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A Further Improvement on Bit-Quad-Based Euler Number
Computing Algorithm

Bin YAO†, Nonmember, Lifeng HE†,††a), Member, Shiying KANG†††, Xiao ZHAO†,
and Yuyan CHAO††††, Nonmembers

SUMMARY The Euler number is an important topological property in
a binary image, and it can be computed by counting certain bit-quads in
the binary image. This paper proposes a further improved bit-quad-based
algorithm for computing the Euler number. By scanning image rows two
by two and utilizing the information obtained while processing the previous
pixels, the number of pixels to be checked for processing a bit-quad can
be decreased from 2 to 1.5. Experimental results demonstrated that our
proposed algorithm significantly outperforms conventional Euler number
computing algorithms.
key words: Euler number, topological property, object feature, computer
vision, pattern recognition

1. Introduction

The Euler number of a binary image, which is defined as the
difference between the number of connected components
and that of holes in the image, is one of the most impor-
tant topological properties in a binary image [1]. The Euler
number of a binary image will not change when the image is
stretched or flexed like an elastic band. Therefore, the Euler
number is a robust feature of a binary image, and it has been
used in many applications: processing cell images in med-
ical diagnosis [2], document image processing [3], shadow
detection [4], reflectance-based object recognition [5], and
robot vision [6].

Many algorithms have been proposed for calculating
the Euler number of a binary image [7]–[11]. Among oth-
ers, there are (1) bit-quad-based algorithm proposed by
Gray [12], which calculates the Euler number by counting
certain 2× 2 pixel patterns called bit-quads and is adopted
by the famous commercial image processing tools MAT-
LAB [13]; (2) run-based algorithm [14], which calculates
the Euler number by use of the numbers of runs and the
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neighboring runs in the image; (3) labeling-based algorithm
proposed by He, Chao and Suzuki [15], which calculates the
Euler number by labeling connected components and holes
in the image; (4) an improved bit-quad-based algorithm
proposed [16], which reduces the number of pixels to be
checked for processing a bit-quad from 4 to 2; and (5) graph-
based algorithm [17], which calculates the Euler number by
use of graph theory, and only needs to check 1.875 pixels
for processing a bit-quad on average. For convenience, we
refer the algorithms proposed in Refs. [12], [14]–[17] as to
GRAY algorithm, RUN algorithm, HCS algorithm, I-GRAY
algorithm, and GT algorithm, respectively.

This paper presents a further improved bit-quad-based
algorithm for computing the Euler number in a given binary
image. By scanning image rows two by two and utilizing the
information obtained during processing the previous pixels,
the number of pixels to be checked for processing a bit-quad
can be reduced from 2 to 1.5, which leads to a more efficient
processing. Experimental results showed that our proposed
algorithm is more efficient than conventional Euler number
computing algorithms.

2. Reviews of Conventional Bit-Quad-Based Euler
Number Computing Algorithms

For an N × M-size binary image, we assume that the object
(foreground) pixels and non-object (background) pixels in a
given binary image are represented by 1 and 0, respectively.
As in most image processing algorithms, we assume that
all pixels on the border of an image are background pixels.
Moreover, we only consider 8-connectivity for object pixels
in this paper.

2.1 GRAY Algorithm

The GRAY algorithm for calculating the Euler number of a
binary image is based on counting certain 2× 2 pixel pat-
terns called bit-quads, which are shown in Fig. 1, in the im-
age. It checks whether the corresponding bit-quad is one of
patterns Q1, Q2, and Q3. Let N1, N2, and N3 be the numbers
of patterns Q1, Q2, and Q3 in a binary image, respectively.
Then, the Euler number of the image, namely E, can be cal-
culated by the following formula.

E = (N1 − N2 − 2N3)/4 (1)

For each bit-quad, the GRAY algorithm checks all of
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Fig. 1 Bit-quads for calculating the Euler number in the GRAY algo-
rithm.

the four pixels in the bit-quad. Thus, the number of pixels
to be checked for processing a bit-quad is 4.

