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Digital Halftoning through Approximate Optimization of
Scale-Related Perceived Error Metric

Zifen HE†, Nonmember and Yinhui ZHANG†a), Member

SUMMARY This work presents an approximate global optimization
method for image halftone by fusing multi-scale information of the tree
model. We employ Gaussian mixture model and hidden Markov tree to
characterized the intra-scale clustering and inter-scale persistence proper-
ties of the detailed coefficients, respectively. The model of multiscale per-
ceived error metric and the theory of scale-related perceived error metric
are used to fuse the statistical distribution of the error metric of the scale
of clustering and cross-scale persistence. An Energy function is then gen-
erated. Through energy minimization via graph cuts, we gain the halftone
image. In the related experiment, we demonstrate the superior performance
of this new algorithm when compared with several algorithms and quanti-
tative evaluation.
key words: halftoning, approximate global optimization, multiscale error
metric, scale-related

1. Introduction

Digital halftoning is a technique for creating the illusion
of continuous-tone output with a binary device, such as
the laser engraving gravure, laser plate maker and digital
printer. An image halftone algorithm aims to assign two
labels (0 and 1) to each pixel of the image based on the
properties of the pixel and its relationship with its neigh-
bors. Effective digital halftoning can substantially improve
the quality of rendered images at minimal cost [1]. In gen-
eral, the properties of halftones can be broadly classified into
three categories [2]. These include ordered dithering, error
diffusion and optimization-based techniques.

Some approaches adopt a multiscale approach to pro-
duce an image halftone by handling the process at multi-
ple spatial resolutions [3]–[5]. Wong considered a method
for adjusting the error-diffusion filter concurrently with the
error-diffusion process so that an error criterion is mini-
mized. The minimization is performed using the least mean
squares (LMS) algorithm in adaptive signal processing [6].
Kat. [7] proposed a method to produce multi-tones based on
the multiscale error-diffusion technique. Key characteris-
tics of this technique are the use of an image quad-tree and
the quantization order of the pixels. Halftones of different
resolutions can be embedded in a single full-scale halftone
image which can provide the better image quality at differ-
ent resolutions [8]. Fung proposed an algorithm that sup-
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ports parallel processing and can further reduce the compu-
tational complexity [9]. Fung also proposed a MED algo-
rithm to produce halftones of desirable green noise charac-
teristics [10].

In the digital halftoning algorithms, the quantization of
the binary pixels are cast into optimization of error metric
function using maximum likelihood, least squares, direct bi-
nary search and geometry planning, which can get the opti-
mal configuration of the binary pixels to a certain extent.
Unfortunately, those algorithms can not achieve alternating
scale of error metric model. High scale error measure infor-
mation dissemination can not guide lower-scale error, which
is only guaranteed to produce a local optimum. In this paper,
an image halftone is converted into approximate global op-
timization of scale-related perceived error metric problem,
which to gain the best possible configuration of the binary
pixels in the image halftone.

In Sect. 2, we give a function modeling framework for
multiscale perception error metric. In Sect. 3, the function
of scale-related perceived error metric is established by use
of Gaussian mixture and hidden Markov tree modeling. Ex-
perimental results and discussion are derived in Sect. 4. In
Sect. 5, conclusions are drawn.

2. Multi-Scale Perception Error Metric Function Mod-
eling Framework

Halftoning rests upon the fact that the eye acts as low-pass
filter. The human visual system is not only sensitive to the
spatial domain error metric information, but also to the same
as frequency and direction domain. This paper also put them
into a framework for multiscale objective function. The eye
model we use is based on estimates of the spatial, frequency
and direction sensitivity of the eye by Nasanen [11], which
found the following filter frequency response to be good for
predicting the subjective quality of the coded images.

Hr( fr) = exp

( − fr
c log L + d

)
(1)

Where c = 0.525, d = 3.91 and L = 11. Visual contrast
sensitivity describes the signal processing properties of the
visual system near threshold contrast. For sinusoidal grat-
ings contrast is defined as c = Lmax−Lmin

Lmax+Lmin
= A

L . where Lmax

and Lmin are the maximum and minimum luminance, re-
spectively. A is the luminance amplitude and L is the aver-
age luminance. The visual resolution frequency for periodic
two-dimensional luminance wave-forms can be calculated
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by solving the fundamental frequency f from the following
the equation fr = f [m2+n2]1/2, fr is the fundamental spatial
frequency of the periodic signal.

Define multiscale error metric information ei, j(m, n)
of the wavelet domain spatial point (m, n) is the corre-
sponding wavelet coefficients of the Euclidean distance in
L ∗ a ∗ b ∗ space, where the scale i ∈ {1, 2, 3, 4}, orientation
j ∈ {1, 2, 3}.

