
756
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.3 MARCH 2016

LETTER

Adaptive Weighting of Structural Dependency and Textual
Similarity in Software Architecture Recovery

Jae-Chul UM†, Ki-Seong LEE†, Nonmembers, and Chan-Gun LEE†a), Member

SUMMARY Software architecture recovery techniques are often
adopted to derive a module view of software from its source code in case
software architecture documents are unavailable or outdated. The module
view is one of the most important perspectives of software architecture.
In this paper, we propose a novel approach to derive a module view by
adaptively integrating structural dependency and textual similarity. Our ap-
proach utilizes Newman modularity and Shannon information entropy to
determine the appropriate weights of the dependencies during the integra-
tion. We apply our approach to various open-source projects and show the
experimental results validating the effectiveness of the approach.
key words: software architecture recovery, module view, dependency, New-
man modularity, information entropy

1. Introduction

Software consists of a set of modules which are the func-
tional and structural units. Because a software module re-
flects the original developers’ design purposes the analysis
of software modules is considered an essential step to un-
derstand and maintain the software.

One of the most popular techniques used for software
architecture’s module view recovery (module view recovery
hereafter) is software clustering. In this technique, various
dependencies between modules are extracted and the most
similar files/classes are grouped together. Nowadays various
clustering methods and software dependencies for module
view recovery are studied in the field of software reengi-
neering. Due to its usefulness, the research on this topic has
been actively pursued [12].

Recent studies show that the structural dependency and
textual (also called semantic) similarity are useful in deriv-
ing module views [8], [10]. Unfortunately, most of the pre-
vious approaches are limited to considering either the struc-
tural dependency or the textual similarity exclusively or rely
on ad-hoc schemes to integrate them. Note that the struc-
tural dependency alone may not be enough to figure out de-
velopers’ full intentions regarding the modules and their re-
lationships. It turns out that the textual similarity is very
effective to supplement the structural information and cap-
tures different aspects of relationships between the software
modules, thus it helps to derive a more accurate module
view [10]. However, it should be noted that the quality of

Manuscript received July 22, 2015.
Manuscript revised November 9, 2015.
Manuscript publicized December 15, 2015.
†The authors are with School of Computer Science and Engi-

neering, Chung-Ang University, Seoul, South Korea.
a) E-mail: cglee@cau.ac.kr (Corresponding author)

DOI: 10.1587/transinf.2015EDL8160

textual information varies significantly from one software
project to another.

In this paper, we propose a novel approach to automat-
ically derive the module views by adaptively utilizing both
structural dependency and textual similarity. Our approach
does not require ad-hoc settings for the weights of the struc-
tural and textual information. The proposed algorithm can
determine the appropriate weights of the structural and the
textual information by inspecting their quality.

The rest of our paper is composed as follows. Section
2 explains the sources of the dependencies and summarizes
recent related works in this area. We propose our approach
in Sect. 3 and present its rationale. Section 4 presents ex-
perimental results and analyzes the performance of the ap-
proach. Section 5 summaries the paper and presents the fu-
ture work.

2. Related Work

The structural dependency [15] has been the most frequently
utilized information for module view recovery in the litera-
ture. The structural dependency captures various code rela-
tionships such as references, inheritances, shared variables
and parameters, and method calls.

The textual similarity [1] is extracted from the textual
information represented in the source code such as com-
ments, method names, class names, and variable names. The
raw textual information is typically refined by the document
analysis methods like LSI (Latent Semantic Indexing) and
LDA (Latent Dirichlet Allocation).

Recently a few approaches trying to integrate multi-
dimensional information for module view recovery are pro-
posed. Patel’s study [6] uses static analysis first to extract
structural dependency and refines the dependency using the
dynamic analysis. Garcia et al. [10] combine structural and
textual properties to construct feature vectors of software
entities. They demonstrated that such combinational de-
pendencies can improve the performance of architectural
recovery. Bavota et al. [8] also proposed combined use of
structural and semantic dependencies with weights to de-
rive module views. Their scheme is based on both struc-
tural and semantic coupling metrics, which are based on the
number of method invocations and the cosine similarity be-
tween classes, respectively. Lutellier et al. [16] emphasized
that quality of dependencies may affect the accuracy of the
architecture recovery result.

