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The Impact of Information Richness on Fault Localization

Yan LEI†a), Student Member, Min ZHANG†, Bixin LI†b), Jingan REN†, and Yinhua JIANG†, Nonmembers

SUMMARY Many recent studies have focused on leveraging rich infor-
mation types to increase useful information for improving fault localization
effectiveness. However, they rarely investigate the impact of information
richness on fault localization to give guidance on how to enrich informa-
tion for improving localization effectiveness. This paper presents the first
systematic study to fill this void. Our study chooses four representative
information types and investigates the relationship between their richness
and the localization effectiveness. The results show that information rich-
ness related to frequency execution count involves a high risk of degrading
the localization effectiveness, and backward slice is effective in improving
localization effectiveness.
key words: fault localization, automated debugging, information richness,
experimental study

1. Introduction

Spectrum-based Fault Localization (SFL) [1] is a promis-
ing technique widely studied in the fault localization com-
munity. SFL usually utilizes Binary information of execu-
tion Count (BC), that is, information of each program state-
ment being executed (denoted by the value ‘1’) and not exe-
cuted (represented by the value ‘0’) by a particular test case.
Based on BC and test results, SFL adopts a suspiciousness
evaluation formula to evaluate the suspiciousness of each
statement being faulty and gives a ranking list of all state-
ments in terms of suspiciousness. Studies have empirically
demonstrated that SFL is effective to improve fault localiza-
tion effectiveness by reducing the percentage of code that
needs to be examined to find the fault (e.g., [1]–[3]).

One issue related to SFL is the effects of information
richness on the effectiveness of fault localization. Informa-
tion richness is associated with a specific information type,
that is, information richness represents the amount of infor-
mation expressed by a specific information type. Intuitively,
a richer information type should contain more information
and thus have a positive effect on fault localization effec-
tiveness. In light of this intuition, some SFL techniques
have adopted richer information types, rather than BC, to
obtain some benefit to fault localization effectiveness. Lee
et al. [4] propose a SFL technique using Frequency execu-
tion Count (FC) to refine the weights of each statement. FC
is the number of times a statement is executed. Meanwhile,
many SFL techniques have incorporated dependence infor-
mation [5], [6] to define new rich information types to im-
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prove information richness for SFL (e.g., def-use pairs [2],
information flow [7] and context pattern [8]).

Despite the great progress in recent years, there still
lacks a systematic study of the effects of information rich-
ness on the effectiveness of fault localization. It is necessary
to investigate the effects of information richness on fault
localization effectiveness to shed insight on how to enrich
information for improving fault localization effectiveness,
such as the reasonableness of the aforementioned intuition.
Therefore, this paper aims to address the following three Re-
search Questions (RQ):

RQ1: Does the general intuition always hold? In other
words, does it always hold that a richer information type
is used for fault localization, the more positive effects are
made on fault localization effectiveness?

RQ2: If RQ1 does not hold, what type of information
has a negative effect on fault localization effectiveness, and
how much influence on fault localization?

RQ3: Furthermore, what type of information has the
promising potential of having a positive effect on fault lo-
calization effectiveness, and how much benefit fault local-
ization can obtain?

To achieve the above research goals, we present the re-
sults of our first experiment on the effects of information
richness on fault localization effectiveness. The experiment
first chooses three major information types used by SFL.
The three types of information are BC [1], FC [4] and Back-
ward Slice∗ (BS [9]). In addition, we follow the structure of
SFL to construct a new SFL technique using a new informa-
tion type that combines FC with BS (FC&BS).

