IEICE TRANS. INF. & SYST., VOL.E99-D, NO.2 FEBRUARY 2016

537

[LETTER

An Optimization Strategy for CFDMiner: An Algorithm of
Discovering Constant Conditional Functional Dependencies

Jinling ZHOU'?, Xingchun DIAO", Jianjun CAO'", Nonmembers, and Zhisong PAN™, Member

SUMMARY Compared to the traditional functional dependency (FD),
the extended conditional functional dependency (CFD) has shown greater
potential for detecting and repairing inconsistent data. CFDMiner is a
widely used algorithm for mining constant-CFDs. But the search space
of CFDMiner is too large, and there is still room for efficiency improve-
ment. In this paper, an efficient pruning strategy is proposed to optimize
the algorithm by reducing the search space. Both theoretical analysis and
experiments have proved the optimized algorithm can produce the consis-
tent results as the original CFDMiner.

key words: Data Quality, conditional functional dependency, free itemset,
closed itemset, frequent itemset

1. Introduction

Traditional functional dependency (FD) is proposed to guar-
antee the data consistency in business information systems.
However, FD is not enough to fully reflect the consistency
in data, and its form is too limited to express various de-
pendency rules[1]. In recent years, the conditional func-
tional dependency (CFD) extends from FD by adding the
constant patterns reflecting the semantics in data, which has
shown greater potential for detecting and repairing inconsis-
tent data [2], [3].

FDs or CFDs are usually set up by domain experts
through manual work. However, such an artificial approach
cannot meet the demands of the Data Quality Management
due to the increase of database scale and the improvement
of real-time requirements. Algorithms for auto-discovering
dependency rules from data are essential to check the data
consistency.

CFDMiner is proposed by Wenfei Fan et al, which
is the most popular algorithm for discovering constant
CFDs. CFDMiner is more efficient than other similar al-
gorithms [1]. Because it discovers constant CFDs from the
free itemsets and closed itemsets, which are two classes
of specific frequent itemsets. Even so, there is still room
for efficiency improvement of CFDMiner. Past studies fo-
cus on just generating effective candidate free and closed
itemsets to reduce the search time for CFDs [4]. However,

Manuscript received August 3, 2015.
Manuscript revised October 12, 2015.
Manuscript publicized November 6, 2015.

"The authors are with College of Command Information
Systems, PLA University of Science and Technology, Nanjing,
210007, China.

"'The authors are with PLA University of Science and Technol-
ogy, Nanjing, 210007, China.
a) E-mail: kinringchow @yahoo.com
b) E-mail: hotpzs @hotmail.com
DOI: 10.1587/transinf.2015EDL8170

this method is limited to improve the efficiency of CFD-
Miner, for even generating all free and closed itemsets is
fast enough in some efficient algorithms, such as GcGrowth
and so on [5]-[7].

In this paper, a more efficient optimization strategy
(pruning on free itemsets) are proposed to reduce the search
space of CFDMiner and improve its computational effi-
ciency. Firstly, it is proved in theory that the consistent
results can be generated after reasonable pruning of CFD-
Miner. Experiments show that the optimized algorithm has
a smaller search space and less search time.

2. Discovering Constant CFDs

Consider a relation R over a set of attributes, denoted by
Attr(R) = {A,A,,---A,,}. For each attribute A; €Attr(R),
i =1,2,---m, we use Dom(4;) to denote its domain. Let
t[A;] be the projection of the tuple ¢ on attribute A;.
Definition 1 (CFDs) A conditional functional dependency
(CFD) ¢ over R is a pair (X — A,1,)[8], where (1) X is
a set of attributes in Attr(R), and A is a single attribute in
Attr(R), (2) X — A is a standard functional dependency
(FD), referred to as the FD embedded in ¢, and (3) ¢, is a
pattern tuple with attributes in X and A, where for each B in
X U {A}, t,[B] is either a constant value in Dom(B), or an
unnamed variable ‘_’ that draws values from Dom(B).

