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Nonnegative Component Representation with Hierarchical
Dictionary Learning Strategy for Action Recognition

Jianhong WANG†a), Student Member, Pinzheng ZHANG†b), and Linmin LUO†c), Nonmembers

SUMMARY Nonnegative component representation (NCR) is a mid-
level representation based on nonnegative matrix factorization (NMF). Re-
cently, it has attached much attention and achieved encouraging result for
action recognition. In this paper, we propose a novel hierarchical dictio-
nary learning strategy (HDLS) for NMF to improve the performance of
NCR. Considering the variability of action classes, HDLS clusters the sim-
ilar classes into groups and forms a two-layer hierarchical class model. The
groups in the first layer are disjoint, while in the second layer, the classes in
each group are correlated. HDLS takes account of the differences between
two layers and proposes to use different dictionary learning methods for
this two layers, including the discriminant class-specific NMF for the first
layer and the discriminant joint dictionary NMF for the second layer. The
proposed approach is extensively tested on three public datasets and the
experimental results demonstrate the effectiveness and superiority of NCR
with HDLS for large-scale action recognition.
key words: hierarchical dictionary learning strategy, nonnegative compo-
nent representation, nonnegative matrix factorization, action recognition

1. Introduction

Human action recognition in videos is one of the most ac-
tive research topics in the field of computer vision and pat-
tern recognition. The key problem for action recognition is
how to represent different action video clips effectively and
discriminatively. Bag of Visual Words (BoVW) recently
appears as the most popular approach for this representa-
tion. In this framework, features are encoded with the visual
words in codebook and a histogram of word occurrences is
used to represent a video.

However, this BoVW representation only contains
statistics of unordered visual words, the inside relationships
between different visual words have not been considered.
Recently, researchers have shown that nonnegative compo-
nent representation (NCR) can overcome these limitations
and achieve better result for action recognition [1], [2]. NCR
is a mid-level representation which extracts action compo-
nents from the low-level BoVW representation based on a
nonnegative matrix factorization (NMF). The videos are fur-
ther encoded using these action components. NCR is more
compact and discriminative than the BoVW representation.
However, it is shown in this paper that the NCR approach
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can be further improved by modifying the dictionary learn-
ing method for NMF.

Common dictionary learning methods can be roughly
divided into three categories according to the structure of the
dictionaries: (i) a single shared dictionary for all classes; (ii)
multiple class-specific dictionaries (i.e. one for each class);
(iii) a mixed approach. In the latter case, a joint dictionary is
built with one common dictionary for all classes and a class-
specific dictionary for each class. This method separates
the shared and different parts of each sample, and allows
boosting the classification performance for highly correlated
or fine-grained categories [3].

However, none of the three methods is fully suitable for
action recognition. With the growth of the dataset scale, it
becomes more complicated to learn a single shared dictio-
nary capable to well represent all classes. Meanwhile, the
differences between classes may significantly vary: some
classes are easy to separate, while some are highly corre-
lated (e.g. running and jogging). Neither class-specific dic-
tionary learning nor joint dictionary learning can perfectly
handle this complex situation. To overcome this problem,
and inspired by [4], we propose a hierarchical dictionary
learning strategy (HDLS) in this paper to learn two-layer
dictionaries. We partition the similar classes together into
new groups based on a similarity matrix. After clustering,
in the first layer, each group is disjoint from others, which
is suitable for using class-specific dictionary learning. In
the second layer, classes in each group are highly correlated
and a joint dictionary learning method is applied to suppress
the common part and amplify the individual features cor-
responding to the classes. To enhance the discrimination
power of the dictionaries, the Fisher discrimination crite-
rion is added for both learning algorithms. After dictionary
learning, a two-layer NCR is obtained and we can use a two-
layer hierarchical classifier for action recognition purpose.

The framework of our approach is illustrated in Fig. 1,
and the rest of this paper is organized as follows: Section 2
briefly introduces the nonnegative component representa-
tion (NCR). Section 3 presents the hierarchical dictionary
learning strategy (HDLS). Section 4 gives the classification
scheme for NCR with HDLS. Experiments and comparisons
with other methods are reported in Sect. 5 and Sect. 6 con-
cludes the paper.

2. Nonnegative Component Representation

Nonnegative component representation is a mid-level rep-
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Fig. 1 Flowchart of the proposed work for action recognition.

resentation. It relies on NMF to decompose the low-level
representation into a combination of nonnegative compo-
nents, which reduces the dimension of representation vec-
tor. Moreover, NMF uses nonnegative constraints, and when
compared to other matrix factorization methods, it can lead
to a part-based and intuitive representation [5].

