
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.12 DECEMBER 2015
2353

LETTER

Dynamic Rendering Quality Scaling Based on Resolution Changes

MinKyu KIM†, Member, SunHo KI††, YoungDuke SEO††, JinHong PARK††a),
and ChuShik JHON†, Nonmembers

SUMMARY Recently in the mobile graphic industry, ultra-realistic vi-
sual qualities with 60fps and limited power budget for GPU have been
required. For graphics-heavy applications that run at 30 fps, we easily
observed very noticeable flickering artifacts. Further, the workload im-
posed by high resolutions at high frame rates directly decreases the battery
life. Unlike the recent frame rate up sampling algorithms which remedy the
flickering but cause inevitable significant overheads to reconstruct interme-
diate frames, we propose a dynamic rendering quality scaling (DRQS) that
includes dynamic rendering based on resolution changes and quality scal-
ing to increase the frame rate with negligible overhead using a transform
matrix. Further DRQS reduces the workload up to 32% without human
visual-perceptual changes for graphics-light applications.
key words: GPU real-time rendering, frame rate up-sampling, inter-frame
differential estimation, GPU power optimizations

1. Introduction

Recently in the mobile graphics industry nowadays, there
has been a strong trend towards complex rendering for high
resolution displays for PC-like realistic visual quality within
a very limited computational power budget. Moreover, most
of the modern mobile display devices refresh at 60Hz. Al-
though mobile GPU has hardware evolved remarkably, it
does not yet satisfy the ever increasing market demand for
PC-like high-quality graphics while maintaining a consis-
tent 60 fps. For an application running at 30 fps, we can
easily observe very noticeable motion flickering due to fast
moving objects and/or cameras. In order to help smooth out
the perceived object motions, recent studies are constantly
looking for creative ways to up-sample the low frame rate.

Frame interpolation schemes are widely used to opti-
mize image quality. By employing the interpolation scheme,
to generate the intermediate frame, two approaches can be
utilized: a forward re-projection and a reverse re-projection.
In recent studies, a temporal up sampling technique based
on the forward re-projection [4] is proposed, which is tar-
geted at higher-frame-rate displays. This technique relies
on perceptual findings. In this approach, blurred frame in-
sertion and mesh-based warping are combined to preserve
the naturalness of the original sequence for the human vi-
sual system (HVS). Based on the reverse re-projection, a

Manuscript received June 5, 2015.
Manuscript revised August 18, 2015.
Manuscript publicized September 17, 2015.
†The authors are with the Department of Computer Science

and Engineering, Seoul National University, Korea.
††The authors are with LG Electronics, Seoul, Korea.
a) E-mail: jinhong1.park@lge.com

DOI: 10.1587/transinf.2015EDL8130

spatio-temporal up sampling strategy [5] is proposed, which
exploits spatial and temporal redundancy. However, this ap-
proach requires many previous frames to be kept in mem-
ory and also requires a complex adaptation of the spatial-
temporal weighting function for better performance. Re-
cently, [3] this weighting function has been simplified based
on a specular lobe similarity and reduced complexity. These
approaches give a better image quality than spatial-only or
temporal-only up-sampling. However, since they are based
on unidirectional re-projection, there are also drawbacks
which is caused by interpolation, such as occlusions, lags,
and holes which appear in the extrapolated frames. These
drawbacks need to be resolved.

To address these problems, an image based bi-
directional re-projection technique [2] is proposed that re-
trieves information from a pair of consecutive rendered
frames and interpolates them. Their method uses fixed-point
iterations to find a correct pixel correspondence between
originally rendered views and interpolated ones. Later, this
technique was combined with mesh-based techniques [1].
Although the entire process of the above techniques fits in
a pixel shader and can be computed quickly, it requires sev-
eral additional search heuristics to handle the discontinuity.
The most crucial problem is that these methods highly de-
pend on their implementations and the computational cost is
very expensive for mobile devices. Additionally, if there are
no human perceptible benefits, the workload imposed by a
fixed high resolution at a fixed high frame rate is pointless.
In other words, the workload can be reduced by scaling the
resolution adaptively as long as we can guarantee the visual
quality.

In this paper, we propose a dynamic rendering quality
scaling (DRQS) technique that increases the frame rate with
a very minimal overhead, introducing a combination of the
proposed quality scaling algorithm and the novel dynamic
rendering algorithm using a transform matrix. This leads
to substantial improvements to quality of service. Further-
more, the DRQS can optimize power consumption without
human visual-perceptual changes.