We denote X as LHS(¢) and A as RHS(¢). The X and
A attributes in a pattern tuple is separated with ‘|’. Given
an instance / over a relation R, a CFD ¢ is satisfied by the
instance I, denoted by [E ¢.
Definition 2 (CCFDs) A CFD is a constant conditional
functional dependency (CCFD) if its pattern tuple #, con-
sists of constants only.
Examples Here are some CFDs that hold in Table 1.

o : ([CC,ZIP] —» STR, (44, _|)

Table 1 An example instance of the customer relation from [8]. NM
stands for name, PN for phone number, CC for country code, AC for area
code, STR for street, CT for city, and ZIP for zip code.

NM PN CC | AC STR CT 1P
t1 | Mike | 11111 01 908 | Tree Ave MH 07974
t | Rick | 11111 01 908 | Tree Ave | MH 07974
2] Joe 22222 | 01 212 Sth Ave NYC | 01202
1y Jim 22222 | 01 908 Elm Str MH 07974
t5 Ben 33333 | 44 131 High St EDI EH4
1 Tan 44444 | 44 131 High St EDI EH4
t7 Ian 44444 | 44 | 908 Port PI MH WI1B
tg | Sean | 22222 | Ol 131 3rd Str UN 01202

Copyright © 2016 The Institute of Electronics, Information and Communication Engineers

538

o1 : (ICC,AC] — CT, (01,908 || MH))
¢ : ([CC,AC] — CT, (44,131 || EDI))
@3 : ([CC,AC] — CT, (44,131 || NYC))

CFDs specify the specific cases of an FD in a dataset
or some conditions where FD holds in parts of a dataset.
¢1 ~ @3 are CCFDs, and ¢y is a variable CFD (VCFD).

This paper mainly focus on CCFDs. For a more de-
tailed discussion of CFDs, refer to [2], [8], [9].

Definition 3 (Non-trivial, non-redundant, k-frequent
CCFDs [9]) For a CCFD: ¢ = (X — A,f,): (1)if A ¢ X,
then ¢ is non-trivial, otherwise it is trivial; (2) if whenever
I'E @ and] £ (Y — A, ([Y] || 2,[A])) for any proper
subset Y C X, then ¢ is non-redundant, or it is redundant;
(3) All the tuples matching the CCFD ¢ in I constitute a
set, denoted by supp(¢p, I). If the number of tuples in the set
|supp(p, I)| > k, then ¢ is a k-frequent CCFD.

Definition 4 (Minimal set of CCFDs) A set of CCFDs X is
said to be minimal if Y¢ € X and ¢ is a non-trivial, non-
redundant, k-frequent CCFD.

Definition 5 (Canonical cover of CCFDs) If X is a minimal
set of CCFDs and X covers all the k-frequent CCFDs in 1,
then X is the (k-frequent) canonical cover of CCFDs.
Definition 6 (The discovery of CCFDs) The discovery of
CCFDs is to discover the (k-frequent) canonical cover of
CCFDs in an instance 1.

The first and most popular algorithm for discover-
ing CCFDs, CFDMiner is shown in Algorithm 1, refer to
[2], [8] and [9] for more details. It discovers CCFDs based
on the cover of free and closed itemsets, which are two spe-
cific kinds of frequent itemsets. The definition of free and
closed itemsets will be given in the next section, for they are
also very important concepts for the following optimization
strategy.

3. Pruning Stategy and Optimized CFDMiner

Free itemsets and closed itemsets are two important con-
cepts for CFDMiner and our optimization (pruning) strat-
egy. To make it easier to understand CFDMiner and follow
the upcoming optimization, definitions of free and closed
itemsets are given.
Definition 7 (Itemsets and support) An itemset is a pair
(X, 1,), where X C Attr(R) and 7, is a constant pattern over
X. Given an instance I of R, we use notation of supports,
and denote by supp ((X, 1), I) the support of (X,#,)in I, i.e.,
the set of tuples in / that matches 7, on the X-attributes.
The concept of “itemset” here is in keeping with the
requent itemsets” in “Association Rules Mining”. In fact,
the CCFDs are a kind of special association rules (with
100% confidence).
Definition 8 (Free and closed itemsets) Given (X, ¢,) and
(Y, sp), we say that (¥, s,,) is more general than (X, ¢,) ((X,)
is more specific than (Y, s,)), denoted by (X,1,) < (¥, s,),
or (Y;s,) > (X,t,), if ¥ ¢ X and 5, = ¢,[Y]. Ob-

viously, supp ((¥,s,),1) 2 supp((X.1,).1). (1) (X,1,) is
called free if A(Y,s,) > (X,t,) and supp((Y,s,,),I) =

113

IEICE TRANS. INF. & SYST., VOL.E99-D, NO.2 FEBRUARY 2016

Algorithm 1 CFDMiner

Input: An Instance 7 of R and a natural number k > 1.

