
the information leakage is the vulnerability of an guest OS
or the neglect of cloud user’s duty of managing the guest
OS. Accordingly, a new architecture should be responsible
for protecting both memory and storage data.

Second, the cost of protecting data is unfairly passed on
to cloud users. Cryptographic operations should be executed
whenever a guest VM reads or writes data. Accordingly, a
cloud user suffers from a relatively low performance and
should pay additional costs for cryptographic operations.
To evaluate the overhead, we measured the performance of
cryptographic operations. The experiment was performed
on Intel i7-2600 with 1TB HDD, and eCryptfs [5] was used
for an encryption scheme. Three different I/O benchmarks
called blogbench [6], dbench [7], and bonnie++ [8] were
used and the performance results were normalized to the
performance of native system without cryptographic op-
erations. Figure 2 shows performance overhead caused
by cryptographic operations. The cryptographic operations
lead to performance degradation up to 35%. Bonnie++ pro-
vides also CPU usage during its execution and the CPU us-
age is denoted as triangle marks in Fig. 2. The result shows
that performance degradation and high CPU usage are in-
evitable due to cryptographic operations. Moreover, in-

Fig. 2 Performance of cryptographic operations

tegrity check schemes aggravate such overheads. The over-
heads are equivalent to additional costs for cloud user to pro-
tect storage data. However, it is unfavorable for cloud users
that they pays costs to protect their data even though cloud
providers are responsible for protecting cloud data. There-
fore, a new architecture should remove such overheads effi-
ciently.

2.4 Requirements for Storage Isolation

To isolate storage data without cryptographic operations,
virtual storage should be dedicated to a VM. To enable such
a system, there exists three requirements. Firstly, a strong
memory isolation scheme should be provided. Since the
contents of storage devices are loaded in the memory of
guest VMs, isolating the memory of guest VMs are essen-
tial. Secondly, once a storage device is allocated to a VM,
the VM should have an exclusive access to the device. If an
arbitrary VM is able to access to the device, the data in the
storage device are disclosed. Thirdly, the communication
path between a storage device and its device driver in a VM
should be protected. Interrupts, register, and shared memory
are used for the communication [9]. If a malicious entity is
able to access the communication path, the confidentiality
of the storage device cannot be guaranteed.

Since our system is built on a hardware-based memory
isolation scheme, the first requirement is satisfied. To satisfy
the third requirement, the storage devices which are directly
assignable to a guest VM are used in the proposed system.
One example of directly assignable devices is Non-Volatile
Memory Express (NVMe) [10] with a Single Root I/O Vir-
tualization (SR-IOV). NVMe is a host controller interface
utilizing PCIe based sold state drives (SSD) and, SR-IOV is
the PCIe specification for virtualization support. With SR-
IOV capability, a physical device provides multiple virtual
devices and each virtual device can communicate to a de-
vice driver without the intervention of VMM. In this paper,
our architecture manages the mapping table to denote re-
lationship between a VM and a storage device, and man-
ages I/O Memory Management Unit (IOMMU) based on
SR-IOV storage devices to protect the communication path.



1708
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.9 SEPTEMBER 2015

3. Storage Isolation Architecture

H-SVM+ provides a storage isolation scheme. In this sec-
tion, we focus on how the proposed architecture satisfies
the second requirement in §2.4. To guarantee an exclusive
access from a VM to virtual storage, H-SVM+ manages
a table with identities (IDs) of VMs and storage devices
to denote access permission as described in Fig. 3. Since
H-SVM+ manages IOMMU page table (IOMMUPT), H-
SVM+ is able to grant access permission from a VM to a
storage device as far as H-SVM+ can check the IDs of VMs
and storage devices. To identify VMs and storage devices,
we confront three challenges.

The first challenge is how to determine an ID of a VM.
The ID should be unique and cannot be changed arbitrar-
ily, and thus, the VMID used by VMM is not suitable for
identifying VMs. Therefore, in the proposed system, a VM
is identified by the hash value of a VM. A virtual storage
of guest VMs consists of two partitions. The first partition
contains a guest OS and does not have user data. The sec-
ond partition contains user data, and H-SVM+ focuses on
the isolation of the second partition. Since H-SVM verifies
and launches the first partition [1], H-SVM knows the hash
value of the first partition. In the proposed system, the first
partition includes a user name and nonce to differentiate the
hash values of VMs. Thus, the hash value can be used as
the ID of VMs. The second challenge is the way to protect
the ID of a storage device. If the ID of a storage device
can be changed by softwares, the storage device can be allo-
cated to an arbitrary VM. In the proposed system, the ID of
a storage device is managed by the storage device hardware.
With a limited interface of the storage device, the ID of the
storage device can be changed only after the all contents of
the storage device are deleted. Therefore, the storage de-
vice cannot be allocated to an arbitrary VM with its original
contents. The final challenge is the way to communicate be-
tween H-SVM+ and a storage device. To know the ID of a
storage device, H-SVM+ should be able to communicate to
the storage device. However, since H-SVM+ exists within a
processor-memory complex, it cannot directly communicate
to the storage device. In the proposed system, the commu-

Fig. 3 Overall Architecture

nication channel between H-SVM+ and a storage device is
established by manipulating IOMMUPT, and the ID of stor-
age device is delivered via main memory.

