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Highly Compressed Lists of Integers with Dense Padding Modes
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SUMMARY Index compression is partially responsible for the current
performance achievements of Internet search engines. Among many lat-
est compression techniques, Simple9 can pack as many integers as pos-
sible into a single 32-bit machine word using 9 different padding modes.
However, the number of wasted bits in Simple9 remains large. In previous
works, researchers have focused on reducing the unused trailing bits of the
padding modes and have proposed various additional modes that make full
use of the cases of the status bits. Instead, we focus on the wasted bits
in the integer list, padding extra zeros for a complete dense mode when
the number of integers is not enough to fit a complete mode. More pre-
cisely, we first propose a novel index compression method called SimpleD
with dense padding modes to achieve a more compact storage compared
with that of Simple9. We then design an innovative metric for extracting
the inserted extra zero integers during the decoding phase. Experiments on
the TREC WT2G and GOV2 datasets show that our encoder outperforms
Simple9 while still retaining a very fast decompression speed.
key words: inverted indexes, index compression, dense padding mode,
compression ratio

1. Introduction

An inverted index can be seen as an ordered list of inte-
gers, where each entry of the list corresponds to a different
term or word in the dataset. For each term, the index con-
tains an inverted list consisting of a number of postings de-
scribing all of the places where the term occurs. Postings
in each list are typically sorted by docID, or sometimes by
impact factor, etc. The set of terms is called the lexicon,
which is relatively small in most cases. However, the in-
verted lists may consist of millions of postings, which could
be roughly linear with the size of the dataset. In this let-
ter, we refer to the index compression as compression on
docID-sorted inverted lists [1]. To allow faster access and to
limit the amount of memory needed, search engines use var-
ious compression techniques that can significantly reduce
the size of the inverted lists. Instead of naively storing the
raw integer in a 32-bit machine word, the main idea of in-
dex compression is to store each integer using as few bits
as possible. One common practice while storing an inverted
list is to use d-gaps where possible to decrease the average
value that needs to be compressed, resulting in a sequence
of smaller numbers with a higher compression ratio. There
exists much research on index compression in the literature;
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see Lemire and Boytsov’s [2] very recent survey.
Index encoders can be divided into integer encoders

and integer list encoders. Integer encoders assign a distinct
codeword to each integer. Elias-gamma, Elias-delta and
variable-bytes encodings are all integer encoders [2]. These
encoders are said to be bit-aligned or byte-aligned encodings
because their codewords may cross the boundary of a ma-
chine word. During decoding, this requires different bitwise
shift operations that slow down the decoding speed. Integer
list encoders are specifically designed to compress lists of
integers and may encode any of them by considering their
neighbors in the list, thereby achieving higher compression
or providing faster decompression. A workaround to this
has been attempted by aligning each codeword to a 32-bit
word boundary. Typical encoders are Binary Interpolative
Coding [3], Simple9 [4] and PForDelta [5]. In this letter,
we focus on improving the word-aligned encoder Simple9,
which provides efficient decompression performance.

Simple9 coding [4] is a typical word-aligned encoder,
where each 32-bit word stores a set of binary codes and each
integer corresponds to an equal-length bit slot. While bit
operations are required to unpack each word, there are no
single bit accesses, and straight-line decompression remains
fast. However, Simple9 has wasted bits in the equal-length
bit slot due to its sparse padding modes. In this letter, we
present an extension of Simple9, called SimpleD, which al-
lows for better compression effectiveness than Simple9 and
comparable decoding performance. SimpleD has the addi-
tional advantage of making full use of the equal-length bit
slot. When the number of integers is not enough to fit a com-
plete padding mode, we insert extra trailing zero integers for
a complete dense data padding mode.

The rest of the letter is organized as follows: Sect. 2
gives a brief overview of the Simple9 encoder. Section 3
presents an in-depth description of our dense padding mode
and the decompression metric. Section 4 reports experimen-
tal results, and Sect. 5 provides concluding remarks.

2. Simple9 Encoder

The basic idea of Simple9 is to pack as many integers as
possible into a single 32-bit machine word. This is done by
using the first 4 bits of a word as a status to describe the 9
possible padding modes of the remaining 28 data bits: 28
1-bit integers, 14 2-bit integers, 9 3-bit integers (one bit un-
used), 7 4-bit integers, 5 5-bit integers (three bits unused), 4
7-bit integers, 3 9-bit integers (one bit unused), 2 14-bit in-
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tegers, or 1 28-bit integer (Table 1), with each integer (slot)
having the same bit length. For example, we can store {509,
510, 511} as three 9-bit values in a word, with the highest
4 bits of the word reflecting the mode used. Decompres-
sion is accomplished by reading the value of the status bits
and using a pre-computed lookup table over the status bits
to select the appropriate padding mode to extract all of the
integers in the remaining 28 data bits. This procedure can be
optimized by hardcoding each of the 9 cases using fixed bit
shift and mask operations on the data bits and using a switch
operation on the status bits to select the mode.

