
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.3 MARCH 2016
751

LETTER

Bounded-Choice Statements for User Interaction in Imperative
Programming

Keehang KWON†a), Member, Jeongyoon SEO†, and Daeseong KANG††, Nonmembers

SUMMARY Adding versatile interactions to imperative programming
– C, Java and Android – is an essential task. Unfortunately, existing lan-
guages provide only limited constructs for user interaction. These con-
structs are usually in the form of unbounded quantification. For example,
existing languages can take the keyboard input from the user only via the
read(x)/scan(x) statement. Note that the value of x is unbounded in the
sense that x can have any value. This statement is thus not useful for
applications with bounded inputs. To support bounded choices, we pro-
pose new bounded-choice statements for user interation. Each input device
(keyboard, mouse, touchpad, . . .) naturally requires a new bounded-choice
statement. To make things simple, however, we focus on a bounded-choice
statement for keyboard – kchoose – to allow for more controlled and more
guided participation from the user. We illustrate our idea via CBI , an exten-
sion of the core C with a new bounded-choice statement for the keyboard.
key words: interactions, bounded choices, read

1. Introduction

Adding versatile interactions to imperative programming –
C, Java, Android, etc. – has become an essential task. Unfor-
tunately, existing languages provide only limited constructs
for user interaction. These constructs are usually in the form
of unbounded quantification. For instance, the keyboard in-
put statement that has been used in Java-like languages is re-
stricted to the read/scan statement. The read statement is of
the form read(x); G, where G is a statement and x can have
any value. Hence, it is a form of an unbounded quantified
statement. However, in many situations, the system requires
a form of bounded-choice interactions; the user is expected
to choose one among many alternatives. Examples include
most interactive systems such as airline ticketing systems.

The use of bounded-choice interactions is thus essen-
tial in representing most interactive systems. For this pur-
pose, this paper proposes a bounded-choice approach to
user interaction. Each input device naturally requires a new
bounded-choice statement. To make things simple, however,
we focus only on the keyboard device. It is straightforward
to adjust our idea to other input devices such as mouse and
touchpad.

Toward this end, we propose a new bounded keyboard
input statement kchoose(G1, . . . ,Gn), where each Gi is a

Manuscript received June 22, 2015.
Manuscript revised November 4, 2015.
Manuscript publicized November 27, 2015.
†The authors are with Dept. of Computer Eng., Dong-A Uni-

versity, Korea.
††The author is with Dept. of Electronics Eng., Dong-A Univer-

sity, Korea.
a) E-mail: khkwon@dau.ac.kr

DOI: 10.1587/transinf.2015EDL8141

statement. This has the following execution semantics:

ex(P, kchoose(G1, . . . ,Gn)) ← ex(P,Gi),

where i is chosen (i.e., a keyboard input) by the user andP is
a set of procedure definitions. The notation S ← R denotes
the reverse implication, i.e., R→ S . In the above definition,
the system requests the user to choose i via the keyboard and
then proceeds with executing Gi. If i is not among {1, . . . , n},
then we assume that the system does nothing. It can be eas-
ily seen that our new statement has many applications in
representing most interactive systems.

The following C-like code example reads a variable
named emp from the keyboard, whose value represents an
employee’s name.

read(emp);
switch (emp) {

case tom: age = 31; break;
case kim: age = 40; break;
case sue: age = 22; break;
default: age = 0;

}
In the above, the system requests the user to type in a par-
ticular employee. Note that the above code is based on un-
bounded quantification and is thus very awkward. It is also
error-prone because the user may type in an invalid value.

The above application obviously requires a bounded-
choice interaction rather than one based on unbounded
quantification. Our kchoose statement provides such a
bounded-choice interaction for keyboard and is useful to
avoid this kind of human error. Hence, instead of the above
code, consider the statement

print(“Enter 1 for tom, 2 for kim and 3 for sue:”);
kchoose(

emp = tom; age = 31,
emp = kim; age = 40,
emp = sue; age = 22);

This program expresses the task of the user choosing one
among three employees. Note that this program is much
easier and safer to use. The system now requests the user to
select one (by typing 1, 2, 3) among three employees. After
it is selected, the system sets his age as well.

Generally speaking, the kchoose statement is designed
to directly encode most interactive objects which require the
user to choose one among several possible tasks. Hence,

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers

752
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.3 MARCH 2016

there is a rich realm of applications for this statement. For
example, as we will see later in Sect. 3, the ATM machine
requires the user to select one among 1) balance checking,
2) cash withdrawal, and 3) cash deposit. Hence, it can be
directly encoded via the kchoose statement.