We argue that none of the aforementioned approaches

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers



LETTER
757

provides an automatic scheme to determine the weights of
the dependencies, which is essential in practice. We propose
an adaptive method to combine the information by consid-
ering the quality of the dependencies.

3. Extraction and Integration of Dependency Informa-
tion

Figure 1 illustrates our approach proposed for the adaptive
integration of the structural dependency and the textual simi-
larity. By utilizing the Newman modularity and the informa-
tion entropy, our approach integrates both structural and tex-
tual information and calculates the complex dependency. A
clustering algorithm accepts this complex dependency and
generates the module views for the software. The details are
explained in the following.

Software dependencies and similarities are typically
represented as DSM (Design Structure Matrix). Depending
on the clustering granularity, the entities of software can be
classes, files, and packages, etc. In this paper, we consider
each file as a software entity for clustering.

Mstr =

F1 F2 F3 F4
F1
F2
F3
F4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 1 0
0 0 1 0
0 0 0 1
0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

• Structural Dependency: For representing structural de-
pendency in Fig. 1, we define a DSM called Mstr. Mstr in (1)
shows an example of DSM consisting of four entities F1,
F2, F3, and F4. In case there exists a dependency from an
entity Ei to Ej, then the corresponding row i and column j
will have value 1 or 0 otherwise. Typical factors selected in
the literature contributing to the dependency include method
calls, class inheritances, implementations of the same inter-
face class, and object references.
• Textual Similarity: Textual similarity in Fig. 1 is ex-
tracted by following the process Fig. 2. It is a common pro-
cess to calculate similarity between documents in the field
of information retrieval, and a similar process is applied to
software source code. Method names, variable names, class
names, package names, comments, and etc. can contribute
to software textual similarity. Stemming reduces words into
their basic roots or stems so that the variations on a word can
be handled effectively. Then, a term by document matrix is
calculated through the tf-idf (term frequency-inverse docu-
ment frequency) treatment. The matrix is further processed
by LSA (Latent Semantic Analysis). LSA is adopted to re-
veal inherent relationships between entities and it uses SVD
(Singular Value Decomposition) technique. Such latent se-
mantic processing is essential in clustering textual similar-
ity. For example, the modules corresponding to database
system may contain seemingly different text information
such as transaction, concurrency, SQL, and lock. The la-
tent semantic processing can reveal their relationships and
help to group them in a same cluster. In the end, by apply-
ing cosine similarity to source file vectors, textual similarity

Fig. 1 The proposed integration process

Fig. 2 The extraction process of textual similarity

between all source files is extracted from the term-by-file
matrix.
• Newman Modularity: Newman modularity [14] in Fig. 1
is calculated as shown in (2). In this paper, we rely on this
metric to measure the modularity of the given structural de-
pendency information.

Q =
1

2m

∑
i j

(
Ai j − kik j

2m

)
δ(ci, c j) (2)

where m is the number of all edges, Ai j is the weight from
node i to j, ki is the number of edges linked to node i.
δ(ci, c j) is set to 1 in case the two nodes ci and c j are clus-
tered to the same group and 0 otherwise. In our case, A,
node, and ki correspond to dependency matrix, file, and de-
gree of ith file, respectively.
• LDA-based Information Entropy: For the LDA-based
information entropy in Fig. 1, we adopt Shannon’s infor-
mation entropy to quantify its quality. As shown in (3)
and (4), we utilize the topic model to compute the infor-
mation entropy of each file. The topic model is based on a
theory stating that some words in a document probabilis-
tically represent the document itself and all words in the
document are defined as random variables of the topics.
Specifically, LDA was chosen to derive random variables
based on the topic model. LDA selects the words following
Poisson and Dirichlet distributions and calculates the condi-
tional probability of the topics [7]. For the experiments, we
use Mallet [13] implementing LDA.