Obviously, FC is richer than BC because FC contains
frequency execution count rather than the information of
each program statement being executed or not executed.
BS uses dynamic dependence graphs [10] to show dynamic
data/control dependence of the statements in a program
whereas BC cannot show data/control dependence. In ad-
dition, dynamic dependence graphs can also show the infor-
mation of a statement being executed and not executed by a
test case. In this respect, BS contains more information than
BC, that is, BS is richer than BC. Since FC&BS contains FC
and BS, FC&BS should be the richest among the four types
of information. FC cannot show the dependence informa-
tion of statements and BS usually does not record the num-
ber of times a statement is executed for a test case. It demon-
strates that FC and BS are two different directions of in-
formation richness for fault localization. Consequently, the
richness relationship can be obtained among the four types

∗In this paper, backward slice is the dynamic slice.
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of information: BC<FC<FC&BS and BC<BS<FC&BS. As
a reminder, BS is built on BC by eliminating irrelevant ex-
ecuted statements, that is, BS is equal to BC&BS in the
methodology of SFL. Thus, we use BS for our study to de-
note them both.

Based on the four information types, four correspond-
ing SFL techniques and five groups of the maximal SFL
suspiciousness evaluation formulas are used for the exper-
iment. The empirical results do not support an intuition that
a rich information type should always have a positive effect
on the effectiveness of fault localization. Our experiment
also shows that richness related to FC can introduce a high
risk of taking a negative effect on fault localization effective-
ness, and BS is more helpful than the other three information
types in improving fault localization effectiveness.

2. SFL Using FC&BS

Due to the space limit, this section just presents the new SFL
technique using FC&BS. The details of SFL using BC, SFL
using FC and SFL using BS can refer to [1], [4] and [9],
respectively. First, we assume that a program P comprises
a set of program statements S = {s1, s2, . . . , sM} and runs
against a set of test cases T = {t1, t2, . . . , tN} (see Fig. 1).
Let bslice(ti) be the backward slice [9] of the output of the
test case ti. Thus, bslice(ti) includes those statements whose
execution affects the output of test case ti according to data
and control dependence.

In Fig. 1, the matrix N × (M + 1) represents the input to
SFL. An element xi j is equal to the number of times state-
ment s j is executed (i.e. FC) for test case ti if s j ∈ bslice(ti)
and 0 otherwise. It implies that xi j records FC of those
statements whose execution affects the output of test cases.
The basic intuition is that a larger FC of a particular state-
ment in a bslice of a test case indicates that the statement
affecting the output of a test case is executed by the test
case more frequently, and thus the statement should obtain a

Fig. 1 Input to SFL.

Table 1 Maximal formulas of SFL.
Name Formula

ER1’
Naish1

−1, i f a01(s j) > 0

a00(s j), i f a01(s j) ≤ 0

Naish2 a11(s j) −
a10(s j)

a10(s j)+a00(s j)+1

GP13 a11(s j)(1 + 1
2a10(s j)+a11(s j)

)

ER5
Wong1 a11(s j)

Russel&Rao
a11(s j)

a11(s j)+a01(s j)+a10(s j)+a00(s j)

Binary

0, i f a01(s j) > 0

1, i f a01(s j) ≤ 0
GP02 2(a11(s j) +

√
a00(s j) +

√
a10(s j)

GP03
√
|a11(s j)2 −

√
a10(s j)|

GP19 a11(s j)
√
|a10(s j) − a11(s j) + a01(s j) − a00(s j)|

more weighted correlation with the influence on the output
of the test case.

Based on the new matrix, SFL using FC&BS follows
the structure of SFL [4], and uses Eq. (1) and Eq. (2) to re-
define the four sets and the four statistical variables.

np(s j) = {i|(xi j = 0) ∧ (ri = 0)}, ep(s j) = {i|(xi j > 0) ∧ (ri = 0)}
n f (s j) = {i|(xi j = 0) ∧ (ri = 1)}, e f (s j) = {i|(xi j > 0) ∧ (ri = 1)}

(1)

a00(s j) =
∑

i∈np(s j)

(1 − Mi j) +
∑

i∈ep(s j)

(1 − Mi j), a10(s j) =
∑

i∈ep(s j )

Mi j

a01(s j) =
∑

i∈n f (s j)

(1 − Mi j) +
∑

i∈e f (s j)

(1 − Mi j), a11(s j) =
∑

i∈e f (s j )

Mi j

Where, Mi j =

 1

e
−α∗xi j +1

, i f xi j > 0

0, otherwise

(2)

Hence, in the context of SFL using FC&BS, a00(s j)
and a01(s j) represent the cumulative weights related to those
test cases whose output is not affected by the execution of
statement s j with a passed and failed result respectively.
While a10(s j) and a11(s j) denote cumulative weights asso-
ciated with those test cases whose output is affected by the
execution of statement s j with a passed and failed result re-
spectively.