Simple9 wastes data bits in two ways, by having only
9 cases instead of the 16 that can be expressed with 4 sta-
tus bits, and by having unused bits in several of the padding
modes. We note here that there exist two variants of Sim-
ple9 called Relate10 and Carryover12 that, in some cases,
achieve slightly better compression than Simple9 [4]. Rel-
ative10 shrinks the selector to just 2 bits, generating new
padding modes with 30 data bits for less trailing unused
bits, and the padding modes can be interpreted relative to
the mode value of the previous word. Carryover12 makes
advantage of the trailing unused bits of the current word to
hold the mode value for the next word. Another variant of
Simple9 that reduces the number of unused bits is Slide [6],
in which the codeword straddle 32 bits word boundaries
to avoid trailing unused bits, but it exhibits higher decod-
ing complexity. Zhang et al. [7] have proposed Simple16,
a more compact encoding schema for fitting 16 different
padding modes of integers and leaving no unused trailing
bits within a 32-bit word. These variants can also be imple-
mented efficiently using a switch statement and hardcoding
for each mode. The results show that they match the speed
of Simple9 while achieving slightly better compression.

All of these variants focus on minimizing the unused
bits at the end of the modes or making full use of the cases
of the status bits. There is not much consideration of the
wasted bits in each slot of the padding mode itself, espe-
cially when the index of the exception is larger than the
number of the padding mode. Actually, the bit length of
the mode used in the list is not decided by the maximum in-
teger but by the number of integers that can be multiplied by
the bit length to fit a 32-bit word. This could lead to wasted
bits in every slot. In this letter, we propose a novel dense
padding metric that focuses on mode selection, which can

Table 1 Pre-computed lookup table representing the 9 different padding
modes for the use of the 28 data bits.

Status
(4 bits)

Number of
integers coded

Length of each
integer (bits)

Wasted
bits

#a 28 1 0
#b 14 2 0
#c 9 3 1
#d 7 4 0
#e 5 5 3
#f 4 7 0
#g 3 9 1
#h 2 14 0
#i 1 28 0

reduce the wasted bits when coding the integer list. We be-
lieve our technique is orthogonal to the above variants, and
the idea can be added to them for further improvement.

3. Dense Padding Modes

3.1 Padding Extra Integers

Given a sequence of integers and a padding mode, the Sim-
ple9 encoding step performs one pass over the list to check if
all of the integers can be represented by the given bit length.
At some point, when an exception number is superior to
the maximum value that the mode can represent, we should
choose the next mode with a larger bit length and a smaller
number of integer slots. If the exception occurs at an index
larger than the number of slots in the next mode, we know
that the next mode can certainly be selected for coding, and
there exist wasted bits in all of the slots in the next mode.

With a sequence of 28 integers with 27 1s and 1 poten-
tial exception value of 32, we try to compress the list using
the padding modes from #a to #i. We find that it cannot be
represented using mode #a. We use mode #b to represent
only 14 1s and leave {1, 1, . . . , 1, 32}. Then, we use mode
#c to code 9 1s and leave {1, 1, 1, 1, 32}. Next, we use mode
#e to code these 5 numbers. This could require a total of 4
words to code the numbers. In fact, if there are 28 1s and
one exception number 32, we need just 2 words to code the
entire sequence. Why are more numbers more compact than
less numbers when using Simple9 compression?

To solve this problem, we revisit the padding mode of
the original Simple9 and find that there is huge gap in the
number of integers coded between two adjacent modes, es-
pecially for modes with more numbers coding smaller inte-
gers. The padding mode that the exception value occurs for
can be used to represent all of the integers if the numbers are
more than the limit of the next padding mode. For instance,
when mode #a cannot be used to code the entire 28 number
sequence, the numbers that can be coded are more than the
next mode #b. If we use mode #b, we use 2 bits to represent
only 14 1s, leaving 1 wasted bit per slot.

If we insert 0s at the end of the integer list when the
exception occurs at a position larger than the number of in-
tegers coded by the next mode, we can obtain a complete run
of integers that fit the current mode with more numbers and
leave the exception value for the next 32-bit word. With the
above sequence of integers, the compression step first per-
forms one pass over the list with mode #a to test if all of the
integers can be represented by 1 bit. All of the integers sat-
isfy the condition except for the last one. We know that the
number of integers that satisfy mode #a (27) is larger than
the number of integers coded by the next mode #b (14). We
insert a 0 at the right of the 27 1s, making a complete run of
integers for padding mode #a. For the remaining integer, 32,
we use another 32-bit word to code it. Overall, the length of
the codeword is 64 bits. Had a Simple9 code been used, a
total of 128 output bits would have been generated.