2. Dynamic Rendering Quality Scaling

Figure 1 shows the system overview of our solution for
performing temporal and spatial resolution enhancement of
GPU rendering using the proposed DRQS technique. Our
proposed method is located in between graphic libraries and

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers



2354
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.12 DECEMBER 2015

Fig. 1 System overview of dynamic rendering quality scaling

Fig. 2 Dynamic rendering technique for graphics-heavy contents; (a)
GPU rendering at 30 fps, (b) Conventional FRUC, (c) DRQS

a device driver in order to capture gl calls for computing
inter-frame variations and changing the rendering parame-
ters. From these values, the dynamic rendering controls the
resolution and the ratio of the low resolution frame to origi-
nal frames to enhance the temporal resolution. The follow-
ing sequence, which is quality scaling, configures the ren-
dering parameters to enhance the spatial resolution.

2.1 Dynamic Rendering

As shown in Fig. 2, in order to increase the frame rate of a
given example sequence (a), the most recent techniques have
been mainly studied to motion-compensate, which com-
monly consist of two processes: motion estimation (ME)
and motion-compensated interpolation (MCI). To generate
intermediate frames using these algorithms (b), high compu-
tational costs are inevitable. Furthermore, it requires signif-
icant additional costs to resolve the well-known issues such
as holes, occlusions and lags. Compared to previous studies,
we propose a novel technique to naturally increase the frame
rate up to 60 fps (c). Compared to conventional FRUC, the
additional cost for computing inter-frame variation is negli-
gible.

As shown in Fig. 3, the application requires a substan-
tial GPU workload imposed by a high resolution and a fixed
frame rate, 60 fps (a). The idle state was described by a v-
sync limit, meaning that the GPU completes rendering jobs
of a current frame before the v-sync of a mobile display sys-
tem and gets into the idle state. The GPU workload can be
reduced significantly by employing the proposed dynamic
rendering (b), which renders the low resolution frame in be-
tween original frames to save power.

Fig. 3 Dynamic rendering technique for graphics-light contents for (a)
GPU rendering at 60fps and (b) DRQS

Fig. 4 Algorithm for calculating of the dynamic rendering parameter

2.2 Algorithm for Computing Inter-Frame Variation

In order to obtain the number of low resolution frames in
between original frames, we explicitly measure the amount
of scene changes in the consecutive frames using the model
view projection (MVP) matrix instead of the high-cost
ME/MCI. MVP consists of three separate matrices: the
model, view, and projection. This transformation matrix in-
cludes rotation, translation, scaling, reflecting, orthographic
projection, and perspective projection and is generally used
as a combination of several transformations to draw a scene.
By retrieving MVP matrixes from gl calls and calculating
them, we can measure the amount of scene changes. The
main steps of algorithm are defined in Fig. 4:

Let Fi be the ith frame in a rendering sequence. J de-
notes the total number of objects in a single frame Fi, which
is the current frame. Since a single frame usually consists of
multiple objects and each object is transformed by the cor-
responding MVP matrix, Object IDs are used to distinguish
different objects in a scene. Thus, Oi j denotes the jth object
ID in the ith frame. Also, the corresponding MVP matrix
Mi j is denoted accordingly. Let Vi j = (x, y, z,w = 1) be a
diagnostic vector from multiplying the MVP matrix Mi j by
the matrix I, where I = (1, 1, 1,w = 1), a vector that expects
frame-to-frame coherence using the amount of MVP matrix
changes. The reason we used the (1, 1, 1, w = 1) matrix
is that MVP matrix multiplied by the (1, 1, 1, w = 1) ma-
trix can result in the extent of changes from the transform



LETTER
2355

Fig. 5 Curves for the ratio of original frames to low resolution frames

using the MVP matrix. We compute a distance Di j between
Vi j and V(i−1) j which can represent the amount of each MVP
matrix change.

As shown in the algorithm (lines 1-14), we employ the
linked list Li to stores different object IDs and their cor-
responding MVP matrices in the ith frame and is used for
searching the maximum distance values. In line 10-11, we
achieve Dmax in the linked list Li and normalize Dmax to Dnor

by the maximum screen space distance. Then, we calculate
the average of Dnor (line 12) and compare this value with a
fine-grained threshold value (line 13) to achieve Pi which is
the ratio of original frames to low resolution frames.

As observed in Fig. 5, we choose the representative
applications and explore the variance in amount of scene
changes for each application and the ratio of low resolution
frame to original frames regarding the mean square error
(MSE) as a quality insurance. The ratio of original frames
to low resolution frames increases along with the amount
of scene changes. As a result, we expect to increase qual-
ity of service and reduce the GPU workload respectively.
However, when the ratio of original frames to low resolution
frames goes above a certain threshold, this ratio cannot sat-
isfy the HVS based visual quality. For example, in the case
of graphics-heavy applications, if gfxbench [10] and asphalt
8 [9], if the Dnor average is above 0.814 for gfxbench [10]
and 0.811 for asphalt 8 [9], then the 1:3 ratio of original
frames to low resolution frames is suitable; but this ratio
violates the HVS based visual quality [8]. Note that some
or all objects can be added or removed from consecutive
frames. In this case, the Di j value becomes 1.0, which is
equal to Dmax, meaning that rapid scene changes occurred.