Let Y denote the low-level representation vectors for
action videos, where each column represents one vector.
NMF aims at finding two nonnegative matrices U and V to
approximate the matrix Y: Y ≈ UV . If we consider each
column of matrix U as an action component constructed by
several correlated visual words, then U becomes the action
component dictionary, and each column of matrix V is the
new mid-level representation for the corresponding video
sample based on the dictionary U. U and V can be learned
with two iterative update algorithm [5].

3. Hierarchical Dictionary Learning Strategy

3.1 Class Clustering

The purpose of class clustering is to separate various classes
into two layers based on similarity measure, and to make
further process easier to discriminate different classes.

The similarity between two classes is measured by the
misclassification rate. We split the training data into a train
set and a validation set, and train one-against-rest SVM
model for each class based on the low-level representations.
By evaluating the models on the validation set, the confu-
sion matrix M can be obtained and the similarity matrix S
can be defined as S = (M + MT )/2.

As the number of clusters is not predefined, it is not
suitable to use standard clustering algorithm such as K-
means. We employ the Affinity Propagation (AP) tech-
nique [6] to cluster classes. AP is an exemplar-based cluster
algorithm whose input is a similarity matrix and does not
require the number of clusters. The only parameter to be
set in AP is the preference value. In our experiments, the
preference parameter of AP has been chosen larger than the
median to make sure that classes in the same group are very

similar.
After clustering, the classes form a two-layer hierarchi-

cal class model, the groups in the first layer being disjoint
while, in the second layer, classes in each group are corre-
lated.

3.2 Discriminant Class-Specific NMF

We propose the discriminant class-specific NMF (DCS-
NMF) to learn the nonnegative component dictionaries for
groups in the first layer. Firstly, let us consider the Fisher
discriminant NMF (FD-NMF) formulated as:

min
(U,V)

‖Y − UV‖2F + λ
[
tr (S W (V) − S B(V)) + η ‖V‖2F

]

s.t. U,V ≥ 0
(1)

where the second term is the Fisher discriminant term.
S W (V) is the within-class scatter matrix of V , and S B(V) is
the between-class scatter matrix of V . Based on the Fisher
criterion, a more discriminative result can be achieved by
minimizing the within-class scatter and maximizing the
between-class scatter.

To learn the class-specific dictionary for each group,
assume that U = [U1,U2, . . . ,UK] and that the data from
each group are represented only by the words from the cor-
responding dictionary. Following [7], after some derivations
from Eq. (1), we can obtain the DCS-NMF model:

min
(Ui,Vi)

K∑
i=1

[
‖Yi − UiVi‖2F + λ1 ‖Vi − Mi‖2F + λ2 ‖Vi‖2F

]

s.t. Ui,Vi ≥ 0
(2)

where λ1 = λ (1 + κi), κi = 1 − ni/n and λ2 = λ (η − κi). Yi

is the low level representation matrix for group i, Vi is the
new representation for Yi based on Ui, and Mi is the mean
vector matrix of Vi. This model can be optimized group by
group using the iterative update algorithm proposed in [5].
Multiplicative updates for Ui and Vi are given by

Ui ← Ui �
YiVT

i

UiViVT
i

(3)
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Vi ← Vi � Ui
T Yi

Ui
T UiVi + 2λ1ViPiPi

T + 2λ2Vi
(4)

where � is an element-wise product, Pi = Ini − Eni/ni, Ini is
the identity matrix of size ni, Eni = [1]ni×ni is the matrix of
size ni ∗ ni with all entries being 1.

3.3 Discriminant Joint Dictionary NMF

The discriminant joint dictionary NMF (DJD-NMF) is de-
signed to learn component dictionaries for correlated classes
in each group in the second layer. The DJD-NMF learns a
common dictionary and multiple class-specific dictionaries
simultaneously. Similar to DCS-NMF, the model of DJD-
NMF is also derived from the FD-NMF of Eq. (1). We
slightly change the form of the between-class scatter matrix

as S B(V) = 1
2

∑K
i=1
∑K

j=1, j�i

(
mi−mj

)(
mi−mj

)T
. This formu-

lation can simplify the derivation and leads to a more com-
pact result.