Before explaining detailed processes of the proposed
system, we explain two distinct IDs for each storage. The
first ID is a storage device ID (devID) which is used for iden-
tifying storage devices by VMM. Since devID is used when
VMM allocates a specific storage to a guest VM, devID
is represented by BDF (Bus:Device.Function) notation [11].
The second ID is a storage unique ID (UID) which is used
for identifying storage devices by H-SVM+. Since UID is
used only between H-SVM+ and storage devices, software
components such as VMM cannot know the UID.

H-SVM+ achieves storage isolation with the two IDs
as following two phases. The first phase is the initialization
phase where a storage device is initialized and the UID of
the storage device is registered in H-SVM+. The second
phase is the grant phase where H-SVM+ grants access from
a VM to a storage device. Specifically, the details of the ini-
tialization phase are as follows. The initialization process in
a guest OS calls SetupNewStorage(devID) in H-SVM+.
H-SVM+ creates a UID and stores the UID with a VM hash
value in the internal storage in H-SVM+. The VM hash
value is the measured hash value of the first partition and
is obtained by H-SVM before a guest VM starts. H-SVM+
also writes the UID to a pre-defined area in main memory.
The address of the area is known to both H-SVM+ and a
storage device. H-SVM+ sets IOMMU page table to enable
the storage device to access the UID. Afterwards, the initial-
ization process in the guest OS calls AllocateNewUID()
in the storage device. The storage device would delete all
stored data in the storage and access the UID created by H-
SVM+ via direct memory access (DMA) capability. Since
the IOMMU page table is set by H-SVM+, the storage de-
vice can access the UID directly. The storage device stores
the UID in internal meta data area. The initialization process
is performed once when a storage device is initialized.

After that, the grant phase is performed to grant access
from a guest OS to a storage device. Whenever a guest OS
boots, the grant phase should be performed. Otherwise, the
guest OS cannot access the storage device. The details of
the grant phase are as follows. The grant process in a guest
OS calls GrantSetup(devID) in H-SVM+. H-SVM+ sets
the IOMMU page table for a storage device. After that,
the grant process calls ShowUID() in a storage device via
a storage device driver. The storage device writes UID to a
pre-defined area with DMA. Finally, the grant process calls
GrantStorage(devID). After checking devID and UID in
the internal storage, H-SVM+ sets IOMMU page table to
enable a guest OS to access the storage device.

4. Evaluation

4.1 Security Analysis

Confidentiality and integrity. To guarantee the confiden-
tiality and integrity of storage devices, a storage device



LETTER
1709

Fig. 4 Overheads of H-SVM+

should be allocated only to the VM where the storage de-
vice is initialized. Since H-SVM+manages a mapping table
containing VM hashes and UIDs, the table cannot be altered
by software components. Moreover, storage devices cannot
be used without the grant phase since the accesses from a
guest OS are blocked by the IOMMU page table. Thus, it
is guaranteed that a storage device is always allocated to the
same VM.
Availability. H-SVM+ does not support the availability of
storage devices. Since VMM is in charge of the allocation
of storage devices, VMM can deny the allocation of stor-
age devices. Such a problem, however, is easily detected
by a cloud user because the storage device is unavailable to
the cloud user. Therefore, the availability issues can be me-
diated by service level agreement (SLA) between a cloud
provider and a cloud user.

4.2 Performance Evaluation

Since H-SVM+ grants access permissions from VMs to
storage devices, the overheads by encryption and decryp-
tion are disappeared, and thus, the performance gains are ex-
pected to be the same as the native system in Fig. 2. There-
fore, in this section, we focus on the overheads caused by
initialization and grant operations.

We used Xen 4.0.1 as VMM and Ubuntu 10.04 as a
management VM and guest VMs. Since H-SVM+ is pro-
posed as a hardware component, H-SVM+ should have a
higher privilege than VMM. Thus, we implemented the op-
erations of H-SVM+ and a storage device in system man-
agement mode (SMM). SMM is a special mode in x86 ar-
chitecture. When a system mode becomes SMM, all soft-
ware stops and only SMM code can be executed. More-
over, SMM manages a special part of main memory called
system management RAM (SMRAM). Since SMRAM can
be accessed only in SMM, the contents of SMRAM can be
protected. Therefore, it is possible to implement a com-
ponent having a higher privilege than VMM. Even though
SMM is originally designed for urgent system management
such as power failure, SMM is used for various implemen-
tations [12], [13] due to its capability.