2.2 I-GRAY Algorithm

The I-GRAY algorithm proposed in Ref. [16] is an improve-
ment on the GRAY algorithm. For processing a bit-quad[
a c
b d

]
, by use of the information about the two pixels a and

b, which can be obtained during processing the previous bit-
quad, the I-GRAY algorithm only needs to check the pixels
c and d. Thus, for the I-GRAY algorithm to process a bit-
quad, the number of pixels to be checked is 2.

3. Our Improvement

As mentioned above, by utilizing the information obtained
during processing the previous pixels, for processing a bit-
quad, the I-GRAY algorithm can avoid checking the two
pixels that have been checked during processing the previ-
ous bit-quad. However, some pixels will still be checked
repeatedly in the I-GRAY algorithm. For example, for pro-
cessing the first row in Fig. 2, we need to process the three

bit-quads

[
0 a
0 b

]
,

[
a d
b e

]
and

[
d 0
e 0

]
, where we need to

check the pixels a, b, d, and e. Then, for processing the

second row, we need to process the three bit-quads

[
0 b
0 c

]
,[

b e
c f

]
and

[
e 0
f 0

]
, where we need to check the pixels b, c,

e, and f . Thus, the pixels b and e are checked repeatedly.
The number of pixels to be repeatedly checked as men-

tioned above can be reduced by scanning image rows two
by two. For each pixel x in the scan, we check the related

six pixels, i.e.,

⎡⎢⎢⎢⎢⎢⎢⎢⎣
x X
y Y
z Z

⎤⎥⎥⎥⎥⎥⎥⎥⎦, to decide whether the two bit quads

[
x X
y Y

]
and

[
y Y
z Z

]
are the patterns to be counted or not si-

multaneously. For convenience, we denote the two bit-quads
as to BQ1 and BQ2, respectively.

When processing

⎡⎢⎢⎢⎢⎢⎢⎢⎣
x X
y Y
z Z

⎤⎥⎥⎥⎥⎥⎥⎥⎦, similar as in the I-GRAY al-

Fig. 2 An example for explaining the problem in the I-GRAY algorithm.

Fig. 3 Eight states defined in our improved algorithm.

gorithm, because the pixels x, y, and z have been checked
during processing the previous pixel in the scan, we only
need to check the pixels X, Y and Z. Obviously, there are
eight states, as shown in Fig. 3, to be considered.

Let we consider, for example, how to process in the
case S 3 (Fig. 3 (c)).

(1) If the values of all pixels X, Y and Z are 0, then

BQ1 is

[
0 0
1 0

]
and BQ2 is

[
1 0
0 0

]
, both are Q1. Moreover,

the next state to be processed will be S 1 (Fig. 3 (a));
(2) If the values of the pixels X, Y and Z are (0, 0,

1), then BQ1 is

[
0 0
1 0

]
, i.e., Q1, and BQ2 is

[
1 0
0 1

]
, i.e.,

Q3. Moreover, the next state to be processed will be S 2

(Fig. 3 (b));
(3) If the values of the pixels X, Y and Z are (0, 1, 0),

then BQ1 is

[
0 0
1 1

]
and BQ2 is

[
1 1
0 0

]
, both are not patterns

to be counted. Moreover, the next state to be processed will
be S 3 again;

(4) If the values of the pixels X, Y and Z are (0, 1, 1),

then BQ1 is

[
0 0
1 1

]
and BQ2 is

[
1 1
0 1

]
. Thus, BQ1 is not a

pattern to be counted, and BQ2 is Q2. Moreover, the next
state to be processed will be S 4 (Fig. 3 (d));