Recent research [11] has theoretically proven that nine
suspiciousness evaluation formulas are the most efficient
formulas (referred to as the maximal formulas), among
which, three formulas are equivalent and constitute a group
ER1’, and other three equivalent formulas compose a
group ER5. Table 1 describes the nine maximal for-
mulas: Naish1 [3], Naish2 [3], GP13 [11], Wong1 [3],
Russel&Rao [3], Binary [3], GP02 [11], GP03 [11] and
GP19 [11], and shows how the suspiciousness of s j is com-
puted.

3. Experimental Study

3.1 Information Types and Subject Programs

To understand the impact of information richness on fault
localization effectiveness, this study chooses four represen-
tative information types (BC, FC, BS and FC&BS), and the
four corresponding SFL techniques. The experiment selects
two widely used benchmarks (Siemens and space) in the
field of fault localization. Table 2 shows the information
of subject programs, and lists the programs, the number of
faulty versions, the lines of code, the size of test pool, and
the functional descriptions of the corresponding program.
Because print tokens and print tokens2 have similar struc-
ture and functionality, and each has only a few faulty ver-
sions, the experiment shows their combined results to give
meaningful statistics. Following the same condition, we

Table 2 The summary of subject programs.
Program Versions Loc Test Description

print tokens (2 ver.) 15 570/726 4,115/4,130 Lexical analyzer
replace 30 564 5,542 Pattern recognition

schedule (2 ver.) 18 374/412 2,650/2,710 Priority scheduler
tcas 37 173 1,608 Altitude separation

tot info 19 565 1,052 Info. measure
space 35 6,199 13,585 ADL interpreter
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Table 3 Statistical results on effectiveness relationship
Formula Comparison 2-tailed 1-tailed(right) 1-tailed(left) Conclusion

ER1’
SFL(FC&BS) v.s. SFL(FC) 1.91E-05 9.54E-06 0.99999 WORSE

SFL(FC) v.s. SFL(BC) 1.07E-07 5.34E-08 1 WORSE
SFL(BC) v.s. SFL(BS) 2.89E-07 1.44E-07 1 WORSE

ER5
SFL(FC) v.s. SFL(FC&BS) 0.01 0.005 0.99501 WORSE
SFL(FC&BS) v.s. SFL(BC) 1.16E-05 5.81E-06 0.99999 WORSE

SFL(BC) v.s. SFL(BS) 0 0 1 WORSE

GP02
SFL(FC) v.s. SFL(BC) 5.22E-06 2.61E-06 1 WORSE

SFL(BC) v.s. SFL(FC&BS) 0.03425 0.01712 0.99888 WORSE
SFL(FC&BS) v.s. SFL(BS) 0.00223 0.00112 0.98291 WORSE

GP03
SFL(FC) v.s. SFL(BC) 3.01E-05 1.51E-05 0.99998 WORSE

SFL(BC) v.s. SFL(FC&BS) 0.04934 0.02467 0.97538 WORSE
SFL(FC&BS) v.s. SFL(BS) 1.41E-04 7.06E-05 0.99993 WORSE

GP19
SFL(FC) v.s. SFL(BC) 2.39E-06 1.19E-06 1 WORSE

SFL(BC) v.s. SFL(FC&BS) 2.29E-04 1.15E-04 0.99989 WORSE
SFL(FC&BS) v.s. SFL(BS) 1.44E-05 7.19E-06 0.99999 WORSE

also combine the results of schedule and schedule2. In to-
tal, 154 faulty versions of the programs, obtaining from the
Software-artifact Infrastructure Repository†, were used for
the experiment.