Multiscale perception error metric objective function
εi, j(m, n) is built on the scale i, in the direction of j and spa-
tial point (m, n).

εi, j(m, n) = ei, j(m, n) ∗ Hr( fr) (2)

The overall perception error metric Ψ is the sum of mean
square in different locations, scales and orientations.

Ψ =
∑
i, j

∑
m,n

∣∣∣εi, j(m, n)
∣∣∣2 (3)

3. Multiscale Perception Error Metric Function

3.1 Discrete Wavelet Transform

The multiscale information of L*a*b* space is shown as
Fig. 1. Figure 1 (b) shows the discrete wavelet transform of
the original image through Harr wavelet [12], in which the
two properties of wavelet coefficient distribution, intra-scale
clustering and inter-scale persistence are evident. We can
see that most of the energy compacted onto a few wavelet
coefficients with large magnitudes while most of the wavelet
coefficients are very small. This compact property allows us
to capture the key characteristics of an image from a few
large wavelet coefficients.

3.2 Intra-Scale Clustering and Inter-Scale Persistence
Properties

We apply Gaussian mixture model and Hidden Markov tree
(HMT) proposed [13] to character the intra-scale clustering
and inter-scale persistence properties of the detail coeffi-
cients, respectively.

To gain intra-scale clustering distribution properties, a

Fig. 1 The original image and the DWT transform (a) original image
(b) four levels DWT transform.

hidden stochastic state variable xs is linked to each wavelet
coefficient ws. The xs takes two values: either xs = 1 or
xs = 0. Since most of the wavelet coefficients have small
values while only a few wavelet coefficients have large val-
ues. The wavelet coefficients of the larger threshold are re-
garded as the Gaussian probability density function of the
larger variance. Analogously, the wavelet coefficients of the
smaller threshold are regarded as the Gaussian probability
density function of the smaller variance. Thus the proba-
bility density function (pdf) p(ws) of each wavelet coeffi-
cient is well approximated by a two-density Gaussian mix-
ture model.

p(ws) =
1∑

i=0

p(xs = i)p(ws | xs = i)

More specifically, p(ws | xs = i) follows zero-mean
Gaussian distribution.

p(ws | xs = i) =
1√

2πσ2
i

exp

⎛⎜⎜⎜⎜⎝−w2
s

2σ2
i

⎞⎟⎟⎟⎟⎠ (4)

where σ2
i is the variance at node i when the state is xs, xs ∈

{0, 1}. The variance value is the size of threshold value of the
wavelet coefficients. Upon the assumption that the wavelet
coefficients are mutually independent, the joint probability
density function of the wavelet coefficients is given by

p(W) =
∏
s∈V

p(ws) (5)

where W is a matrix containing the detail coefficients of LH,
HL and HH sub-band.

We apply the HMT model for the purpose of capturing
inter-scale persistence properties in wavelet domain. The
quad-tree probability graph structure of HMT model with
three scales is shown as Fig. 2.

The black nodes represent the wavelet coefficients ws

and the white nodes represent each wavelet coefficient cor-
responding to hidden state variables xs.

A hidden state variable corresponds to the four hidden
state variables of next scale. The line represents the depen-
dence of the wavelet coefficients of parent-children, namely
inter-scale persistent. In the HMT model, we use the prob-

ability mass function p(xs = i) =

[
p(xs = 0)
p(xs = 1)

]
. The state

transition probability lp(s)
s is defined to represent the prob-

ability for ws to be 0 (or 1) when its parent wp(s) is 0 (or

Fig. 2 The quad-tree probability graph structure.
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1).

lp(s)
s =

[
l(xs = 0 | xp(s) = 0)l(xs = 0 | xp(s) = 1)
l(xs = 1 | xp(s) = 0)l(xs = 1 | xp(s) = 1)

]

We gain the HMT model for each LH, HL and HH sub-
band.

Θ = {p, εuv , σ2
i | (u, v) ∈ E}

We employ the sub-band independence assumption and the
complete HMT model is thus

p(W |Θ) = p(WLH |ΘLH)p(WHL |ΘHL)p(WHH |ΘHH)

(6)

The scale-related perceived error metric function of label i
in G is given by

Ψ̃(x) = λΨ̃R(x) + Ψ̃B(x) (7)

where i ∈ {1, 2, . . . , c}, c = 2. Ψ̃R and Ψ̃B are represent
the smoothness and singularity constrains, respectively. λ
is a weight factor and equals to 1.1. The smoothness con-
strains is negative log-likelihood of the brightness threshold
in L ∗ a ∗ b ∗ space.

