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A Modified AdaBoost Algorithm with New Discrimination Features
for High-Resolution SAR Targets Recognition

Kun CHEN†a), Nonmember, Yuehua LI†b), Member, Xingjian XU†, and Yuanjiang LI††, Nonmembers

SUMMARY In this paper, we first propose ten new discrimination fea-
tures of SAR images in the moving and stationary target acquisition and
recognition (MSTAR) database. The Ada MCBoost algorithm is then pro-
posed to classify multiclass SAR targets. In the new algorithm, we intro-
duce a novel large-margin loss function to design a multiclass classifier
directly instead of decomposing the multiclass problem into a set of binary
ones through the error-correcting output codes (ECOC) method. Finally,
experiments show that the new features are helpful for SAR targets dis-
crimination; the new algorithm had better recognition performance than
three other contrast methods.
key words: synthetic aperture radar (SAR), automatic target recognition
(ATR), adaptive boosting, high-resolution

1. Introduction

The ability to detect targets, discriminate targets and rec-
ognize targets on day/night has long made radar systems a
key sensor in many military and civilian applications. As
an important aspect of SAR application, SAR automatic tar-
get recognition (ATR) has gained increasing attention over
the last two decades by the radar automatic target recogni-
tion (RATR) community [1]. The first step in a typical SAR
ATR system is detection, with the purpose of selecting the
potential region of interest (ROI). Then, in the discrimina-
tion phase, the ROI is processed to remove the clutter false
alarms (CFA) and output more accurate target clips. Fea-
ture extraction, a key step, can reduce the dimensionality of
image chips greatly, extract the effective discrimination fea-
tures and improve the recognition efficiency. The extracted
features are expected to have the properties of effectiveness,
robustness and feasibility with tolerable computational com-
plexity. Two approaches are generally employed: select the
features from the existing features and extract new features.
Finally, targets are recognized by the classifiers according to
the features’ combination.

Generally, feature extraction methods are categorized
as either linear and nonlinear. Principal component analy-
sis (PCA) and linear discrimination analysis (LDA) [2] are
two linear methods. Nonlinear methods included the ker-
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nel method and the manifold learning method, such as sup-
port vector machine (SVM) [3] and locally linear embed-
ding (LLE) [4]. Concerning Boost, the literature reported
many success of Boost algorithm for pattern recognition,
including Ada Boost, Logit Boost, Grad Boost and Tay-
lor Boost [5]. All of these are effective techniques for comb-
ing multiple weak classifiers to produce a highly accurate
ensemble classifier.

In this paper, we use a novel loss function for the
Ada Boost algorithm to accomplish the multiclass recog-
nition problem directly, instead of decomposing the multi-
class into a set of binary ones by the error correcting output
codes (ECOC) method [6]. The result of the method will
converge to a global optimum and has an exponential de-
crease of the training error upper bound with the increase of
the iteration number. Moreover, we extract ten new features
that reflect the contrast difference between the target area
and CFA for target discrimination. Extensive experiments
on the MSTAR database show that the performance of our
method outperforms the other methods in SAR target recog-
nition, when utilizing the new features in combination with
the existing features.

2. Features for Target Discrimination

In our approach, the images in MSTAR database are repre-
sented by two types of features; we named them as the new
features and the classical features. Before the extraction of
new features, the classical features should be selected first to
obtain the useful discriminatory features of target. The tar-
gets in the MSTAR database have the randomly distributed
poses; eliminating variations of the target pose can signif-
icantly reduce the classification error. Therefore, the first
feature we selected is the pose of the targets through pose
estimation method used in [7]. For majority of the SAR
images, the pose estimation error is within ±5◦. The other
existing features are selected, 10 features from [8] and 12
features from [9].

To make the feature set as complete as possible, we
proposed some new features to help the target discrimi-
nation. The SAR images with randomly distributed pose,
equivalently, there exist rotation of target in the images. Al-
though we have the pose estimation, the error still exists. In
image processing, the geometric invariant moments (GIM)
can be represented as important characters of the object,
they have the invariant properties of rotational, translational
and scale, we can use these features as the target discrimi-
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nation features. From the pixels in ROI, the following new
features were extracted.

