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Greedy Approach Based Heuristics for Partitioning Sparse

Matrices

SUMMARY  Sparse Matrix-Vector Multiplication (SpMxV) is widely
used in many high-performance computing applications, including infor-
mation retrieval, medical imaging, and economic modeling. To eliminate
the overhead of zero padding in SpMxV, prior works have focused on par-
titioning a sparse matrix into row vectors sets (RVS’s) or sub-matrices.
However, performance was still degraded due to the sparsity pattern of a
sparse matrix. In this letter, we propose a heuristics, called recursive merg-
ing, which uses a greedy approach to recursively merge those row vectors
of nonzeros in a matrix into the RVS’s, such that each set included is en-
sured a local optimal solution. For ten uneven benchmark matrices from the
University of Florida Sparse Matrix Collection, our proposed partitioning
algorithm is always identified as the method with the highest mean density
(over 96%), but with the lowest average relative difference (below 0.07%)
over computing powers.

key words: partitioning, greedy approach, recursive merging, highest
mean density, lowest average relative difference

1. Introduction

Zero padding is the most frequently used strategy for sparse
matrix-vector multiplication (SpMxV) kernel to mitigate the
memory bandwidth pressure caused by irregular memory
access. However, zero padding itself also contributes to
the degradation of the performance of the kernel. On one
hand, the huge number of trivial operations with zero ele-
ments will surely bring about latency [1]-[5]. On the other
hand, the sparsity structure of a sparse matrix causes un-
balanced load distribution [13]. A lot of partitioning strate-
gies were then proposed to improve load balance for Sp-
MxV [1]-[9], [13].

In previous work [1], each row of the matrix data is
zero-padded to force the number of nonzeros (nnz) per row
to be a multiple of sixteen. Gregg et al. [3] used a variant of
CSC, dubbed the sparse matrix architecture and representa-
tion (SPAR) format [2], where the row_ind and col_ptr are
combined into a single vector with zero padding introduced
at the start of each column of data vector. David DuBois and
Andrew DuBois [4] made no assumption about the structure
of the sparse matrix with the exception that the implementa-
tion was designed to process up to 7 elements per row, and
if any row contains fewer than 7 elements it must be padded
with zeros to the full 7 elements. The Blocked Compressed
Sparse Row (BCSR) format, which was proposed by Im and

Manuscript received April 14, 2015.
Manuscript revised June 23, 2015.
Manuscript publicized July 2, 2015.
"The authors are with the State-Key Laboratory of ASIC and
Systems, Fudan University, Shanghai, 200433 China.
a) E-mail: jyren@fudan.edu.cn
DOI: 10.1587/transinf.2015SEDL8088

Jiasen HUANG', Junyan REN'®, and Wei LI', Members

Yelick [5], split a sparse matrix into K RVS’s while failing
to consider the nnz of the rows, thus unbalanced load distri-
bution remained.

Quite recently, Yang[13] improved the algorithms
based on nnz of row vectors in a matrix [8], [9], and pro-
posed a partitioning algorithm based on probabilistic model
function (PMF), which essentially was to group those row
vectors with the same or similar nnz together. However, we
discovered that the sparse matrices selected by Yang et al.
were either symmetric or symmetric-like, indicating that the
algorithm based on PMF depended on the sparsity structure
of the matrix as well. Simulation results revealed that the
performance of this algorithm greatly degraded when there
were few rows with the same or similar nnz existing in a
matrix.

In this letter, we propose a heuristics to efficiently par-
tition a sparse matrix regardless of the sparsity pattern. In
this algorithm, greedy approach is exploited to recursively
merge those row vectors of nonzeros in a matrix into the
RVS’s, such that each vector included is ensured a local op-
timal solution. For ten benchmark matrices from the Uni-
versity of Florida Sparse Matrix Collection, our proposed
algorithm further increases the mean density of partition to
98.55%, 96.27%, and 96.24% with 32, 16, and 8 processors,
respectively. Moreover, when 32 processors are used, our
proposed algorithm also achieves the lowest average rela-
tive difference of 0.068% over computing powers compared
with the other strategies.