3.2 SFL Formulas and Evaluation Metric

Since ER1’, ER5, GP02, GP03 and GP13 are the maximal
suspiciousness evaluation formulas for SFL [11], our study
uses these maximal formulas in the study, that is, we use
Nash 1 out of the three equivalent formulas in ER1’, Binary
out of the three equivalent maximal formulas in ER5 and
the other three formulas GP02, GP03 and GP19 (see Table
1). The experiment evaluates the effectiveness of SFL using
the four information types with these five maximal formu-
las. In light of the equivalence in each group, the following
section uses ER1’ and ER5 to represent Naish1 and Binary
respectively.

We evaluate fault localization effectiveness by using
the widely used metric, that is, the percentage of executable
code that needs to be examined before finding the actual
faulty statement (referred to as the EXAM score [3]). A
lower EXAM score indicates higher effectiveness.

3.3 Results and Discussion

We compare the EXAM between each two SFL techniques
by adopting the paired Wilcoxon-Signed-Rank test [12].
Thus, we can obtain the effectiveness relationship among
the four SFL techniques, and Table 3 shows the sta-
tistical results on this relationship. Take SFL(FC&BS)
v.s. SFL(FC) in ER1’ as an example. The p values
of 2-tailed, 1-tailed(right) and 1-tailed(left) are 1.91E-05,
9.54E-06 and 0.99999 respectively. It means that the
EXAM of SFL(FC&BS) is significantly greater than that of
SFL(FC). Therefore, we obtain a WORSE conclusion, that
is, SFL(FC&BS) performs worse than SFL(FC) in ER1’.
Based on the results in Table 3, we can obtain the effec-
tiveness relationship as follows:
• ER1: SFL(FC&BS)<SFL(FC)<SFL(BC)<SFL(BS).
• ER5: SFL(FC)<SFL(FC&BS)<SFL(BC)<SFL(BS).
• GP02, GP03 and GP19: SFL(FC)<SFL(BC)<SFL(FC&

BS)<SFL(BS).
Based on the above results, we can observe that SFL
†http://sir.unl.edu/portal/index.php

Fig. 2 An illustrative example.

using FC performs worse than SFL using BC, and the effec-
tiveness of SFL using BS decreases after incorporating FC.
This shows that the information type FC has a negative ef-
fective on fault localization effectiveness despite the fact that
FC is richer than BC and FC&BS is richer than BS. Let us
take the faulty program in Fig. 2 as an example to understand
the problem. This program with a fault at statment s8 runs
against five test cases. The cells below each statement indi-
cate the execution times of the statement in a test case, and
the rightmost cells represent whether the execution of a test
case is failed or not. As shown in Fig. 2, s5, s6, s7 and s8 are
executed by failed test cases t1 and t3, and they are not exe-
cuted by passed test cases t2, t4 and t5. Since s5, s6, s7 and s8

have the same binary information of execution count in the
five test cases, SFL using BC [1] will assign the same sus-
piciousness value to these statements. However, the number
of execution times of s5, s6, s7 in failed test cases t1 and t3
is much higher than that of s8. SFL using FC [4] will assign
more weights to s5, s6 and s7, and thus the suspiciousness
values of these statements are higher than the suspiciousness
value of s8. Hence, the rank of the faulty statement s8 will
become lower in SFL using FC compared with the rank of
s8 in SFL using BC, that is, SFL using FC decreases the ef-
fectiveness of SFL using BC. Recall that the basic intuition
of using FC is that the larger FC of a particular statement
in a test case should have a larger correlation or affection
with the output of the test case. Nevertheless, the FC of a
statement is not generally consistent with the correlation or
affection of a statement on the output of the test case. Obvi-
ously, SFL using FC or FC&BS can perform well in those
cases that faulty statements need to be frequently executed
to accumulate effects for triggering a failure. The experi-
mental study shows that such cases do not always hold in
practice. Furthermore, the frequently executed non-faulty
statements, such as loop statements, can always obtain more
benefits than the infrequently executed faulty statements in
light of FC, and thus these statements have a high probabil-
ity of surpassing faulty statements in suspiciousness being
faulty. That is the reason why SFL using FC or FC&BS
performs worse than that SFL using BC or BS despite the
previous preliminary experiment [4] showing that SFL us-
ing FC can obtain more benefit than SFL using BC.