Assume that in the ROI area D, the grayscale distribu-
tion is f (x, y), (x, y) ∈ D, and the grayscale out of the area
D is zero. Respectively, the p+ q order origin moments and
central moments are defined as:

mpq =

N∑
y=1

M∑
x=1

xpyq f (x, y)p, q = 0, 1, 2 . . . (1)

µpq =

N∑
y=1

M∑
x=1

(x − x̄)p(y − ȳ)q f (x, y)p, q= 0, 1, 2 . . . (2)

Where N and M are the height and width of ROI and x̄ =
m10
m00

,ȳ = m01
m00

. So the normalized center moment is defined as

ηpq =
µpq

µr
00

(3)

Where r = p+q+2
2 , p + q = 2, 3, . . . . Then, use the above

define, we can build the following seven GIM features.

f1 = η20 + η02 (4)

f2 = (η20 + η02)2 + 4η2
11 (5)

f3 = (η30 − 3η12)2 + (3η21 − η03)2 (6)

f4 = (η30 + η12)2 + (η21 + η03)2 (7)

f5 = (η30 − η12)(η30 + η12)((η30 + η12)2

−3(η21 + η03)2) + (3η21 − η03)(η21 + η03)
∗(3(η30 + η12)2 − (η21 + η03)2)

(8)

f6 = (η20 − η02)((η30 + η12)2 − (η21 + η03)2)+
4η11(η30 + η12)(η21 + η03)

(9)

f7 = (3η21 + η03)(η30 + η12)((η30 + η12)2

−3(η21 + η03)2) + (η30 − 3η12)(η21 + η30)
∗(3(η30 + η12)2 − (η21 + η03)2)

(10)

Seven GIM features can keep the translation, scaling and
rotation invariance if the ROI is continuous, they are the fa-
mous Hu moments in the image processing field. The last
three features are the affine invariant moments (AIM), which
are the rotational inertia of ROI. They are defined as follows.

f8 = (η20η02 − η2
11)/η2

00 (11)

f9 = (η2
30η

2
03 − 6η30η21η12η03+

4η30η
3
12 + 4η03η

3
21 − 3η2

12η
2
21)/η10

00
(12)

f10 = (η20(η21η03 − η2
12) − η11(η30η03 − η21η12)+

η02(η30η12 − η2
21))/η7

00
(13)

All the ten new features and the selected 23 classical fea-
tures are used in experiments in Sect. 4.

3. Modified Adaptive Boost Algorithm

Existing boost algorithms for multiclass classification

mainly focus on linear combination of weak learners, which
may be insufficient to produce an accurate classifier. In
this section, an adaptive multiclass boost algorithm that can
learn a more complicated combination of weak learners is
presented in detail.

Let assume that the labeled dataset be denoted as
(X,C) = {(x1, c1), . . . , (xi, ci), . . . , (xn, cn)}, xi ∈ Rd, ci ∈
{1, . . . , k} denotes the class label, the data xi are indepen-
dently and identically distributed (IID), so the objective
function is to learn an optimal mapping f (x) : X →
{1, . . . , k} from the training dataset and a class label c can
be assigned to a new input x. Note, in the binary classifi-
cation, the class labels are ±1. However, in the multiclass
classification, we need to recode the class label c into a vec-
tor y, usually, a set of k distinct unit words Y = {y1, . . . , yk}
were built and each class label k can be mapped into a code-
word yk ∈ Rk−1 to identify the class label. Let f (x) ∈ Rk−1

be a classifier, the margin of f (x) with respect to class k can
be defined as following like in [5], [10].

F(x) = argmax
k

m( f (x), yk)

= (< f(x),yk> −max
l,k
< f(x),yl>)/2 (14)

Where < a, b > denotes the inner product of a and b. there-
fore, F(x) can find a class which has the largest margin for
the classifier f (x), and then we just need to find a optimal
classifier f (x) with minimizes the classification risk below.

RL( f (x)) = EX,Y {L(y, f (x))} ≈
N∑

i=1

L(yi, f (xi)) (15)

Where L(a, b) is a multiclass loss function, we define it as

L(y, f (x)) =
K∑

i=1
log[1 + exp(− < f (x, y − yi) >)]. In the gen-

eral boost algorithm the optimal classifier f (x) is approxi-
mated as a linear combination of weak learners, that is to
say, f (x) is one kind of the linear combinations of weak
learners q j(x) : X → Rk−1, but in this paper, we use a
more complicated combination: the sum of Schur product
ΩQ = {p(x)|p(x) =

∑
j

q j,1(x)⊗ . . . ⊗ q j,m(x), q ∈ Q}, where

the ⊙ denotes the Schur product, Q = {q1(x), . . . , qm(x)} is
the set of all multiclass weak learners q(x) : X → RK−1. It
easy to prove that the functional spaceΩQ is a convex set, so
the following optimization problem is a convex optimization
problem and the risk can achieve the global minimum.{

min f (x)RL(f(x))
s.t f (x) ∈ ΩQ

(16)