The rest of this letter is organized as follows: Section 2
reviews related work on sparse matrix partitioning strate-
gies. Section 3 describes the proposed partitioning algo-
rithm. Simulation results are given in Sect. 4.

2. Related Work

Two basic types of strategies for partitioning a sparse ma-
trix are based on one-dimension and two-dimensions re-
spectively.

The two-dimensional strategy that aims to partition a
sparse matrix into submatrices can only adapt to the sparse
matrices with strong diagonal feature, and the performance
will deteriorate even further if nnz outside the diagonal
counts much. An attempt to improve such strategy by com-
bining different sparse matrix storage formats, such as the
CSR format [10] and the DIA format [11], [12] has also been
proved ineffective [13].

Depending on whether the row vectors are kept in their
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original order in the matrix, the one-dimensional strategies
can be further divided into two types. The first type, in-
cluding the strategies respectively based on the number of
rows [5], [6] and on the nnz of rows [8], [9], do not split a
row into different blocks. Whilst the second type, repre-
sented by the algorithm based on PMF [13], aims to further
reduce the overhead introduced in the design by grouping
different rows together.

2.1 Algorithm 1: Based on Number of Rows

This algorithm splits a sparse matrix A into K RVS’s A :=
{Ajli = 1,2,..., K} while ensuring the number of rows in A;
being linearly proportional to the computing power CP; of
a processor. Without considering the nnz of the rows, this
algorithm suffers from unbalanced load distribution due to
irregularity of the distribution of nonzeros in the matrix [5],

[6].
2.2 Algorithm 2: Based on the nnz

To mitigate the performance degradation caused by the spar-
sity structure of a sparse matrix A, the matrix is then parti-
tioned into several blocks according to the nnz of the rows.
Compared with the CSR or the COO format, the ELL for-
mat [7] as well as its variations, such as the BELLPACK [8]
and the SELLPACK [9] are much better suited for imple-
menting this algorithm on GPU or muti-core CPUs that
based on vector processors. However, zeros introduced by
this algorithm usually have large deviation due to the fixed
order of the row vectors in A, and in some case, such
as Schenk_ISEl/ohne2 [14], this algorithm performs even
worse than Algorithm 1.

2.3 Algorithm 3: Based on PMF

Quite recently, Yang et al. [13] proposed an algorithm based
on probability mass function (PMF). In this algorithm, those
row vectors with the same or similar nnz in a sparse matrix
A are grouped together, suggesting the row vectors are no
longer considered in their original order. Hence large devia-
tion involved in Algorithm 2 is relieved, and some increase
in the mean density of the partition is thus expected.

Nevertheless, the request for row vectors with the
same or similar nnz is not always met. In fact, among
those ten so-called uneven matrices for comparison [14],
four matrices, including nlpkkt120, nlpkkt160, nlpkkt200
and pwtk, are symmetric, whilst the left six matrices,
TSOPF_RS_b300_c3, PRO2R, pwtk, rajat31, ohne2 and
cagels, are all symmetric-like. For those matrices where
few rows with the same or similar nnz can be found, the
request itself turns to the constraint instead.

3. Proposed Partitioning Algorithm

Let NNZ be the total nnz in a sparse matrix A € RVM
be the number of the processors pre-allocated, and NNZ =
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[NNZ/k] be the mean nnz thereby decided. Define A :=
{Ajli = 1,2,..., N} as the partition composed of the nonze-
ros of all the row vectors in A.