(5) If the values of the pixels X, Y and Z are (1, 0,

0), then BQ1 is

[
0 1
1 0

]
, i.e., Q3 and BQ2 is

[
1 0
0 0

]
, i.e.,

Q1. Moreover, the next state to be processed will be S 5

(Fig. 3 (e));
(6) If the values of the pixels X, Y and Z are (1, 0, 1),

then BQ1 is

[
0 1
1 0

]
and BQ2 is

[
1 0
0 1

]
, both are Q3. More-
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Fig. 4 State transition diagram.

over, the next state to be processed will be S 6 (Fig. 3 (f));
(7) If the values of the pixels X, Y and Z are (1, 1, 0),

then BQ1 is

[
0 1
1 1

]
and BQ2 is

[
1 1
0 0

]
. We know that BQ1

is Q2 and BQ2 is not a pattern to be counted. The next state
to be processed will be S 7 (Fig. 3 (g));

(8) Lastly, if the values of the pixels X, Y and Z are

(1, 1, 1), then BQ1 is

[
0 1
1 1

]
and BQ2 is

[
1 1
0 1

]
, both are

Q2. Moreover, the next state to be processed will be S 8

(Fig. 3 (h)).
The state transition for case S 3 is shown in Fig. 4.

Other cases can be analyzed in a similar way.
Thus, after processing the image, we can obtain the

numbers of the patterns Q1, Q2 and Q3, i.e., N1, N2, and
N3, respectively. Then, the Euler number can be calculated
by the formula (1) easily.

In our implementation, for an N × M-sized binary im-
age, the pseudo codes for processing cases, for example, S 1,
S 2 and S 3 in our algorithm for processing row y (1 ≤ y < M)
can be described as follows, where x is initialized to 1. Be-
cause all pixels in the border are background pixels, we will
begin our processing from state S 1.
S 1:

x increases 1;
if x ≥ N, go to process the (y + 2)th row if any;
if X = 1

if Y = 1
if Z = 1, go to case S 8;
else N1 increases 1, go to case S 7;

else
N1 increases 1;
if Z = 1, N1 increases 1, go to case S 6;
else go to case S 5;

else
if Y = 1

N1 increases 1;
if Z = 1, go to case S 4;
else N1 increases 1, go to case S 3;

else

if Z = 1, N1 increases 1, go to case S 2;
else go to case S 1;

end of if
S 2:

x increases 1;
if x ≥ N, go to process the (y + 2)th row if any;
if X = 1

if Y = 1
if Z = 1, N2 increases 1, go to case S 8;
else N3 increases 1, go to case S 7;

else
N1 increases 1;
if Z = 1, go to case S 6;
else N1 increases 1, go to case S 5;

else
if Y = 1

N1 increases 1;
if Z = 1, N2 increases 1, go to case S 4;
else N3 increases 1, go to case S 3;

else
if Z = 1, go to case S 2;
else N1 increases 1, go to case S 1;

end of if
S 3:

x increases 1;
if x ≥ N, go to process the (y + 2)th row if any;
if X = 1

if Y = 1
N2 increases 1;
if Z = 1, N2 increases 1, go to case S 8;
else go to case S 7;

else
N3 increases 1;
if Z = 1, N3 increases 1, go to case S 6;
else N1 increases 1, go to case S 5;

else
if Y = 1

if Z = 1, N2 increases 1, go to case S 4;
else go to case S 3;

else
N1 increases 1;
if Z = 1, N3 increases 1, go to case S 2;
else N1 increases 1, go to case S 1;

end of if
Other cases can be processed in a similar way.
In our implementation method, instead of state vari-

ables, we use states transition to avoid accessing pixels re-
peatedly, and the information of checked pixels does not
need to be stored. Therefore, for processing two bit-quads
in a process, we only need to check three pixels.