758
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.3 MARCH 2016

q
dj

ti =
p

dj

ti
n∑

k=1

pdk
ti

(3)

D(ti) =

n∑
k=1

−qdk
ti × log

(
qdk

ti

)

log n
(4)

In the above, (3) and (4) are the information entropy of the
topics defined in [18]. p

dj

ti represents the document-topic
probability distribution for the topic i and document j. Sim-
ilarly q

dj

ti represents the topic-document probability distri-
bution. n is the number of documents. Note that the in-
formation entropy of the i-th topic D(ti) is normalized. We
calculate the quality of the textual information as shown in
(5) by considering all D(ti) where N is the number of topics.

D =

N∑
i=1

D(ti)

N
(5)

• Weight Estimation and Complex Dependency: Using
both Newman modularity and LDA-based information en-
tropy, we perform weight estimation presented in Fig. 1. In
this step, we integrate the structural and textual information
to determine a complex dependency. An Eq. (6) shows how
to compute the complex dependency. A complex depen-
dency matrix M is consist of two part, a weighted Mstr and a
weighted Msem where Mstr is a structural dependency matrix
and Msem is a textual similarity matrix.

M = Q × Mstr +min

(
1,

D
Q

)
× Msem (6)

In (6), Q is Newman modularity and D is quality of the tex-
tual information. Note that, in weighted Msem, we take the
minimum of one and the ratio of D to Q to limit the maxi-
mum weight for the textual information to one.

4. Experiments and Evaluation

Our implementation uses Blondel’s graph clustering [17],
Bunch [4], and BorderFlow graph clustering [2] to derive
module views of the software automatically. We have cho-
sen the Blondel’s graph clustering due to its popularity and
effectiveness in community detection for large scale graph.
The Bunch clustering algorithm derives software decompo-
sitions with the maximum cohesion and the minimum cou-
pling by utilizing the MQ [4]. In numerous past studies on
software architecture recovery, the Bunch was one of the
most frequently cited tools. The BorderFlow graph clus-
tering has been successfully applied in the area of concept
location in recent studies. None of these three algorithms
needs to specify the number of clusters to be found. In addi-
tion, the fact that their implementations are all available to
public would facilitate the reproduction of our experimental
results [3], [5], [9].

In order to evaluate the module views from those clus-
tering algorithms, we utilize recently published ground-truth
data and a metric designed to compare two module views.
Garcia et al. [12] proposed a systematic process for recov-
ering the module view of software manually and published
the module views of Apache Hadoop, Apache OODT, and
ArchStudio. We shall use them as ground-truth results in
our experiments. MoJoFM [11] is used to measure the sim-
ilarity degree between the ground-truth and a given module
view.

We performed experiments on various configurations
to compare with our approach as shown in Table 1. M rep-
resents the weighted integration method proposed in the pre-
vious section. STR is a method utilizing only structural de-
pendency, while SEM utilizes only textual one. We assigned
fixed weights to C1, C2, . . . , and C13 to observe how the
performance is varied on different settings.

Table 2 shows the average MoJoFM values obtained
from 100 runs for each combination of clustering algorithms
and weighting methods. Since MoJoFM value measures the
similarity degree between a module view and its ground-
truth, the higher means the better. In the table, MoJoFM
values in boldface represent the maximum in each case.

Our proposed method performs the best in 6 out of

Table 1 Weights of various approaches

Table 2 Average MoJoFM(%) of clustering results



LETTER
759

the total 9 cases. Especially, it derives the module views
most similar to the ground-truth for the all projects when the
BorderFlow clustering is adopted. It should be noted that
our method provides consistently good results even when it
is not the best. In the cases of ArchStudio with Blondel’s
clustering, OODT with Bunch, and ArchStudio with Bunch,
the proposed method ranks 4th, 2nd, and 6th, respectively.

Most importantly, the proposed weighting method pro-
vides better performance than STR and SEM, where either
structural dependency or textual similarity is exclusively uti-
lized, in every case. In a recent study [11], nine differ-
ent architecture recovery techniques for various open source
projects are compared. The best MoJoFM values for OODT,
Hadoop, and ArchStudio are reported as 48%, 63%, and
88%, respectively. The experimental results show that our
approach based on Blondel’s graph clustering outperforms
the state-of-the art techniques for OODT and Hadoop.

Our experimental results support the idea of integrat-
ing structural dependency and textual similarity to achieve
better performance of the module view recovery. In addi-
tion, the integration weights can be determined adaptively
by considering the quality of dependencies.