It is easy to observe that kchoose statement can be built
from the read-switch combination. For example, the above
example can be rewritten in the following way.

print(“Enter 1 for tom, 2 for kim and 3 for sue:”);
read(n);
switch (n) {

case 1: emp = tom; age = 31; break;
case 2: emp = kim; age = 40; break;
case 3: emp = sue; age = 22; break;
default:

}
It is then tempting to conclude that the kchoose con-

struct is not needed because it can be built from the read-
switch combination. However, this view is quite mislead-
ing. Without it, the resulting codes would be low-level for
the following reasons:

• The programmer must manually allocate a variable for
the read construct.

• The programmer must specify the numbering sequence
in the switch statement.

• The programmer must specify the default part.

As a consequence, these codes are cumbersome, error-
prone, difficult to read, and reason about.

The kchoose construct should rather be seen as a well-
designed, high-level abstraction for bounded-choice inter-
action and the read-switch combination should be seen as
its low-level implementation. The advantage of the use of
this construct becomes evident when an application has a
long sequence of interactions with the user. Therefore, the
need for this construct is clear. To our knowledge, this kind
of construct has never been proposed before in imperative
languages. This is quite surprising, given the ubiquity of
bounded-choice interaction in interactive applications.

The kchoose construct can be implemented in many
ways. One way to implement the kchoose construct is via
preprocessing, i.e., via transformation to plain C-like code.
That is, kchoose(G1, . . . ,Gn) is transformed to the follow-
ing:

int k;
read(k);
switch (k) {

case 1: G′1; break;
case 2: G′2; break;
...
case n: G′n; break;
default:

}
Here, k is a new, local storage, and G′1, . . . ,G

′
n are obtained

from G1, . . . ,Gn via the same transformation.
This paper focuses on the minimum core of C. This is

to present the idea as concisely as possible. The remainder
of this paper is structured as follows. We describe CBI , an
extension of core C with a new bounded-choice statement
for the keyboard in Sect. 2. In Sect. 3, we present an example
of CBI . Section 5 concludes the paper.

2. The Language

The language is core C with procedure definitions. It is de-
scribed by G- and D-formulas given by the syntax rules be-
low:

G ::= true | A | x = E | G; G | read(x); G |
kchoose(G1, . . . ,Gn)

D ::= A = G | ∀x D

In the above, A in D represents a head of an atomic pro-
cedure definition of the form p(x1, . . . , xn) where x1, . . . , xn

are parameters. A in G represents a procedure call of the
form p(t1, . . . , tn) where t1, . . . , tn are actual arguments. A
D-formula is called a procedure definition. In the transition
system to be considered, G-formulas will function as the
main statement, and a set of D-formulas enhanced with the
machine state (a set of variable-value bindings) will consti-
tute a program. Thus, a program is a union of two disjoint
sets, i.e., {D1, . . . ,Dn} ∪ θ where each Di is a D-formula and
θ represents the machine state. Note that θ is initially set to
an empty set and will be updated dynamically during execu-
tion via the assignment statements.

We will present an interpreter via a proof theory [1],
[5]–[7]. Note that this interpreter alternates between the ex-
ecution phase and the backchaining phase. In the execution
phase (denoted by ex(P,G,P′)) it tries to execute a main
statement G with respect to a program P and produce a new
programP′ by reducing G to simpler forms until G becomes
an assignment statement or a procedure call. The rules (6),
(7), (8) and (9) deal with this phase. If G becomes a proce-
dure call, the interpreter switches to the backchaining mode.
This is encoded in the rule (3). In the backchaining mode
(denoted by bc(D,P, A,P′)), the interpreter tries to solve
a procedure call A and produce a new program P′ by first
reducing a procedure definition D in a program P to its in-
stance (via rule (2)) and then backchaining on the resulting
definition (via rule (1)). To be specific, the rule (2) basi-
cally deals with argument passing: it eliminates the univer-
sal quantifier x in ∀xD by picking a value t for x so that the
resulting instantiation, written as [t/x]D, matches the proce-
dure call A. The notation S seqand R denotes the sequential
execution of two tasks. To be precise, it denotes the follow-
ing: execute S and execute R sequentially. It is considered
a success if both executions succeed. Similarly, the notation
S parand R denotes the parallel execution of two tasks. To
be precise, it denotes the following: execute S and execute
R in any order. Thus, the execution order is not important
here. It is considered a success if both executions succeed.
The notation S choose R denotes the selection between two

LETTER
753

tasks. To be precise, it denotes the following: the machine
selects and executes one between S and R. It is considered
a success if the selected one succeeds.

As mentioned in Sect. 1, the notation S ← R denotes
reverse implication, i.e., R→ S .