After t iterations, the classifier f (x) is assumed to be the

form of f t(x) =
s∑

j=1
pt

j(x), S is the number of Schur product

of q(x), we define pt
j(x) as the form in Eq. (17).

pt
j(x) = q j,1(x) ⊗ . . . ⊗ q j,m j (x),m j ∈ N (17)

In the iteration process of the boost algorithm, each term can
be updated by a new weak learner, pt+1

j (x) = pt
j(x)⊗q(x), so
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the updated classifier can be achieved.

f t+1(x) =
∑
i, j

pt
i(x) + pt

j(x) ⊗ q(x)

=Θt
j(x) + pt

j(x) ⊗ q(x)
(18)

Where Θt
j(x)=ft(x) − pt

j(x), around the point Θt
j(x), the

first and second order functional derivatives of the risk
RL(ft+1(x)) with respect to the above update in f t(x) are

δRL( f t; g, j) =
∂RL(Θt

j(x)+εpt
j(x)⊗q(x))

∂ε

= ∂
∂ε

N∑
i=1

L(yi,Qt
j(xi)) + εpt

j(x) ⊗ q(x))

= −
N∑

i=1
< q(xi),Oi >

(19)

Oi =
K∑

k=1
(pt

j(x) ⊙ (yi − yk)
exp(−<Qt

j(xi),yi−yk>)

1+exp(−<Qt
j(xi),yi−yk>) ) (20)

δ2RL( f t; g, j) =
∂2RL(Θt

j(x)+εpt
j(x)⊗q(x))

∂ε2

= ∂
∂ε2

N∑
i=1

L(yi,Qt
j(xi) + εpt

j(x) ⊗ q(x))

=
N∑

i=1

K∑
k=1
< q(xi),pt

j(x) ⊗ (yi − yk)>2Φi,k

(21)

Φi,k =
exp(− < Qt

j(xi), yi − yk >)

(1 + exp(− < Qt
j(xi), yi − yk >))2

(22)

To each j, using the gradient descent method, there also can
use the Newton method as the optimization strategy; in the
algorithm we use the gradient descent method. The former
brings the greatest decrease of the risk, we can obtain the
best weak learner with Eq. (19) and Eq. (21). Moreover, we
can obtain the optimal step size as Eq. (24).

q∗j = arg min
q∈Q
δRL( f t(x); q(x)) (23)

α∗j= arg min
α∈R

RL(Qt
j + αpt

j ⊙ q∗j) (24)

Table 1 Ada MCBoost algorithm

Input: dataset (X,C), the number of classes K, a set of K distinct unit co-
dewords Y , multiclass loss function L(a, b), and the number of iterations T .

Output: F(x) = argmax
k

δ(< f T (x),yk>)
K∑

k=1
δ(< f T (x),yk>)

Algorithm:
Initialization: set t = 0, S = 0, and f t(x) = 0.
Do
For j = 1 to S
Find the greatest decrease direction of the risk q∗j by using the method used in
[10] through the Eq. (19) and Eq. (21), Then use the Eq. (24) to get the op-
timal step size α∗j . Compute the update risk R j

L( f t+1(x)) via Eq. (25).
end
Set ĵ = arg min

j
R j

L( f t+1), j ∈ {0, . . . , S } and then calculate

pt+1
ĵ

(x) = α∗
ĵ
pt

ĵ
(x) ⊙ g∗

ĵ
(x).

If j , ĵ,update pt+1
j (x)← pt

ĵ
(x)

Update f t+1(x)← ∑S
j=0 pt+1

j (x) and t = t + 1.
While t < T

Hence, the updated classifier has the following risk

R j
L( f t+1) = RL(Qt

j + α
∗
j p

t
j ⊗ g∗j) (25)

During each of the iteration, we calculate the optimal mul-
ticlass weak classifier, the risk and the direction which
brings the greatest decrease of the classification risk [5]. The
algorithm is summarized in Table 1 in brevity, we named it
Ada MCBoost.

4. Experimental Results

In this paper, we use the SAR images in the MSTAR pub-
lic release database, with 128 × 128 pixels and 1 × 1 foot
resolution, to evaluate the performance of the proposed al-
gorithm. Here, the task is to classify three distinct types of
ground vehicles: BMP2s (sn-9596, sn-9566, and sn-c21),
BTR70 (sn-c71) and T72s (sn-132, sn-821, and sn-s7). Ev-
ery image has a different poses, which covers from the 0◦