For graphics-light applications, angry bird [11] and
crossy road [12], the curves are similar to the curves from
the graphics-heavy applications but are less constrained by
the ratio of original frames to low resolution frames. Re-
garding these curves, note that the low resolution is set to
720p (1280x720) as the default, and the ratio and the reso-
lution can be customized by the user for flexibility.

2.3 Quality Scaling

The Image sharpness is an important factor that depends
upon perceived image quality. Blurs in the image can be
regarded as artifacts that are present in characters, texts, and
static objects. Moreover, it easily indicates the visual qual-

ity. Using only dynamic rendering scheme causes inevitable
blurring issues due to low resolution rendering and ordinary
scaling algorithms. To address this problem, we introduce a
novel quality scaling technique to enhance the spatial reso-
lution. To sharpen the texture and edge, we find the optimal
parameters for GPU rendering like anti-aliasing levels and
texture mipmap levels. These parameters are configured be-
fore the rendering starts.

The detailed procedure of changing each parameter for
low resolution rendering is described as follows. First, we
decrease the multi-sample anti-aliasing rates to get shaper
images. This approach can result in more aliased edges but
this artifact can be compensated in the up-scaling process.
Second, we change the texture mipmap levels to render a
low resolution frame to enhance high-frequency details on
a magnified texture. The sharpening computes the differ-
ence between the magnified finest level (level 0) and the next
coarse level (level 1) [7]. A weighted version of the result is
added to the magnified finest image to produce the sharp-
ened result. The result is an extrapolation from the level 1
image to the level 0 image. The weighting factor applied to
the difference f is a function of the magnification factor f (L)
where L denotes a LOD (level of detail) value. The equation
to compute the texel color T from the top two texture levels
and current magnification is:

Tsharp = (1 + f (L))T0 − f (L)T1 (1)

where Tsharp is the new texel color, T0 is the magnified texel
color at level 0 and T1 is the magnified texel color at level
1. We only consider mipmap levels of 0 to 1 for sharpen
rendering, because the base mipmap image at level 0 is the
finest, sharpest, unfiltered image. The f (L) function takes
the LOD value and produces a weighting factor between 0
and 1. Thus, when we use Eq. (1), we can get a sharper
image for low resolution frames. Of course, this approach
can increase the memory traffic for texturing. However, we
believe this increased memory traffic is negligible because
texture images commonly used in mobile applications are
usually compressed using ASTC, PVRTC, ETC2, and oth-
ers. Furthermore, we demonstrate that our method can be
easily integrated into other existing methods, which is one
of the benefits in terms of an implementation.

3. Experimental Results

In this section, we explore several applications that are
mainly categorized into two scenarios: graphics-heavy con-
tents and graphics-light contents based on the v-sync (v-
blank) limit (60fps). Our experiments were examined using
the ZeBu emulator [6] (1.6 GHz CA15 quad cores, 400MHz
Rogue GPU, 2 GB RAM). We choose one of the most popu-
lar GPU benchmarks called gfxbench [10] and one 3D game
called asphalt 8 [9] as representative graphics-heavy appli-
cations. Suppose that the original sequence is running at 40
fps and the frame rate is increased to 60 fps by these differ-
ent methods. To evaluate performance, we first implement
our methods and previous studies as well as naı̈ve bilinear



2356
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.12 DECEMBER 2015

Fig. 6 Our results of performance analysis and computational overhead
for graphics-heavy contents

Fig. 7 Comparison of the golden image and ours: (A) golden image, (B)
bilinear upscaling, (C) sharpen rendering, and (D) final DRQS results.

interpolation.
For the most recent interpolation methods to obtain

pixel-accurate results, one is based on the unidirectional re-
projection by the image warping technique and the other is
based bidirectional re-projection technique. Figure 6 shows
the experimental results of measuring the average quality
in MSE and the computational cost. Since both applications
are a fill-bounded scene consisting of moving characters and
a camera with complex fragment shading operations, we
found that the results from both exhibit a similar pattern.
In terms of the quality, both previous studies achieved rel-
atively good results with increasing frame rates. However,
both algorithms show 2x the high computational overhead,
which directly causes to power consumption, compared to
the naı̈ve bilinear interpolation. Thus, they are not satisfac-
tory for mobile devices. In contrast, our approach has a sig-
nificant advantage in terms of additional costs. According
to our preliminary comparisons, our approach requires neg-
ligible overhead but the other methods use up to quad CA15
cores in our experiments. Nevertheless, ours maintains the
HVS based high visual quality [8].