Definition 1. Let G be a main statement and let P be a pro-
gram. Then the notion of executing 〈P,G〉 successfully and
producing a new program P′– ex(P,G,P′) – is defined as
follows:

(1) bc((A = G1),P, A,P1) ← ex(P,G1,P1). % A match-
ing procedure for A is found.

(2) bc(∀xD,P, A,P1) ← bc([t/x]D,P, A,P1). % argu-
ment passing

(3) ex(P, A,P1) ← (D ∈ P parand bc(D,P, A,P1)). % a
procedure call

(4) ex(P, true,P). % True is always a success.

(5) ex(P, x = E,P � {〈x, E′〉}) ← eval(P, E, E′). % the
assignment statement. Here, � denotes a set union but
〈x,V〉 in P will be replaced by 〈x, E′〉.

(6) ex(P,G1; G2,P2) ← (ex(P,G1,P1) seqand ex(P1,G2,
P2)). % sequential composition

(7) ex(P, read(x); G,P1) ← ex(P � {〈x, kbd〉},G,P1).
where kbd is the keyboard input and � denotes a set
union but 〈x,V〉 in P will be replaced by 〈x, kbd〉.

(8) ex(P, kchoose(G1, . . . ,Gn),P1) ← ((read the keyboard
input i) seqand
(i ∈ {1, . . . , n} seqand ex(P,Gi,P1)) choose (i �
{1, . . . , n} seqand (P1 == P)))

If ex(P,G,P1) has no derivation, then the machine returns
the failure.

The rule (8) deals with bounded-choice interaction. To
execute kchoose(G1, . . . ,Gn) successfully, the machine does
the following:

(1) It reads and saves the keyboard input value i in some
temporary storage.

(2) Then it tries the first branch of the form i ∈ {1, . . . , n}
seqand ex(P,Gi,P1). That is, it first checks whether i
is legal, i.e., among {1, . . . , n}. The machine then exe-
cutes Gi.

(3) If the first branch fails, the machine tries the second
branch of the form i � {1, . . . , n} seqand (P1 == P).
That is, it first checks whether i is illegal, i.e., not
among {1, . . . , n}. If it is illegal, then it means that it
is the user, not the machine, who failed to do his job.
Therefore, the machine sets P1 to P and returns the
success.

As an example of our language, the following G-formula

kchoose(
emp = tom; age = 31,
emp = kim; age = 40,
emp = sue; age = 22);

expresses the task of the user choosing one among three em-
ployees. More examples are shown in Sect. 3.

As mentioned earlier, the kchoose construct is a well-
designed, high-level abstraction for bounded-choice inter-
action which is quite common to user interaction. As for its
implementation, it can be bolted into the language as a ba-
sic statement or it can be supported via preprocessing. C++

macro code for some initial implementation of kchoose is
available under
http://www.researchgate.net/publication/

282331184†.

3. Examples

As an example, consider the following statement that per-
forms ATM transaction. The types of ATM transaction are
1) balance checking, 2) cash withdrawal, and 3) cash depo-
sition. An example of this class is provided by the following
code where the program P is of the form:

deposit() =
print(“type 1 for $1 and 2 for $5:”);
kchoose(amount = $1,amount = $5); . . .
withdraw() =
print(“type 1 for $1 and 2 for $5:”);
kchoose(amount = $1,amount = $5); . . .
balance() = . . .

and the goal G is of the form:

print(“type 1 for balance,2 for withdraw,3 for deposit”);
kchoose(balance(), withdraw(), deposit());

In the above, the execution basically proceeds as follows:
the machine asks the user to choose one among three proce-
dures. If the user choose the withdrawal by typing 2, then
the machine will ask the user again to choose the amount of
the withdrawal. Then the execution will go on. Note that
our code is very concise compared to the traditional one.

As a second example, our language makes it possible
to customize the amount for tuition via interaction with the
user.

The following C-like code displays the amount of the
tuition, based on the user’s field of study.

read(major);
switch (major) {

case english: tuition = $2,000; break;
case medical: tuition = $4,000; break;
case liberal: tuition = $2,200; break;
†Unfortunately, C++ has little support for variadic macros such

as kchoose. For this reason, the current implementation supports
only a limited number of arguments (up to 5, to be precise). We
plan to improve this implementaton in the future.

754
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.3 MARCH 2016

default: tuition = 0; }
print(tuition);

The above code obviously requires a form of bounded-
choice interaction rather than unbounded quantification and
can thus be greatly simplified using the kchoose statement.
This is shown below:

print(“type 1 for english,2 for medical,3 for liberal:”);
kchoose(

major = english; tuition = $2,000,
major= medical; tuition = $4,000,
major = liberal; tuition = $2,200);

print(tuition);

This program expresses the task of the user choosing one
among three majors. Note that this program is defi-
nitely better than the above: it is concise, much easier to
read/write/use, and less error-prone. The system now re-
quests the user to select one (by typing 1, 2 or 3) among
three majors. After it is selected, the system displays the
amount of the tuition.