to 360◦ aspect range randomly. The depression angles of
the images are 15◦ and 17◦. We put the SAR images at the
depression angle of 17◦ in the training dataset and the de-
pression angle of 15◦ in the testing dataset. Table 2 list the
types and the size included in training and testing datasets.
All the original SAR images have been preprocessed as fol-
lowing steps. 1) Eliminate the interference of background
clutters and target shadow, obtain the ROI. 2) Use the ROI
to define the binary mask matrices of the images and extract
the target of SAR images by masking the binary matrices
and re-center the location of the target. 3) Normalize the
energy of images in the same range and execute the gray
enhancement of the SAR images based on the power func-
tion. At last, we extract the classical features mentioned in
Sect. 2 and the new features we proposed to compose the
training and testing datasets. Before the feature extraction,
each SAR image’s size is cut to 64 × 64 pixels. In order to
demonstrate the effectiveness of our proposed algorithm, we
compare our algorithm with three other methods (KPCA,
KLDA and NGCSE) [11]. The kernel function of KPCA
and KLDA is the radial basis function (RBF), in NGCSE,
we set the parameters of k1 = 10, k2 = 20, in this situation
the algorithm can gets the best performance as discussed in
the literature [11], set the maximum number of iterations of
Ada MCBoost, conservatively, to 50, from our experience,
approximately 20 iteration steps are enough to yield a suf-
ficiently accurate classifier. The confuse matrix is shown in
Table 3 and the best accuracy (Ba1 with the new features,

Table 2 Summary of MSTAR database

Training Set Testing Set
Serial Number Size Serial Number Size

BTR70 sn-c71 233 sn-c71 196

BMP2
sn-9563 233 sn-9563 195
sn-9566 232 sn-9566 196
sn-c21 233 sn-c21 196

T72
sn-132 232 sn-132 196
sn-812 231 sn-812 195
sn-s7 228 sn-s7 191
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Table 3 The confusion matrix.

Method KPCA KLDA NGSCE Ada MCBoost
Target BTR70 T72 BMP2 BTR70 T72 BMP2 BTR70 T72 BMP2 BTR70 T72 BMP2
BTR70 188 5 3 187 6 3 192 2 2 195 1 0

T72 14 557 11 12 558 14 5 570 7 2 576 4
BMP2 12 14 561 9 17 561 4 8 574 3 3 581

Table 4 Best accuracy, stand deviation and the time
consumption of each testing sample by various algorithms

Method Ba1(%) Ba2(%) Sd(%) Tc(s)
KPCA 95.68 94.03 2.11 0.041
KLDA 95.33 94.11 1.93 0.061

NGCSE 97.88 95.12 1.15 0.085
Ada MCBoost 99.05 96.39 1.14 0.103

Ba2 without the new features), stand deviation (Sd) and the
average time consumption (Tc) of recognizing one test sam-
ples are presented in Table 4.

As can be observed from Table 3 and Table 4, the
Ada MCBoost achieves the highest recognition rate. How-
ever, the time consumption presented in Table 4 indicates
that Ada MCBoost needs more time than three other algo-
rithms. The result of KPCA and KLDA are similar, both
of them use the kernel trick, which solve the linearly insep-
arable problem by transforming the samples into a higher
or even infinite dimensional space. However, the recogni-
tion performance depends on the selection of kernel func-
tions, if the kernel function is selected perfectly, the per-
formance can approach to 100%. NGCSE, based on man-
ifold learning theory, outperforms both KPCA and KLDA
in recognition accuracy. A manifold structure is better than
the global linear structure to the spatial distribution of the
high-dimensional SAR image data. Therefore, the perfor-
mance of NGCSE is superior to that of KPCA and KLDA.
To the weakness of weak learners can limit the recognition
performance in the high-dimensional dataset, we solve the
problem through the combination of weak learners in a non-
linear rather than linear way effectively. Besides, the weak
learners are continually combined into complex combina-
tions, maybe such combinations lead to the better perfor-
mance. As the new algorithm depends on the iterative ap-
proach, which increases computational burden, but we still
can ensure real-time performance of the algorithm, seeing
in the column of Tc in Table 4, this is the main drawback
of our method. Compare the second column with the third
column in Table 4, we come to the conclusion that the new
features are useful features to target discrimination, the best
accuracy raises about 1.5% to the KPCA and KLDA, 2.5%
to the NGSCE and Ada MCBoost, after using the new dis-
crimination features.

5. Conclusions

In this paper, ten new discrimination features of the SAR
images were given. Based on the new and classical features,
an algorithm to recognize the multiclass SAR target in the
MSTAR dataset was used. In the algorithm, we use a new

large-margin loss function to solve the convex optimiza-
tion problem and design the multiclass classifier directly,
the Schur product of the weak learners replaces the linear
combination of weak learners perfectly. Experiments on the
MSTAR dataset demonstrate the effectiveness of our pro-
posed method.
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