Let U =
[
U0, Ûi, . . . , ÛK

]
where U0 is the shared dic-

tionary and the rest sub-dictionaries are class-specific dictio-
naries. Assuming that the data are described only with the
shared dictionary and the class-specific dictionary of its own
class, we can derive the optimization of DJD-NMF from
Eq. (1) as:

min
(U0,Ûi,Vi)

K∑
i=1

[∥∥∥∥Yi −
[
U0, Ûi

]
Vi

∥∥∥∥2
F
+ λ1 ‖Vi − Mi‖2F

−λ2

K∑
j=1, j�i

∥∥∥m0
i − m0

j

∥∥∥2
2
+ λ3 ‖Vi‖2F

⎤⎥⎥⎥⎥⎥⎥⎦ s.t. U0, Ûi,Vi ≥ 0

(5)

where λ1 = λ (1 + κi), κi = (K − 1) /ni, λ2 = λ/2 and λ3 =

λ (η − κi). Define now Vi =
[
V0

i ; V̂i

]
, where V0

i and V̂i are

the coefficient matrices of class i for U0 and Ûi respectively,
and m0

i in Eq. (5) is the mean vector of V0
i .

The object function in Eq. (5) can be divided into two
sub-procedures by optimizing the dictionaries in U and the
coefficients Vi alternatively with the other one fixed.

Supposing that the dictionary U is fixed, we can com-
pute the nonnegative coefficients Vi class by class. When
updating Vi, all Vj, j � i are fixed. Since m0

i can be repre-
sented as m0

i = QiViRi, where Qi =
[
Ini ,O

]
, Ri = [1]ni×1,

then Vi can be computed with the following multiplicative
update rule:

Vi←Vi � Ui
T Yi+2λ2(K−1)Qi

T QiViRiRi
T

Ui
T UiVi+2λ1ViPiPi

T+2λ2

K∑
j=1, j�i

Qi
T Q jV jR jRi

T+2λ3Vi

(6)

Then we update the dictionaries with the coefficients fixed.
We first compute the class-specific dictionaries {Ûi}Ki=1 class
by class and after that we update the shared dictionary U0.
With the Vi and U0 fixed, the optimization of class-specific
dictionary Ûi reduces to the following problem:

min
(Ûi)

∥∥∥Yi − U0V0
i − ÛiV̂i

∥∥∥2
F

s.t. Ûi ≥ 0 (7)

After all the class-specific dictionaries {Ûi}Ki=1 have been up-
dated, fixing Vi and Ûi, Eq. (5) could be formulated as fol-
lows in order to update U0:

min
(U0)

K∑
i=1

∥∥∥∥
(
Yi − ÛiV̂i

)
− U0V0

i

∥∥∥∥2
F

s.t. U0 ≥ 0 (8)

Equation (8) can be further written as:

min
(U0)

∥∥∥Y0 − U0V0
∥∥∥2

F
s.t. U0 ≥ 0 (9)

where V0 =
[
V1

0, . . . ,VK
0
]
, Y0 =

[
Y1 − Û1V̂1, . . . ,YK −

ÛKV̂K
]
. Both Eq. (7) and Eq. (9) are the standard form of

NMF with coefficients fixed. Therefore, they can be opti-
mized with the multiplicative update rule used for standard
NMF.

4. Classification Scheme

Based on our hierarchical dictionary learning approach, a
two-layer hierarchical classifier is built for classification.
The first-layer classifier allows defining the group label of
the sample, and the second-layer classifier predicts which
class in such group this sample belongs to.

For the first layer, as the groups are disjoint to each
other and relatively easy to separate, we simply use the re-
construction error and the distance between the representa-
tion vector and the mean vector as the classification met-
ric. Define the query sample as y, and the representation of
y over dictionary Ui as α̂i. The metric function over each
class-specific dictionary can be defined as:

ei = ‖y − Uiα̂i‖22 + ω ‖α̂i − mi‖22 (10)

whereω is the tradeoff parameter to balance the contribution
of the two terms. The first layer will allocate y to the group
that yields the smallest ei.

For the second layer, considering that the classes in
each group are correlated, we follow the classification
scheme reported in [3] to get a more discriminative clas-
sifier. For a group i with Ki classes, Samples are try-
ing to be represented over Ki different dictionaries U(i)

j =[
U(i)

0 , Û
(i)
j

]
, j = 1, . . . ,Ki. Therefore, we train Ki multi-

class linear SVM models for the Ki different component rep-
resentations. The final decision for the second layer is ob-
tained by means of an equal voting scheme using the outputs
of the Ki SVM models.

5. Experiments

5.1 Dataset and Experimental Setup

We evaluated the proposed method on three popular large-
scale human action datasets: UCF50 [8], HMDB51 [9] and
UCF101 [10]. All three datasets are complicated and in-
clude a number of different categories. For a fair comparison
of results, the experimental settings selected in the original
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papers [8], [9] and [10] were kept for UCF50, HMDB51 and
UCF101 respectively.