Output: A canonical cover of k-frequent CCFDs..

1: Compute a mapping C2F that associates with each k-frequent closed
itemset in [its set of k-frequent free itemsets (using GeGrowth [5]);

2: for all k-frequent closed itemset (Y, s,,) in / do

3: Let L be the list of all free itemset in C2F;

4: forall (X,1,) € Ldo

5: Initialize RHS(X,1,) = (Y \ X, 5,[Y \ X])

6.

7

8

end for
for all (X,,) € L do
for all (X', 1,[X"]) € L such that X" c X do

9: RHS(X, 1,) =RHS(X, t,)\ RHS (X", 1,[X"])
10: end for
11: if(RHS(X, 1,) # 0)
12: Output (X — A, 1,[X] || @) for all (A, a) € RHS(X, t,)
13: end if
14: end for
15: end for

supp ((X, 1), I); (2) (X,tp) is called closed if A(Zu,) <

(X.1,) and supp ((Z up), 1) = supp((X.1,),1); (3) If there
exists a free itemset (Y, 5,,) and a closed itemset (Z, up,), and
(Y,5p) > (Zoup), supp((Y, s,),1) = supp((Z,up). 1), then
(Z, up) is the unique closed itemset that extends (Y, s,), de-
noted by clo(Y, t,) = (Z, u,).

Free itemset is sometimes called “generator” and
closed itemset is called “closure” in other publications [7],
[10]. CFDMiner discovers constant CFDs not directly from
the data, but from the cover of the free and closed itemsets.

Before the effective pruning strategy is given to opti-
mize CFDMiner, some lemmas should be proved in advance
to show that the strategy will not change the CCFDs output.
Lemma 1 For a free itemset (X, t,) and the closed itemset
clo(X,t,) = (Y, sp), if there exists a super set X" 2 X, (X', 1)),
then its closed itemset clo(X’,7,) = (Y’,s,), s,[Y" \ X'] 2
splY \ X1
Proof. Assume s’p[Y’ \ X’] 2 s,[Y \ X], we distinguish be-
tween 2 cases: (1) JA € Y\Xand A ¢ Y'\X', 5,[A] € 5,[Y'];
(2)JAeY\XandA e Y\ X', 5,[A] # 5,[A]

For case (1), we proceed as follows: Since X’ 2 X
and clo(X’,t;,) = (Y’,s’p), then we have supp(Y’,s;,) =
supp(X’,#,) C supp(X,t,) = supp(Y,s,). That is,
supp(Y’, s7,) C supp(¥; sp), then for ¥r € supp(Y’,s)), 1 €
supp(Y, s,). Since JA € Y\X and A ¢ Y'\X', s,[A] ¢ s;,[Y’],
then for V¢ € supp(Y’, s,), t € supp((Y” U A), (s},, sp[A])).
That is, supp(Y”, 57,) € supp((Y" U A), (s7,, 5p[A])).

Always supp(Y’,s),) 2 supp((Y" U A), (s}, sp[A]),
then we have supp(Y”, s;,) = supp((Y” U A), (s),, sp[A])) =
supp(X’, 7). (Y U A), (s;,, sp[A])) is a super set of (Y7, s’p)
having the same support as (X', /), this contradicts (the def-
inition of closed itemset) “(Y”, s),) is the unique closed item-
set of (X', 7). So case (1) is invalid.

For case (2), we proceed as follows: Since X’ 2 X
and clo(X’,7,) = (Y’,s,), then we have supp(Y’,s)) =
supp(X’,t,) < supp(X,t,) = supp(Y,s,). That is,
supp(Y’, s;,) € supp(Ys,), then for Vi € supp(Y’,s)),
t € supp(Y,s,). But sp[A] # s,[A], then £, [A] # 1, [A]

LETTER

Either side of the inequality is the same tuple over different
patterns. So case (2) will not happen.