4. Empirical Study

This section provides some empirical study comparing two
languages, namely C and CBI .

It has the following features:

• The same program is considered for each language. A
typical ATM machine in Korea has a sequence of 3 in-
teractions for cash deposit, 4 for cash withdrawal, and
2 for checking balance. The program we require is an
implementation of this ATM machine using seven ma-
jor procedures (deposit, withdrawal, balance, password
processing, etc). Overall, there are five occurrences of
bounded-choice interactions in the program.

• For each language, we analyze five best implementa-
tions of the program by Computer Science undergrad-
uate students in our Software Engineering classes.

• Two different aspects are investigated, namely program
length and programming effort.

Program length

The following table shows the numbers of lines of five
programs containing a statement, a declaration, or a delim-
iter such as a closing brace.

program lines average line

C (127, 130, 135, 142, 154) 137.6
CBI (113, 115, 123, 129, 132) 122.4

We see that C codes are typically 10% longer than CBI .

Work time and productivity

The following table shows the total work time for de-
signing, writing, and testing the program as measured by us

in the classes.

programming hours average hour

C (1.6, 1.8, 2.4, 2.5, 2.8) 2.2
CBI (1.2, 1.4, 1.5, 1.6, 2.1) 1.5

As we see, CBI takes less than 70% as long as C.

5. Conclusion

In this paper, we have extended core C by adding
a bounded-choice statement. This extension allows
kchoose(G1, . . . ,Gn), where each Gi is a statement. This
statement makes it possible for the core C to model decision
steps from the user.

The kchoose(G1, . . . ,Gn) construct allows only a sim-
ple form of user input, i.e., natural numbers. A more flexible
form of user input can be obtained using a parameterized
kchoose statement of the form kchoose(c1 : G1, . . . , cn :
Gn), where c1, . . . , cn are (pairwise disjoint) strings. The
semantics is that if some string ci is typed, then Gi will be
executed. Thus, the latter allows the user to type more sym-
bolic names rather than just numbers. We plan to investigate
this possibility in the future.

Although we focused on the keyboard input, it is
straightforward to extend our idea to the mouse input, which
plays a central role in smartphone applications. For exam-
ple, the statement mchoose(button1 : G1, . . . , buttonn : Gn)
where each button is a graphic component located at some
area can be adopted. The idea is that if buttoni is clicked,
then Gi will be executed. It can be easily seen that this state-
ment will greatly simplify smartphone programming.

We plan to compare our construct to another popular
approach: the monad construct in functional languages. We
also plan to connect our execution model to Japaridze’s ele-
gant Computability Logic [2], [3], which has many interest-
ing applications (for example, see [4]) in information tech-
nology.

Acknowledgements

We thank the anonymous reviewer for several helpful com-
ments including the parameterized kchoose statement. This
work was supported by Dong-A University Research Fund.

References

[1] G. Kahn, “Natural semantics,” Proc. 4th Annual Symposium on The-
oretical Aspects of Computer Science, LNCS, vol.247, 1987.

[2] G. Japaridze, “Introduction to computability logic,” Annals of Pure
and Applied Logic, vol.123, no.1-3, pp.1–99, 2003.

[3] G. Japaridze, “Sequential operators in computability logic,” Informa-
tion and Computation, vol.206, no.12, pp.1443–1475, 2008.

[4] K. Kwon, S. Hur, and M.-Y. Park, “Improving robustness via dis-
junctive statements in imperative programming,” IEICE Trans. Inf.
& Syst., vol.E96-D, no.9, pp.2036–2038, Sept. 2013.

[5] J.S. Hodas and D. Miller, “Logic programming in a fragment of in-
tuitionistic linear logic,” Information and Computation, vol.110, no.2,
pp.327–365, 1994.

http://dx.doi.org/10.1016/s0168-0072(03)00023-x
http://dx.doi.org/10.1016/j.ic.2008.10.001
http://dx.doi.org/10.1587/transinf.e96.d.2036
http://dx.doi.org/10.1006/inco.1994.1036

LETTER
755

[6] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov, “Uniform proofs
as a foundation for logic programming,” Annals of Pure and Applied
Logic, vol.51, no.1-2, pp.125–157, 1991.

[7] D. Miller and G. Nadathur, Programming with higher-order logic,
Cambridge University Press, 2012.

http://dx.doi.org/10.1016/0168-0072(91)90068-w