The proposed heuristics considers the items Ay,...,Ay
sorted by the non-increasing order of nnz (A;) (1 < i < N).
The idea is to continuously merge the items into the row
vectors following a best-fit policy until all those vectors are
full or maximally filled. Precisely, this policy falls into two
cases: 1) The Gap between nnz (V) and NNZ can be exactly
filled in with V, 2 < @ < k,1 < k << N). Such a row «
is considered a best-fit row (14™ line); 2) The Gap can not
be filled in within one step, but there exist some rows can
be exploited to coalesce with V| to shorten the Gap. Among
these rows, a row 8 with bigger nnz (Vp) is preferred as a
best-fit row as well (19" line). In the first case, Vi |V, is
returned as an item in Ag,y; both Vi and V, are removed
from V thereafter. Whilst in the second case, only Vj is to
be removed right after coalescing while V; will always wait
for updating until there are no more sets in V can be fur-
ther exploited for merging. Hence, such a greedy approach
always ensures a set achieved at the end of each iteration
a local optimal solution. The numerical description of the
proposed heuristics is shown as follow:

Greedy Approach Based Heuristics

1. Sort A:=={A\, ..., An} by the non-increasing order of nnz(4;) (1<i<N),
and then A:={A4q), ..., A} 5.t. nnz(Ax1))> ... 2nnz(Axw)).

2. i<0; P Initialize the iterator

3. Afina—0@; P Initialize the final RVS's

4. Vip—A; W Initialize the input RVS's as the sorted A:={41, ..., An}

5. while i<N
6. [Vour, Vin, count|=merging(Vin, NNZ);
7. Afinare—Afinat O Vour,

8. i—itcount,
9. end while

10. function [Vous, View, count]=merging(V, NNZ)
11.  Set nnz(Vy={nnz(V1), ..., inz(V)} (1<k<N);
12.  Gap« NNZ-nnz(V1).

13.  Traverse V>, ..., Vi.

14.  if best-fit row a is found (¢ nnz(Va)=Gap)

15. Vour=V1U Vi

16. Views—V-Va-V1;

17. count«2;

18. else

19. if best-fit row f found
(* nnz(Vp)<Gap bigger nnz(Vp) is preferred)

20. V1<—V1 (@] V/;;

21. Viewe—V-Vp;

22. Vonz<—®;

23. count«—1;

24. else

25. Vour—{Vin(1)};

26. Vaew—Vin-{Vin(1)};

27. count«—1;

28. end if

29. endif

30. end function
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Table1  Performance comparison for a small scale case.
‘Algorithm RVS's nnz(B)) _nnz(B) _nnz(By)  E(B)% E(B)% EB)% EA)N% DA%
{A1, A2, A3, As, A5, As, A7},
1 {4s, Ao, Ar0, A1, A12, A13, Ara}, {A1s, Ars, A17, A1s, Ao, A2o} % 33 3 35.90 3590 0 23.93 33.67
{A1,A42, A3, Aa, As, As, A7, As, Ao},

2 44 41 2 12.82 .1 17. 11.9 48.

{410, An1, A2, A13, Ara, Ais}, {Ais, A1, Ais, Ar9, Azo} 3 313 7.95 7 8.35
{4s, A1s, A1, A7, Ar9, A3, A13, A2, As, As, Aro, A17},
3 {Aa, Au, Ais, Ais}, {Avs, Aso, Ao, Ars) 41 30 46 5.13 23.08 17.95 15.38 73.12
{A1s, Ara, Ao, A13}, {A12, A15, As, A0, As},
P S 9 9 1
roposed {417, A6, A10, A2, A3, A7, A19, A1, A5, A11, A6} 3 ¥ 3 0 0 0 0 00
T4

4. Performance Evaluation

4.1 Definition

Assume k processors are allocated in the design, and
then the RVS’s got after partitioning is defined as B :=
{B1, By, ..., Bi}. Let NNZ be the total nnz of the sparse ma-
trix A, W(B;) be the maximum nnz in B;, and R(B;) be the
number of the row vectors classified into B;. The mean den-
sity of this partition of A is then calculated as

k
D(A) = NNZ|/ Z (W(B;) x R(B)). ey
i=1

Let nnz (B;) denote the nnz of B;, and then the relative differ-

ence of this partition over the computing power CP; is given
by

E(B;) = |nnz(B;) — CP; x NNZ| /(CP; x NNZ),  (2)