As a conclusion, Lemma 1 is proved to be correct. 0O
Definition 9 (—p'"* subset) A free itemset (¥, LIYD,YcX
is called a —p™*! subset of (X, #,[X]),|X| = n if the number
of attributes |Y| =n— p,(0 < p < n).

All the —p® subsets of (X, t,[X]) is denoted by
sub™?(X, 1,[X]). These subsets can be sorted, or processed
in the order they appear. The ;" subset is denoted by
sub (X, t,[X1);, j € {1,2,--- ,Cy, "}

For example, all —Dlevel gubsets of (a,b,c,d)
sub~2(a, b, ¢, d) = {(a, b)(a, ¢)(a, d)(b, ¢)(b, d)(c, d)}; the 2nd
and 3rd subset in the —2! gubsets: sub™>(a,b,c,d), =
(a,c), sub_z(a, b,c,d); = (a,d). Obviously, the union set
of —1/¢! subset for all sets in sub~* is just sub™®*D _ that is:

crk
sub “*V(x,1,) = U sub™! (sub™ (X, 1,))) M

=1

For example, sub_3(a, b,c,d) =
U, sub™ (sub(a,b, ¢, d);) = (@Y.
Lemma 2 All non-empty proper subsets of a free itemset are
free.
Proof. This lemma has been proved in [7] (Propsition 2).
The Lemma shows that if an algorithm (e.g. GcGrowth) can
mining all the free itemsets in a database, then any non-
empty proper subset x of each free itemset will appear in
the output, for x is also a free itemset.

In the following, all “subsets” given in this paper are in
terms of non-empty proper subsets.

Algorithm 2 prCFDMiner

Input: An Instance / of R and a natural number k > 1.
Output: A canonical cover of k-frequent CCFDs..

1: Compute a HashMap C2F ((X, t,), (Y, s)) that associates with each k-
frequent closed itemset in [its set of k-frequent free itemsets (using
algorithm GeGrowth [5]);

2: for all k-frequent closed itemset (Y, 5,) in [do

3: Let L be the list of all free itemset in C2F;

4: forall (X,1,) € Ldo

5.

6

7

Initialize RHS(X, 7,) = (Y \ X, sp[Y' \ X])
end for
for all (X,,) € Ldo

for all sub™' (X, 7,); € L, j € {1,2,-++ ,Cj;/"'} do (Strategy)

9: RHS(X, 7,) =RHS(X, t,)\ RHS (sub™!(X, 1))
10: end for

11: if(RHS(X, 1) # 0)

12: Output (X — A, 1,[X] || a) for all (A, a) € RHS(X, 1,)
13: end if

14: end for

15: end for

Deduction 1 For a free itemset (X,,[X]) and its — [fevel
sub free itemsets sub_l(X, t,[X]), all the correspond-
ing closed itemsets to each itemset in the —1/*/ sub
free itemsets sub’l(X, t,[X]) constitute a set, denoted by

539

clo(sub™' (X, 1,[X])) = Ufjll clo(sub™' (X, 1,[X1);). Thus,
we have clo(sub™ (X, 1,[X1)) 2 U/Z; clo(sub (X, £,[X])).
Proof. *: According to Lemma 1, s7[Y" \ X'] 2 s,[Y \ X]
where (X', 7)) 2 (X,tp),clo(X’',1) = (Y',s)),clo(X,¢t,) =
04 Sp)-

ALY \XTUsLIX]} 2 {5, [Y\X]Us, [X]), that is, 57,[Y'] 2
splY].

That’s to say, we have clo(X’, 7)) 2 clo(X,1,) if (X,1,)
is a subset of the free itemset (X', t;). Thus,

Wk e(1,2,-- ,n— 1}, sub™ (X, 1,[X]) 2 sub ¥ (X, 1,[X])
= clo(sub™ (X, 1,[X])) 2 clo(sub ™ (X, 1,[X])).