According to the above analysis, for checking two bit-
quads, we only need to check three pixels. In other words,
for processing a bit-quad, the number of pixels to be checked
in our improvement will be 3/2 = 1.5 pixels, smaller than
that in the I-GRAY algorithm, which is 2.
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4. Experimental Results

In the experiments, we compared our proposed algorithm
with the RUN algorithm, the HCS algorithm, the I-GRAY
algorithm, and the GT algorithm. All algorithms used for
our comparison were implemented in the C language on a
PC-based workstation (Intel Core i5-3470 CPU@3.20 GHz,
4 GB Memory, Ubuntu Linux OS), and compiled by the
GNU C compiler (version 4.6.1) with the option –O3.

Images used for testing were composed of artificial im-
ages, natural images, texture images, and medical images.

Artificial images consist of specialized patterns (stair-
like, spiral-like, saw-tooth-like, checker-board-like, and
honeycomb-like connected components) and noise images.
Forty-one noise images of each of five sizes (128× 128,
256× 256, 512× 512, 1024× 1024, and 2048× 2048 pixels)
were used for testing (a total of 205 images). For each size,
the 41 noise images were generated by thresholding of the
images containing uniform random noise with 41 different
threshold values from 0 to 1000 in steps of 25. Because con-
nected components in such noise images have complicated
geometric shapes and complex connectivity, severe evalua-
tions of algorithms can be performed with these images.

Natural images were obtained from the Standard Im-
age Database (SIDBA) developed by the University of To-
kyo†, and the image database of the University of Southern
California††. The textural images were downloaded from
the Columbia-Utrecht Reflectance and Texture Database†††,
and the medical images were obtained from a medical image
database of the University of Chicago.

All experimental results presented in this section were
obtained by averaging of the execution time for 5000 runs.

4.1 Execution Times versus Image Sizes

We used all noise images to test the linearity of the execution
time versus image sizes. The results are shown in Fig. 5.
We can find that both the maximum execution times and
the average execution times of the four algorithms have the
ideal linear characteristics versus image sizes. For either the
maximum execution time or the average execution time, that
of our algorithm is much smaller than that of any of the other
four algorithms.

4.2 Execution Times versus Densities of Images

Noise images with a size of 1024× 1024 pixels were used
for testing the execution time versus the density of the fore-
ground pixels in an image. The results are shown in Fig. 6.
We can find that our proposed algorithm is much more effi-
cient than any of other conventional algorithms.

†http://sampl.ece.ohiostate.edu/data/stills/sidba/index.htm
(June 2010)
††http://sipi.usc.edu/database/ (September 2012)
†††http://www1.cs.columbia.edu/CAVE/software/curet/

(September 2012)

Fig. 5 Execution time (ms) versus the size of an image.

Fig. 6 Execution time (ms) versus the density of the foreground pixels in
an image.

Table 1 Maximum, mean, and minimum execution times (ms) on vari-
ous types of images.

4.3 Comparisons in Terms of the Maximum, Mean, and
Minimum Execution Times on Various Types of Im-
ages

Natural images, medical images, texture images, and ar-
tificial images with specialized shape patterns (stair-like,
spiral-like, saw-tooth-like, checker-board-like, and honey
comb-like connected components) were used for this test.
The results of the comparisons are shown in Table 1. From
Table 1, we can find that for all types of images, our pro-
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posed algorithm is much more efficient than any of other
algorithms for the maximum execution time, the average ex-
ecution time, and the minimum execution time.

5. Conclusion

In this paper, we presented a further improvement on the
bit-quad-based algorithm for calculating Euler number in bi-
nary images. In our proposed algorithm, by scanning image
rows two by two and utilizing the information obtained dur-
ing processing the previous pixel, our proposed algorithm
can further reduce the number of pixels to be checked for
processing a bit-quad. Experimental results on various types
of images demonstrated that our proposed algorithm outper-
formed conventional Euler number computing algorithms.

In principle, if we process more rows simultaneously,
the number of pixels to be checked for processing a bit-quad
can be further reduced. However, to do that, we need to con-
sider more states; thus, the implementations will be much
more complicated, and the efficiency will be reduced. For
future work, we will extend our method to process more
rows simultaneously, and find the optimal number of rows
for processing.
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