5. Conclusion and Future Work

In this paper, we proposed an adaptive approach to integrate
structural dependency and textual similarity information in
deriving a software module view. Our approach utilizes
both dependencies to achieve better performance and deter-
mines the combination weights automatically by analyzing
their quality. The experiment results show that our proposed
method is effective in deriving the module view for software
architecture recovery.

For future work, we are planning to perform experi-
ments with more software projects with ground-truth data
and extend our approach to God class detection. In addi-
tion, a mechanism and the effect of adding evolutionary de-
pendency into our approach will be investigated.

Acknowledgments

This research was supported by the National Research Foun-
dation (NRF-2014R1A2A2A01005519) and the MSIP un-
der the ITRC (Information Technology Research Center)
support Program (IITP-2015-H8501-15-1012) supervised

by the IITP, Korea.

References

[1] A. Kuhn, S. Ducasse, and T. Girba, “Semantic clustering: Identify-
ing topics in source code,” Information and Software Technology,
vol.49, no.3, pp.230–243, 2007.

[2] A.N. Ngomo, F. Schumacher, “BorderFlow: a local graph cluster-
ing algorithm for natural language processing,” Proc. CICLing 10th
International Conference, pp.547–558, 2009.

[3] BorderFlow, http://sourceforge.net/projects/borderflow/
[4] B.S. Mitchell and S. Mancoridis, “On the automatic modularization

of software systems using the Bunch tool,” IEEE Trans. Softw. Eng.,
vol.32, no.3, pp.193–208, 2006.

[5] Bunch, https://www.cs.drexel.edu/∼spiros/bunch/
[6] C. Patel, A. Hamou-Lhadj, and J. Rilling, “Software clustering using

dynamic analysis and static dependencies,” Proc. European Confer-
ence on Software Maintenance and Reengineering, pp.27–36, 2009.

[7] D.M. Blei, A.Y. Ng, and M.I. Jordan, “Latent Dirichlet allocation,”
Journal of Machine Learning Research, vol.3, pp.993–1022, 2003.

[8] G. Bavota, A.D. Lucia, A. Marcus, and R. Oliveto, “Using struc-
tural and semantic measures to improve software modularization,”
Empirical Software Engineering, vol.18, no.5, pp.901–932, 2013.

[9] Gephi (Supporting Blondel’s clustering), http://gephi.github.io/
[10] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and Y. Cai,

“Enhancing architectural recovery using concerns,” Proc. Interna-
tional Conference on Automated Software Engineering, pp.552–
555, 2011.

[11] J. Garcia, I. Ivkovic, and N. Medvidovic, “A comparative analy-
sis of software architecture recovery techniques,” Proc. IEEE/ACM
28th International Conference on Automated Software Engineering,
pp.486–496, 2013.

[12] J. Garcia, I. Krka, C. Mattmann, and N. Medvidovic, “Obtaining
ground-truth software architectures,” Proc. International Conference
on Software Engineering, pp.901–910, 2013.

[13] Mallet, http://mallet.cs.umass.edu/
[14] M.E.J. Newman, “Modularity and community structure in net-

works,” Proc. National Academy of Sciences of the USA, vol.103,
no.23, pp.8577–8582, 2006.

[15] N. Sangal and V. Sinha, “Using dependency models to manage com-
plex software architecture,” Proc. ACM SIGPLAN conference on
Object-oriented programming, pp.167–176, 2005.

[16] T. Lutellier, D. Chollack, J. Garcia, L. Tan, D. Rayside, N.
Medvidovic, and R. Kroeger, “Comparing software architecture re-
covery techniques using accurate dependencies,” Proc. International
Conference on Software Engineering, 2015.

[17] V.D. Blondel et al., “Fast unfolding of communities in large net-
works,” Journal of Statistical Mechanics: Theory and Experiment,
vol.2008, 2008.

[18] Y. Liu, D. Poshyvanyk, R. Ferenc, and T. Gyimothy, “Modeling
class cohesion as mixtures of latent topics,” Proc. IEEE International
Conference on Software Maintenance, pp.233–242, 2009.