Considering the success of the dense trajectory [11] in
action recognition, we adopted three features HOG, HOF
and MBH based on dense trajectory as low level features
in our experiments. We employed the localized soft assign-
ment [12] for low-level descriptor encoding. Localized soft
assignment shows better accuracy than vector quantization
and can keep the encoding results nonnegative, which is im-
portant for the NMF. The codebook size was set to 4000 for
low-level features.

5.2 Evaluation of NCR with HDLS

We adopted the BoVW representation, the NCR with shared
dictionary (NCR with SD) and the NCR with class-specific
dictionaries (NCR with CSD) as baselines to evaluate our
proposed NCR with HDLS. The BoVW representation is
the most popular low-level representation method, and it is
the basis for NCR. NCR with SD learns a single shared
dictionary for all classes. Both BoVW and NCR with SD
make use of SVM for classification. NCR with CSD relies
on class-specific dictionaries for every class and follows the
classification method introduced in Sect. 4 for the first layer
of HDLS.

Table 1, Table 2 and Table 3 report the comparison
results on UCF50, HMDB51 and UCF101 datasets respec-
tively. The following observations can be drawn when an-
alyzing these experimental results. First, by comparing the
results of three NCR methods on the three datasets, we can
observe that the proposed HDLS performs better than the
other two common dictionary learning methods. This shows
that the proposed hierarchical processing strategy and the

Table 1 Comparison of NCR with HDLS and other methods with differ-
ent low-level features on UCF50

HOG MBH
BoVW 78.3% 83.4%
NCR with SD 79.6% 85.2%
NCR with CSD 80.1% 86.1%
NCR with HDLS 82.6% 88.7%

Table 2 Comparison of NCR with HDLS and other methods with differ-
ent low-level features on HMDB51

HOG MBH
BoVW 37.3% 46.5%
NCR with SD 38.6% 48.1%
NCR with CSD 39.1% 48.9%
NCR with HDLS 40.9% 52.2%

Table 4 Comparison of our method with state-of-the-art methods

UCF50 HMDB51 UCF101
Sadanand et al. [13] 57.9% Sadanand et al. [13] 26.9% Soomro et al. [10] 43.9%
Reddy et al. [8] 76.9% Wang et al. [14] 42.1% Karpathy et al. [15] 63.3%
Wang et al. [14] 78.4% Shi et al. [16] 47.6% Wu et al. [17] 84.2%
Shi et al. [16] 83.3% Wang et al. [11] 57.2% Wang et al. [11] 85.9%
Wang et al. [11] 91.2% Hou et al. [4] 57.9% Hou et al. [4] 87.0%
Our Method 92.4% Our Method 58.3% Our Method 87.6%

proposed two NMF based dictionary learning algorithms for
two layers can increase the discrimination ability of dictio-
nary and improve the recognition accuracy. Second, we no-
tice that the improvement brought on the UCF101 dataset by
our approach is larger than the benefit obtained on the other
datasets. This demonstrates that the proposed approach is
more suitable for large-scale and complex situations. Third,
all three NCR methods have higher accuracies than BoVW,
This exemplifies that the mid-level component representa-
tion is more compact and effective than the low-level BoVW
representation. The study on four methods demonstrates the
effectiveness of our approach for large-scale action recogni-
tion.

5.3 Comparison with State-of-the-Art Methods

We fused three low-level features (HOG, HOF and MBH)
at the component representation level and compared our
combination results with some recent attempts reported in
the literature on UCF50, HMDB51 and UCF101 datasets.
The comparison result is listed in Table 4. We can observe
that our method leads to a better performance on all three
datasets. The improvement brought by our method over the
state-of-the-art ones is equal to 1.2% on the UCF50 dataset,
0.4% on the HMDB51 dataset and 0.6% on the UCF101
dataset.

6. Conclusion

This paper proposes a novel hierarchical dictionary learning
strategy (HDLS) for NCR to overcome the limitations of tra-
ditional dictionary learning methods for action recognition.
HDLS processes disjoint classes and correlated classes sep-
arately in order to face the high variability of action types.
It firstly clusters the similar classes into groups and forms
a two-layer hierarchical class model. Then, HDLS takes
account of the different properties in the two layers using
different algorithms for dictionary learning. This approach
has been extensively tested on three large-scale datasets us-
ing different low-level features and compared with other
NCR and state-of-the-art methods. The experimental results

Table 3 Comparison of NCR with HDLS and other methods with differ-
ent low-level features on UCF101

HOG MBH
BoVW 69.2% 73.9%
NCR with SD 71.1% 76.2%
NCR with CSD 72.7% 78.1%
NCR with HDLS 75.4% 82.3%
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demonstrate the effectiveness and superiority of NCR with
HDLS for large-scale action recognition.
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