We measured the execution times of each operation as
depicted in Fig. 4. The experiment runs each operation 100

times, and the execution times are averaged. To enter SMM,
context switch overhead is needed. By doing nothing in
SMM, we measured the overhead denoted by null. The ini-
tialization phase takes 144µs. SetupNewStorage() takes
a relatively long time compared to AllocateNewUID()
because of page table allocation. Note that the time for
deleting the contents of storage devices is excluded in
AllocateNewUID() because it varies according to the per-
formance and capacity of storage devices. The grant phase
takes 282µs. GrantStroage() takes half of the time be-
cause setup page tables are deleted and new page tables are
allocated. These overheads are relatively small compared
to the overheads of cryptographic operations. Moreover,
the initialization phase is performed only once when a new
storage device is allocated and the grant phase is performed
whenever after a guest VM boots. Therefore, the proposed
system is able to isolate storage devices with a negligible
overhead.

5. Conclusions and Limitation

Providing a secure cloud environment is the steppingstone to
invigorate cloud growth. Even though the hardware-based
memory isolation scheme issued a new direction, cloud
users are responsible for protecting cloud storage. By iso-
lating the storage of cloud users from a software layer com-
pletely, the proposed system not only provides a secure stor-
age environment but also solve the overheads of encryption
and decryption.

A limitation of this study is that the proposed system
does not provide full cloud features such as a live migration
because the data protection mechanism during a migration
process does not presented. Moreover, the proposed sys-
tem supports only directly assignable storage such as NVMe
since the communication path between a guest VM and a
storage device are protected.

References

[1] S. Jin, J. Ahn, S. Cha, and J. Huh, “Architectural Support for
Secure Virtualization Under a Vulnerable Hypervisor,” Proc. 44th
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp.272–283, 2011.

[2] J. Szefer and R.B. Lee, “Architectural Support for Hypervisor-secure
Virtualization,” Proc. Seventeenth International Conference on Ar-
chitectural Support for Programming Languages and Operating Sys-
tems (ASPLOS), pp.437–450, 2012.

[3] S. Jin, J. Ahn, J. Seol, S. Cha, J. Huh, and S. Maeng, “H-
SVM: Hardware-assisted Secure Virtual Machines under a Vul-
nerable Hypervisor,” IEEE Trans. Comput., [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/TC.2015.2389792

[4] D.G. Murray, G. Milos, and S. Hand, “Improving Xen security
through disaggregation,” Proc. 4th ACM SIGPLAN/SIGOPS in-
ternational conference on Virtual Execution Environments (VEE),
pp.151–160, 2008.

[5] M. Halcrow, “eCryptfs: a stacked cryptographic filesystem,” Linux
Journal, 2007.

[6] “Blogbench,” http://www.pureftpd.org/project/blogbench.
[7] “DBENCH,” https://dbench.samba.org/
[8] “bonnie++,” http://www.coker.com.au/bonnie++/

http://dx.doi.org/10.1145/2155620.2155652
http://dx.doi.org/10.1145/2150976.2151022
http://dx.doi.org/10.1145/1346256.1346278


1710
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.9 SEPTEMBER 2015

[9] Y. Dong, X. Yang, X. Li, J. Li, K. Tian, and H. Guan, “High per-
formance network virtualization with SR-IOV,” in 2010 IEEE 16th
International Symposium on High Performance Computer Architec-
ture (HPCA), pp.1–10, Jan. 2010.

[10] J.J. Hung, K. Bu, Z.L. Sun, J.T. Diao, and J.B. Liu, “PCI Express-
Based NVMe Solid State Disk,” Applied Mechanics and Materials,
vol.464, pp.365–368, Nov. 2013.

[11] T. Shanley and D. Anderson, PCI System Architecture, 4th Edition,
MindShare, 1999.

[12] A.M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N.C. Skalsky,
“HyperSentry: enabling stealthy in-context measurement of hyper-
visor integrity,” Proc. 17th ACM conference on Computer and com-
munications security (CCS), pp.38–49, Oct. 2010.

[13] A.M. Azab, P. Ning, and X. Zhang, “SICE: A Hardware-Level
Strongly Isolated Computing Environment for x86 Multi-core Plat-
form,” Proc. 18th ACM conference on Computer and communica-
tions security (CCS), pp.375–388, Oct. 2011.

http://dx.doi.org/10.1109/hpca.2010.5416637
http://dx.doi.org/10.4028/www.scientific.net/amm.464.365
http://dx.doi.org/10.1145/1866307.1866313
http://dx.doi.org/10.1145/2046707.2046752