= clo(sub™" (X, 1,[X])) 2 {clo(sub™' (X, £,[X]))U

clo(sub (X, 7,[X]) U - - - U clo(sub™""V(X, ,[X]))}. That is,
clo(sub™ (X, 7,[X1)) 2 {U}Z] clo(sub™* (X, ,[X]))}. o
Strategy In Line 8 of CFDMiner, just search the —1¢*¢/ sub-
sets of the free itemsets instead of all subsets.

Proof. According to the proof for Deduction 1, Y(Z,s,) €
sub (X, 1,[X1), A(Z’, 5})) € sub™' (X, 1,[X]), s.t.clo(Z’, 5,) 2
clo(Z, s,), which means the corresponding closed itemsets
to all the —1%"! subsets of a free itemset will cover all the
elements of the closed itemsets to all subsets.

Then the remaining question is to make sure that the all
—1%vel subsets for each free itemset will appear in the output
of GcGrowth (the actual input of CFDMiner). According
to Lemma 2, the input of CFDMiner will also cover the all
—1!evel gubsets for each free itemset. Therefore, it is not nec-
essary to search the whole but just the —1/"*/ subsets of each
free itemset. O

According to the above strategy, we optimized CFD-
Miner as the Algorithm 2. The major modification (shaded
part) is to search —1*/ subsets of a free itemset instead of
all the subsets.

4. Time Complexity Analysis

The search space is largely narrowed, from n(2! — 2) to nl,
where [is the average length of free itemsets and n is the
number of free itemsets. Therefore, the time complexity
ratio of optimized prCFDMiner to original CFDMiner is
[: (2! = 2). Theoretically, the efficiency will improve 100
times when the average length / of free itemsets for a rela-
tional database is 10. But in reality, the / will not be a big
value, the actual efficiency will improve about 5-6 times.

5. [Experiments

Our experiments used 3 real datasets from UCI machine
learning repository (http://archive.ics.uci.edu/ml/), namely
Adult, Mushroom and Chess. Table 2 lists the parameters of
the datasets and the number of pairs for the free and closed
itemsets from the datasets (which is the actual input of the
algorithms). 3 numeric attributes in Adult dataset has been
removed to adapt to the algorithms.

Experiments have proved that the optimized algorithm
can output the consistent CCFDs as the original CFDMiner.
The number of CCFDs output is shown in Table 3.

540
Table 2 The paremeters of datasets and input pairs of itemsets under
different support settings
Dataset Adult | Mushroom | Chess
Arity 12 23 7
Size 32561 8124 28056
The input pairs of free and closed itemsets
Support (%) | Adult | Mushroom | Chess
30 72 558 5
10 725 7631 47
5 2360 21160 122
1 24260 103517 1210
0.5 57869 164526 2997

Table3 The number of output CCFDs under different support settings
Support (%) | Adult | Mushroom | Chess
30 2 95 0
10 7 2774 0
5 27 7510 2
1 288 26029 7
0.5 692 37040 15
Table4 Comparison of Optimized and Original CFDMiner
on Adult
Performance Search Space Execution Time (ms)
Support (%) CFDMiner | prCFDMiner | CFDMiner | prCFDMiner
30 358 165 94 13
10 9362 2439 172 43
5 41130 8819 277 72
1 739858 108786 1697 553
0.5 2235142 277469 4369 1783
on Mushroom
Performance Search Space Execution Time (ms)
Support (%) CFDMiner | prCFDMiner | CFDMiner | prCFDMiner
30 5584 1754 163 37
10 140418 29889 575 214
5 466446 88269 1445 613
1 3482502 486990 9539 3854
0.5 6346824 802401 20352 7821
on Chess
Performance Search Space Execution Time (ms)
Support (%) CFDMiner | prCFDMiner | CFDMiner | prCFDMiner
30 0 0 75 1
10 14 14 87 8
5 144 144 98 20
1 3664 2650 196 49
0.5 14450 7937 290 96

IEICE TRANS. INF. & SYST., VOL.E99-D, NO.2 FEBRUARY 2016

under the support of 0.5%, and the relative execution time
is about 3.0 (290/96) times, for average length of free item-
sets is 2-3 (the theoretical multiple is from 2*-2)/2=1to
(2°-2)/3=2).