Ψ̃R(xv) = −
∑

log p(L(v) | xv = s) where s ∈ {0, 1}.
The singularity constrains is exponential function.

Ψ̃B(xu, xv) =
∑ ∑

(u,v)∈E
exp(−(L(u) − L(v))2/2σ2

i ) (8)

3.3 Energy Function Minimization

A directed graph G = (V ∪ {s, t}, E) is constructed at the
pixel resolution level, which expressions modeling frame-
work. The node set of V in G contains two terminal nodes,
namely, source s and sink t and E is a set of arcs. The s-t
cut in G is a set of arcs whose remover partitions the nodes
into two disjoint subsets S and T , such that s ∈ S and t ∈ T
and no path can be established between s and t. Each node
corresponds with the perception error measure. The min-
imum s-t cut is the maximum flow problem, whose clas-
sic combinatorial problems that can be solved by various of
polynomial-time algorithms [14].

In this paper, we employ the min-cut method proposed
in to implement energy function minimization. The en-
ergy minimization is an iterative process, which includes
three stages. Firstly, the active nodes search adjacent non-
saturated edges and capture new children from free nodes.
The search trees expand until they fall across a neighboring
node that belong to another tree. A path P from s to t is
tested. Secondly, the residual graph is expanded by push-
ing the flow, through the path P, the amount of which is the
bottleneck capacity. Once ligature on P becomes saturated,
its son becomes an orphan. So, the search trees turn into
forests after expanding. Lastly, every orphan strives hard to
seek a new effective parent within the same as search tree in

adoption stage. If it does not find an effective parent of p,
it becomes a free node. The algorithm terminates when the
trees are separated by saturated edges. If the fine scale pixel
link to s, it equals to 0. If the fine scale pixel link to t, it
equals to 1.

4. Experiments

The test image is taken of 8-bit grey scale image having the
dimension 256 × 256 for the comparison of algorithms. All
halftone images are generated and printed at a resolution
of 300dpi and 24inches viewing distance. We use the pro-
posed algorithm to obtain the halftone images. In the experi-
ment, we compare five algorithms: proposed, I. Katsavouni-
dis [7], Y.-H. Fung [8], J.-M. Guo [15], T. Asano [16]. Fig-
ure 3 shows the subjective results for the ‘Macaw’ image.
The results show that this method achieves the better quality
halftones that combine smooth gray tone reproduction and
good edge and detail reproduction in the same image.

To further examine the performance of the proposed al-
gorithm, we compare the proposed algorithm with the other
methods. Results are presented in Table 1 for halftoning us-
ing test image Macaw.

And from the objective results it was found that the
proposed algorithm achieves consistently lower values of
MSEv than the other algorithms, and the value of MSEv

Fig. 3 Comparison of halftone image (a) [7] (b) [8] (c) [15] (d) [16]
(e) proposed.
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Table 1 Quality measurement of halftone image with different
algorithms in terms of PSNR and MSEv.

Fig. 4 Comparison of the number of iterations for the test image.

Table 2 Average elapsed time of the test image during iteration
(seconds).

is also decreases. We can be seen from the Table 1 that the
proposed algorithm achieves consistently higher values of
PSNR than the other algorithms, and the value of PSNR are
also increase. The parameter that needs to be selected is the
termination condition in the iteration, which is selected as
10−2 during the running of the program. The result is illus-
trated in Fig. 4.

The convergence errors of [8], [15] and [16] dropped
down to 10−2 just in eight iterations. The proposed algo-
rithm is terminated with six iterations. Therefore the con-
vergence speed of the proposed algorithm is relatively rapid.

To evaluate the computation cost, we calculate the av-
erage elapsed time of the test image when different termi-
nation conditions are selected. The test results are shown in
Table 2.

The average elapsed time of the proposed algorithm
increase rapidly with the decrease of ζ. We can be seen
from the Table 2 that the proposed algorithm achieves con-
sistently lower values of the time than the other algorithms.
Considering the computational time of proposed algorithm,
these are very significant gains.

5. Conclusions

In this paper, we proposed a method for digital halftoning
through approximate global optimization of scale-related
perceived error metric, which is a new halftone technique
employed in printing systems. Research on the methods of
multiscale modeling via 2D discrete wavelet transform, on
this basis, the inter-scale modeling and intra-scale commu-
nication method of the multiscale image model are built.
The energy term is generated, which consists of bound-
ary and regional term. We applied an energy minimization

method using graph cut to calculate the minimum cut of the
arc weighted directed graph constructed at the pixel reso-
lution level. We identified the “Macaw” image and tested
the MSEV and PSNR of the proposed method. Quantita-
tive evaluation of the algorithm shows that our method is
superior to other methods in the iterations speed and lower
computation time.
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