In Fig. 7, we compare and show the closed-ups images
of gfxbench [10] (lower row) and Asphalt 8 [9] (upper row)
to enhance the spatial resolution by applying the proposed
quality scaling algorithm. To compensate for the blurring
artifact as shown in Image (B) due to the low resolution ren-
dering, Images (B) and (C) show the difference before and
after the proposed sharpen rendering is applied. As a result
of the proposed quality scaling, we achieve the final output,
Image (D). For graphics-light applications, we chose two

Fig. 8 Comparison of the golden image and ours: (A) golden image,
(B) DRQS results (left) and experimental results of quality loss and GPU
workload reduction (right) for graphics-light contents.

popular games running at 60fps: angry birds [11] with an
image changed little over time and crossy road [12] where
there are strong changes. Figure 8 shows the experimen-
tal results of quality loss and GPU workload reduction. For
more dynamic scenes, our algorithm is more robust in re-
ducing the workload and naturally saves more power. As
a trade-off between power efficiency and quality, our results
prove that it always guarantees HVS based visual quality [8]
even though there is some quality loss.

4. Conclusion

In this paper, we have demonstrated a novel technique of
combining the Dynamic Rendering algorithm with the Qual-
ity Scaling algorithm to enhance the spatial and temporal
resolution of very practical scenarios. Our approach has
many advantages. First, unlike the recent frame rate up con-
version algorithms, our proposed solution does not require
high computational costs to naturally increase the frame
rate, while satisfying the HVS based visual quality and 60
fps. Second, as increasing the importance of reducing the
power consumption, reducing the GPU workload is very
crucial, so for graphics-light contents, our solution reduces
the workload by up to 32% in GPU-based rendering with
acceptable quality loss based on HVS. Thus, our proposed
solution is well suited for mobile devices, meaning that it
provides a better quality of service within the limited power
budget.

References

[1] H. Bowles, K. Mitchell, R.W. Sumner, J. Moore, and M. Gross,
“Iterative image warping,” Computer graphics forum, vol.31, no.2,
pp.237–246. May 2012.

[2] L. Yang, Y.-C. Tse, P.V. Sander, J. Lawrence, D. Nehab, H. Hoppe,
and C.L. Wilkins, “Image-based bidirectional scene reprojection,”
ACM Transactions on Graphics, vol.30, no.6, p.150, Dec. 2011.

[3] Y. Tokuyoshi, “Specular lobe aware upsampling based on spherical
Gaussians,” ACM SIGGRAPH 2013 Posters, p.107, July 2013.

[4] P. Didyk, E. Eisemann, T. Ritschel, K. Myszkowski, and H.-P.
Seidel, “Perceptually-motivated Real-time Temporal Upsampling of
3D Content for High-refresh-rate Displays,” Computer Graphics Fo-
rum, vol.29, no.2, pp.713–722, May 2010.

[5] R. Herzog, E. Eisemann, K. Myszkowski, and H.-P. Seidel, “Spa-

http://dx.doi.org/10.1111/j.1467-8659.2012.03002.x
http://dx.doi.org/10.1145/2070781.2024184
http://dx.doi.org/10.1145/2503385.2503502
http://dx.doi.org/10.1111/j.1467-8659.2009.01641.x
http://dx.doi.org/10.1145/1730804.1730819


LETTER
2357

tio-temporal upsampling on the GPU,” ACM SIGGRAPH on Inter-
active 3D Graphics and Games, pp.91–98, Feb. 2010.

[6] “The Synopsys suite of ZeBu emulation solutions,”
http://www.synopsys.com/Tools/Verification/hardware-verification/
emulation/Pages/default.aspx, accessed Feb. 2015.

[7] T. McReynolds and D. Blythe, Advanced graphics programming us-
ing OpenGL, Elsevier, 2005.

[8] E. Cerqueira, M. Curado, and M. Leszczuk, Future Multimedia Net-

working, Springer-Verlag Berlin, 2010.
[9] “Asphalt 8: Airborne HD,” http://www.gameloft.com/

android-games/asphalt-8-free, Gameloft, accessed Feb. 2015.
[10] “GFXBenchmarks,” https://gfxbench.com, Kishonti, accessed Feb.

2015.
[11] “Angry Birds,” https://www.angrybirds.com, Rovio, accessed Feb.

2015.
[12] “Crossy Road,” www.crossyroad.com, Yodo1, accessed Feb. 2015.

http://dx.doi.org/10.1145/1730804.1730819
http://dx.doi.org/10.1007/978-3-642-13789-1
http://dx.doi.org/10.1007/978-3-642-13789-1