Without loss of generality, assume all the processors are
with the same computing power, i.e., CP; = CP, = ... =
CPy, and then (2) is revised as

E(B;) = Innz(B;) — NNZ/k| | (NNZ][k), 3)

Accordingly, the average relative difference of this partition
over each computing power CP; is evaluated by

EA) = 4

k
Z lnnz(B;) — NNZ/kl] /NNZ.

i=1
4.2 Preliminary Exploration

For ease of illustration, take the 20 x 20 sparse matrix A in
[13] for example at first. The nnz of the row vectors in A
can be referred to in Fig. 1. As mentioned above, three pro-
cessors s.t. CP; = CP, = CPj5 are allocated in this case. As
shown in Table 1, each set of the RVS’s got with our pro-
posed algorithm is with a length being exactly equal to the
NNZ = [117/3] = 39. Hence, no zero is to be filled, thus
achieving a one hundred percent D(A), which increases by
46.33%, 51.65% and 26.88% than that of Algorithm 1,2 and
3 respectively. Similarly, E(A) decreases to zero, indicat-
ing a perfect match between the processors and the assigned
tasks.

nnz

2 4 6 8 10 12 14 16 18 20

Order of Row
Fig.1  The nnz of the row vectors in A.
Table 2  Benchmark matrices used in experiments.
No. Sparse Matrix Dimension Density(%) Feature
1 HB/str_600 363 2.48845 relatively dense
2 HB/jpwh_991 991 0.61370 symmetric-like
3 HB/bcsstm13 2,003 0.52794 symmetric-like
4 Bai/tols1090 1,090 0.29846 irregular
5 Bai/tols4000 4,000 0.05490 irregular
6 Pajek/GD00_a 352 0.36964 irregular
7 Pajek/Erdos972 5,488 0.04705 symmetric-like
8 Pajek/SmaGri 1,059 0.43862 triangular-like
9 Pajek/Kohonen 4,470 0.06372 triangular-like
10 Pajek/Zewail 6,752 0.11896 triangular-like

4.3 Benchmark Studies

Table 2 characterizes ten sparse matrices from the Univer-
sity of Florida Sparse Matrix Collection [14]. Performance
degradation of Algorithm 3 is expected for those irregular
or triangular-like featured matrices, where few rows with
the same or similar nnz exist. In addition, in order to see if
the performance of different algorithms will be affected by
number of the processors allocated, 32, 16, and 8 proces-
sors are respectively assumed in the experiments. As shown
in Fig. 2, the performance of our proposed algorithm suffers
little from the number of the processors allocated, while all
the other three algorithms have exactly the reverse effect.

Precisely, see Fig. 2 (d), with our proposed algorithm,
the average D(A) of 98.55%, 96.27%, and 96.24% are re-
spectively achieved in the cases of k = 32, k = 16, and
k = 8, while for each of the other three algorithms, the aver-
age D(A) drops rapidly with the decrease of k.
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(d) Average mean density vs. number of processors allocated.

Performance comparison of different partitioning algorithms. The parameter k is the number

of the processors allocated. Figure 2 (a~c) illustrates the mean density respectively achieved by the pro-
posed algorithm and by the other three algorithms discussed above. Figure 2 (d) calculates the average
mean density of partitioning for all those ten benchmark matrices when 32, 16, and 8 processors are

allocated.

5. Conclusions

In this letter, we propose a greedy approach based heuris-
tics, called recursive merging, which is to partition a sparse
matrix into RVS’s by recursively merging the row vectors of
nonzeros in the matrix. Ensured by the best-fit policy, each
set included in the final RVS’s is a local optimal solution.
For ten irregular benchmark matrices from the University of
Florida Sparse Matrix Collection, our proposed algorithm
achieves so far the highest mean density (> 96%), but the
lowest average relative difference (< 0.07%) over comput-
ing powers.
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