Algorithm 1 is the enhanced SimpleD encoder, which
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Algorithm 1 Compress (int[] d, int[] r)
Input: a sequence of numbers, d, of n integers.
1: while k < n do
2: set j = 0 and c = 0;
3: for i from 0 to modenum[ j] do
4: if 2bitlength[ j] <= d[k + i] then
5: if i > modenum[ j + 1] then
6: codednum = i;
7: break;
8: else
9: j++;

10: continue;
11: end if
12: end if
13: c = (c << bitlength[ j]) + d[k + i];
14: end for
15: if codednum! = modenum[ j] then
16: c <<= (modenum[ j] − codednum) ∗ bitlength[ j];
17: end if
18: set k = k + modenum[ j], c = c|( j << 28) and write c to r;
19: end while
Output: a sequence of codewords, r.

retains the use of the current padding mode when the suited
integers are more than the number of coded integers of the
next mode (lines 4-7). We need to insert extra trailing zero
bits for a complete current padding mode (lines 15-16). This
operation is conducted by shifting the codeword to the left
by a couple of bits to make the highest integer reach the
left side of the 28 data bits. When the suited integers are
less than the number of coded integers of the next mode,
we can choose the next padding mode (lines 8-10). The
lookup table stored as two arrays (modenum and bitlength),
provides the number of coded integers and the bit lengths of
the different padding modes. The maximum value that can
be represented in one padding mode is calculated using the
bit length (line 4).

3.2 Decoding of Dense Padding Modes

During the decoding phase, the most important thing is to
recognize the inserted zero integers, as the zero integers
have been inserted only at the end of a 32-bit word, and
there do not exist any zeros in the integer sequence (the do-
cIDs in an inverted list are different from each other). The
couple of trailing zero integers we extracted with the slot bit
length all belong to the ones we inserted.

Firstly, we need to count the consecutive trailing zero
bits on the rightmost side of the word. For a 32-bit word
v, we have attempted many methods of counting the num-
ber of trailing zero bits, and the fastest one uses the De
Bruijn sequence [8], [9], as in Algorithm 2. The expression
(v& − v) extracts the one least significant bit and its trailing
zero bit sequence from v. The constant 0x7DCD629 is a De
Bruijn sequence, which produces a unique pattern of bits
into the high 5 bits (right shift for 27 bits) for each possi-
ble bit position that it is multiplied against. There are many
such values constructed by taking an Eulerian cycle of an
(n − 1)−dimensional De Bruijn graph [8].

Algorithm 2 ZeroCount (v)
Input: unsigned int v.

static const int MultiplyDeBrui jnBitPosition[32] = {0, 1, 23, 2, 29, 24,
14, 3, 30, 27, 25, 18, 20, 15, 10, 4, 31, 22, 28, 13, 26, 17, 19, 9, 21,
12, 16, 8, 11, 7, 6, 5};

Output: MultiplyDeBrui jnBitPosition[(((v&−v)∗0x7DCD629)) >> 27].

Secondly, as the status bits decide which padding mode
has been used, we can extract the inserted extra zero inte-
gers by calculating the number of zero bits divided by the
bit length of each mode. Given a 32-bit codeword of 0011,
0101, 0100, 1011, 1101, 0110, 1010, 0000, from the leading
4 status bits, we can find that padding mode #d is used for
the data bits with 4 bit lengths. We then use a hardcoding
mask to extract the result integers efficiently. The resulting
sequence is {5, 11, 11, 13, 6, 10, 0}. The number of zero
bits of the trailing codeword is 5. The inserted extra zero
integer is ⌊5/4⌋ = 1. Finally, we can delete the trailing zero
integers. That is 1 zero for the above example, and we yield
six integers {5, 11, 11, 13, 6, 10} as the final result.

Algorithm 3 Decompress (int[] r, int[] d)
Input: one codeword, w, from r.
1: unsigned int status = w >>> 28;
2: compute the bit length l from the status bits;
3: switch (status)
4: shift and read integers of equal length l store them to r;
5: unsigned int z = ZeroCount(w);
6: delete the right ⌊z/l⌋ integers from r;

Output: add the sequence of integers, r, to the integer list, d.

Algorithm 3 describes the decompression process for
a sequence of codewords. The hardcoding part of shifting
for each integer is reduced (line 4). The decoded integers
are truncated after the normal decoding phase (line 6). The
possible drawback of the SimpleD encoder is its slightly in-
creased complexity for the zero counting.