The attributes on Mushroom is more than that on
Chess, but the average length of free itemsets mined from
datasets will not rise sharply by the increasing of attributes.
Thus, the average length will not be a big value, and the ac-
tual efficiency on different datasets will not improve much
greater times (e.g. above-mentioned 100 times in the the-
ory).

6. Conclusion

In this paper, we have given a more efficient pruning strat-
egy for optimizing CFDMiner, a very popular algorithm of
discovering CCFDs. We proved in the theory that the prun-
ing strategy will not influence the output of the original al-
gorithm, and we evaluated the optimized algorithm on real
datasets. Experiments show that the proposed optimization
has much smaller search space and higher efficiency.

Acknowledgements

The author are grateful to Limsoon Wong and Liu Guimei
for supporting the correct version of GecGrowth, which is
such a key algorithm for our research.

References

[1] D. Thierno, N. Noel, and P. Jean-Marc, “Discovering (Frequent)
Constant Conditional Functional Dependencies,” Int. J. Data Min-
ing, Modelling and Management, vol.4, no.3, pp.205-223, 2012.

[2] W. Fan, F. Geerts, X. Jia, et al., “Conditional Functional Depen-
dencies for Captruing Data Inconsistencies,” ACM Trans. Database
Systems, vol.33, pp.1-48, 2008.

[3] W. Fan, “Dependencies revisited for improving data quality,” Proc.
of ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS), pp.159-170, 2008.

[4] J. Li, J. Liu, H. Toivonen, and J. Yong, “Effective Pruning for the
Discovery of Conditional Functional Dependencies,” The Computer
Journal, vol.56, no.3, pp.378-392, 2013.

[5] H.Li, J. Li, L. Wong, M. Feng, and Y.-P. Tan, “Relative Risk and

To show improved performance of the strategy, we test
the search space and execution time of original CFDMiner
and optimized prCFDMiner on the 3 datasets. The search
space refers to the number of the whole non-empty proper
subsets for all the free itemsets. Experiment results are
shown in Table 4.

With decreased support going with increasing pairs
of free and closed itemsets, the search space will become
larger. In the same support, the optimized algorithm search
significantly smaller space than the original CFDMiner.

For example, on Mushroom dataset, the search space of
CFDMiner is about 7.1 (3482502/486990) times of prCFD-
Miner under the support of 1%, and the relative execution
time is about 2.5 (9539/3854) times, for average length
of free itemsets is 4-5 (the theoretical multiple is from
(2* = 2)/4 = 3510 (2° —2)/5 = 6). Another example,
on Chess, the search space is about 1.8 (14450/7937) times

(6]

(71

(8]

[

[10]

Odds Ratio: A Data Mining Perspective,” Proc. twenty-fourth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database
systems - PODS "05, pp.368-377, 2005.

T. Calders and B. Goethals, “Non-derivable Itemset Mining,” Data
Mining and Knowledge Discovery, vol.14, no.1, pp.171-206, 2007.
Jinyan Li, Haiquan Li, Limsoon Wong, and et al., Minimum De-
scription Length Principle: Generators are Preferable to Closed Pat-
terns, Proc. 21st National Conf. on AAAI: 409-414, 2006.

W. Fan, F. Geerts, J. Li, and M. Xiong, “Discovering Conditional
Functional Dependencies,” IEEE Transactions on Knowledge &
Data Engineering, vol.23, no.5, pp.683-698, 2011.

W. Fan and F. Geerts, “Foundations of Data Quality Management,”
Synthesis Lectures on Data Management, vol.4, no.5, pp.1-217,
2012.

A. Tran, T. Truong, and B. Le, “Simultaneous Mining of Fre-
quent Closed Itemsets and Their Generators: Foundation and Algo-
rithm,” Engineering Applications of Artificial Intelligence, vol.36,
pp-64-80, 2014.

http://dx.doi.org/10.1145/1376916.1376940
http://dx.doi.org/10.1093/comjnl/bxs082
http://dx.doi.org/10.1145/1065167.1065215
http://dx.doi.org/10.1007/s10618-006-0054-6
http://dx.doi.org/10.1109/tkde.2010.154
http://dx.doi.org/10.2200/s00439ed1v01y201207dtm030
http://dx.doi.org/10.1016/j.engappai.2014.07.004