On the other hand, we observe that SFL using BS [9]
performs the best among the four SFL techniques and shows
a significant improvement in terms of fault localization ef-
fectiveness. Recall that the intuition of using BS is that the
execution of a particular statement in a test case should have
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a strong correlation with the output of the test case when the
execution of the statement affects the output of the test case.
In contrast, in the framework of SFL using code coverage
(e.g. BC and FC), the execution of a statement should have
a strong correlation with the output of the test case when the
statement is just or frequently executed. Nevertheless, the
execution of a statement in a test case does not necessarily
mean that the execution of the statement affects the output
of the test case. In general, faulty statements cannot trigger
a program failure unless their execution affects the output.
Thus, SFL using BS adopts stronger semantics to evaluate
the correlation between statements and failures compared to
SFL using code coverage. In addition, it has been demon-
strated that BS is effective to capture the influence of the
execution of a statement on the output and can locate a wide
spectrum of faults [13], that is, BS is generally and strongly
correlated with the output of a test case. That is the rea-
son why SFL using BS shows the highest fault localization
effectiveness among the four SFL techniques.

3.4 Answers to RQs

Answer to RQ1 Given the same evaluation structure of
SFL, the results show that the effectiveness relationship of
the four SFL techniques does not conform to the richness re-
lationship of the four corresponding information types used.
In other words, it does not always hold that, as a richer infor-
mation type is used for fault localization, the more positive
effects are made on fault localization effectiveness. In fact,
some rich information types can have a significant negative
effect on fault localization effectiveness. For example, SFL
with the richest information type FC&BS does not perform
the best among the four SFL techniques and even performs
the worst in ER1 compared to the other three SFL tech-
niques. It suggests that researchers should carefully choose
or propose a rich information type to enrich information for
fault localization and avoid negative effects on fault local-
ization effectiveness.
Answer to RQ2 After incorporating FC into SFL, SFL us-
ing FC performs worse than SFL using BC, and SFL using
FC&BS also performs worse than SFL using BS. The reason
behind this phenomenon is that it does assume that faulty
statements need to be frequently executed to accumulate ef-
fects for triggering a failure. However, the current method-
ology of using FC presents a bias towards those frequently
executed statements. If the FC of faulty statements is lower
than that of many non-faulty statements, the negative ef-
fects on fault localization effectiveness would accumulate
and finally lead to a significant effectiveness decrease. Con-
sequently, information richness related to FC has a negative
effect on fault localization effectiveness. Researchers should
be aware of the negative effects of FC on fault localization
effectiveness, that is, researchers should be cautious of using
FC, at least in the framework of SFL, to enrich information
for improving fault localization effectiveness.
Answer to RQ3 For all investigated formulas, SFL using
BS performs the best among the four SFL techniques, that

is, BS is helpful in improving fault localization effective-
ness. Since BS can capture the influence of the execution
of a statement on the output, SFL using BS can define sta-
tistical variables with stronger semantics for suspiciousness
evaluation formulas as compared to SFL using code cov-
erage (e.g. BC and FC). BS owes this advantage to the use
of dependence information because dependence information
can construct a causal chain of how data and control propa-
gates in a program. In other words, dependence information
can introduce more semantics into the analysis process of
fault localization than code coverage. Thus, dependence in-
formation have more positive effects than code coverage on
fault localization effectiveness. With this useful guidance,
researchers are encouraged to use dependence information
to improve the effectiveness of fault localization.

4. Conclusion

In this paper, we present the first experimental study that
evaluates the effects of information richness on fault local-
ization effectiveness. We provide the evidence that contra-
dicts an intuition that a rich information type should always
be helpful in improving fault localization. We also show
that different types of information richness can have differ-
ent (positive or negative) effects on fault localization effec-
tiveness, providing advices for researchers on how to enrich
information for improving fault localization effectiveness.
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