4. Experimental Results

Index encoders are usually evaluated in terms of compres-
sion ratio and decompression speed. In contrast, compres-
sion speed is somewhat less critical. As our dense padding
technique is orthogonal to other variants of Simple9, we
only use Simple9 as the baseline and leave integration and
comparison of our dense padding modes with other variants
as future work. All our implementation code is written in
Java on the Terrier 4.0 IR platform [10] and is available at
http://github.com/deeper2/SimpleD. Our experiments were
performed on a dedicated, otherwise idle, Intel(r) Xeon(r)
E5-2640 processor running at 2.00 GHz with 128 GB of
RAM and 20 MB of L3 cache.

We use inverted lists obtained from TREC WT2G and
TREC GOV2 datasets. The TREC WT2G dataset contains
approximately 247 thousand documents with an uncom-
pressed size of 2 GB, and the GOV2 dataset contains ap-
proximately 25.2 million documents with an uncompressed
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Table 2 Average index size in MB of the inverted lists for the TREC
WT2G and GOV2 datasets.

WT2G GOV2 #1 GOV2 #2 GOV2
Simple9 148 354 2,967 10,367
SimpleD 146 350 2,933 10,262

Table 3 Average query latency in milliseconds on the TREC WT2G and
GOV2 indexes.

WT2G GOV2 #1 GOV2 #2 GOV2
Simple9 35.0 48.3 210.7 626.4
SimpleD 34.7 48.0 208.4 621.8

size of 426 GB. We sequentially select documents from
the GOV2 dataset, and generate one 10GB dataset and
one 100GB dataset , named GOV2 #1 and GOV2 #2 re-
spectively. We build docID-sorted inverted indexes with
1024 docIDs per block, using the two encoders, respec-
tively, removing the standard English stopwords, and ap-
plying Porter’s English stemmer. Our inverted lists include
docIDs, term frequencies, field frequencies and term posi-
tions. Table 2 shows the average index size of the inverted
lists for the four TREC datasets. As seen from the table, the
inverted lists size of SimpleD is reduced compared with that
of Simple9 by more than 1% on the four different datasets.

Instead of comparing the raw decoding speeds of the
two encoders, i.e., the number of integers decoded or en-
coded per millisecond or the average bits per integer, as is
usually done, we decided to compare the performance di-
rectly in a real searching context, i.e., answering queries
with the above WT2G and GOV2 indexes. We use topics
401-450 and topics 751-800 for querying the above indexes
respectively. We use disjunctive document-at-a-time as the
index traversal technique and BM25 as the ranking function.
The inverted lists related to the query terms are loaded into
main memory at the beginning of each experiment. Every
time we report the query latency, the JVM warm-up is nec-
essary to maintain a steady performance state and the results
are averaged over 5 independent runs.

Table 3 shows the average query latency results for four
indexes. As seen, the query processing speeds of the two
encoders are almost the same for all indexes. There is no
significant performance gap between the two encoders. Fur-
thermore, we categorize topics 751-800 by the length of the
query terms, and report the performance only for the TREC
GOV2 dataset due to space limitation. Table 4 shows the
average query latency for different number of query terms.
We can find that the average query latency of the two en-
coders remains almost the same with different query length.
This means that the slightly increased complexity of the zero
counting SimpleD can be compensated for by more com-
pact indexes. Overall, our SimpleD encoder achieves more
compact storage than the Simple9 baseline with comparable
query latency, as seen in the above experimental results.

5. Conclusions and Further Work

We have proposed a new dense mode padding technique

Table 4 Average query latency in milliseconds for different number of
query terms on the TREC GOV2 indexes.

1 2 3 4 >= 5
Simple9 59.5 367.0 647.7 895.8 1,267.4
SimpleD 57.5 379.0 652.5 905.9 1,260.8

to enhance the compression ratio of Simple9. We have
padded extra trailing zero integers for a complete dense data
padding mode when the number of integers is not enough to
fit a complete padding mode, and we have designed an inno-
vative metric for extracting the inserted extra zero integers
during the decoding phase. The experimental results on the
TREC WT2G and GOV2 datasets show that our proposed
encoder can achieve a better compression ratio while still
retaining a comparable query processing latency under real
search conditions.

We believe an in-depth understanding of the list distri-
bution can be helpful in achieving a better compression ra-
tio if we provide detailed padding modes for common inte-
ger ranges. Additionally, the document reordering technique
can be used to generate more runs of 1s, which is beneficial
for our dense padding modes. Further work can be done to
further enhance the padding modes on common integer list
ranges and to study other variants of Simple9 for less wasted
bits in the coding slots.
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