
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.2 FEBRUARY 2016
525

LETTER

Maximizing the Total Weight of Just-In-Time Jobs under Multi-Slot
Conditions Is NP-Hard∗

Eishi CHIBA†a), Member and Shinji IMAHORI††, Nonmember

SUMMARY A job is called just-in-time if it is completed exactly on its
due date. Under multi-slot conditions, each job has one due date per time
slot and has to be completed just-in-time on one of its due dates. Moreover,
each job has a certain weight per time slot. We would like to find a just-in-
time schedule that maximizes the total weight under multi-slot conditions.
In this paper, we prove that this problem is NP-hard.
key words: scheduling, just-in-time, time slot, weight, NP-hard

1. Introduction

One key feature of just-in-time scheduling is the fact that it
plays a crucial role in enabling control systems to observe
due dates. Just-in-time scheduling has applications to both
manufacturing and computer systems [2]. As a result, such
scheduling problems have been receiving growing attention
of late.

In the past, the objective function of just-in-time
scheduling problems under multi-slot conditions has largely
concerned minimizing the number of time slots [3]–[5]. Fol-
lowing traditional scheduling methodology, in this paper we
introduce a new class of just-in-time scheduling problems
under multi-slot conditions which is related to the weight of
jobs. Research in this area of just-in-time scheduling may
also prove to be of great value in further improving the effi-
ciency of manufacturing and computer systems.

In the field of just-in-time scheduling, a due date is usu-
ally associated with each job to be processed, and each job
should be completed by its due date. However, if a job is
completed before its due date, the earlier this happens, the
greater the storage cost incurred. Here, we focus on schedul-
ing problems that relate to each job finishing exactly on its
due date. A job is called just-in-time if it is completed ex-
actly on its due date.

A number of known results on just-in-time scheduling
exist. In [6], the activity selection problem was presented
and it was shown that the problem of maximizing the num-
ber of just-in-time jobs for a single machine is solvable in

Manuscript received August 4, 2015.
Manuscript revised September 29, 2015.
Manuscript publicized October 26, 2015.
†The author is with the Department of Industrial and Systems

Engineering, Faculty of Science and Engineering, Hosei Univer-
sity, Koganei-shi, 184–8584 Japan.
††The author is with the Department of Information and System

Engineering, Faculty of Science and Engineering, Chuo Univer-
sity, Tokyo, 112–8551 Japan.

∗A preliminary version of this paper was presented in [1].
a) E-mail: e-chiba@hosei.ac.jp

DOI: 10.1587/transinf.2015EDL8171

linear time by a simple greedy method. The above prob-
lem was extended in [7] to the case of identical parallel ma-
chines. It was proven, in [7] that the problem is also solvable
in quadratic time by a simple greedy method. Moreover, it
was shown in [8], that the problem presented in [7] is solv-
able in polynomial time even if a non-negative weight is as-
signed to each job, a non-negative set-up time is assigned to
each ordered pair of jobs, and the objective is to maximize
the total weight value of just-in-time jobs.

The above book [6] and papers [7], [8] did not consider
how to handle jobs that do not finish exactly on their due
dates because such jobs do not affect the values of objective
functions in these problems. However, considering real-life
situations, jobs which are not processed in a certain period
of time will be scheduled for the next possible processing
opportunity. Such jobs should remain just-in-time for suc-
cessive opportunities. For example, we can assume that
shipping time is fixed on a daily/weekly/monthly, etc. ba-
sis. This situation was formulated using multiple time slots
as observed in earlier works [3]–[5].

Previous work exists that addresses time slots, where
the objective is to minimize the maximum number of peri-
odic time slots required for each machine when scheduling
all given jobs. It was shown in [4], that the problem be-
comes NP-hard (in the strong sense) even for a single ma-
chine case, and is solvable in polynomial time for an arbi-
trary number of identical parallel machines, if set-up times
are not considered. Moreover, [5] showed that this problem
cannot be approximated, assuming P � NP, and also pre-
sented a heuristic algorithm for a single machine case. In
this heuristic algorithm, the approximation ratio depends on
the upper bound of set-up times.

The intractability results for the above-mentioned
problem in [4] and [5], i.e. NP-hardness and inapproxima-
bility, come from the consideration of the set-up time. In
order to counter this, we do not consider the set-up time in
this paper. Instead, the weight for each job per time slot is
considered. Note that weight is not considered in the above-
mentioned problem in [4] and [5]. In this paper, we present a
scheduling problem maximizing the total weight of just-in-
time jobs under multi-slot conditions. Then, we prove that
this problem is NP-hard. The key idea is a reduction from
the μ-coloring problem over interval graphs, which is known
to be NP-hard [9]. Moreover, it is shown that this problem
remains NP-hard even when the number of machines is one,
and even when the weight function is non-increasing with
increasing time.

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers

526
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.2 FEBRUARY 2016

2. Problem Description

There are m parallel identical machines M1,M2, . . . ,Mm and
n jobs J1, J2, . . . , Jn with positive processing times p1, p2,
. . . , pn. The operation time on all machines is divided into
time slots of length L, and each job is assigned a set of peri-
odically repeating due dates, one per time slot. Namely, due
dates of a job J j are d j, L + d j, 2L + d j, . . ., where d j (≥ p j)
is the due date of the job J j in the first time slot, L + d j is
the due date of the job J j in the second time slot, and so
on, and where L is the length of each time slot. Every job
must be completed exactly on one of its due dates. Note that
p j ≤ d j ≤ L holds since one due date of a job exists per
time slot. Moreover, a non-negative weight function w j(l) is
associated with each job J j upon its completion in the l-th
time slot, where the number associated with l refers to the
slot number, i.e. l = 1 refers to time slot 1, l = 2 refers to
time slot 2, etc.

We assume that all jobs are completed by the �n/m�-
th time slot. Thus, the slot number l ≤ �n/m� holds. Note
that it is possible to complete all jobs if �n/m� time slots are
considered.

A schedule is a mapping S : J j �→ (MS
[j],C

S
j), where

MS
[j] is the machine on which job J j is processed and CS

j is

the time instant when job J j is finished on machine MS
[j]. A

schedule S is deemed feasible if

(i) for each job J j, there exists a non-negative integer rS
j

such that CS
j = rS

j · L + d j, and
(ii) for every pair of jobs J j and Jk, if MS

[j] = MS
[k], then

CS
k − pk ≥ CS

j or CS
j − p j ≥ CS

k .

We refer to the constraints (i) as just-in-time constraints and
(ii) as compatible constraints.

The problem is to find a feasible non-preemptive sched-
ule that maximizes the total weight of just-in-time jobs when
processing all jobs. Namely, a Just-In-Time Scheduling
Problem (JITS) is stated as follows. Given number of jobs
n, number of machines m, processing times pj, due dates d j,
weights w j(l), and length of time slot L, maximize the value
of the sum

R(S) =
n∑

j=1

w j

⎛⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢
CS

j

L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎞⎟⎟⎟⎟⎟⎠

called the objective function over the set of all feasible non-
preemptive schedules.

An optimal schedule for an input of the problem is a
feasible schedule that achieves the largest objective func-
tion value, known as the optimal value. If the number of
machines is no less than the number of jobs, then there is a
feasible schedule in which no machine executes more than
one job. Such a problem is trivial and so, from now on, we
assume that m < n.

Example 1: We consider the following input of problem
JITS, i.e. m = 2, n = 4, L = 6, processing times p j, due

Table 1 The left table shows the processing time p j and due date d j for
each job J j. The right table shows the weight w j(l) for each job J j and each
slot number l.

j p j d j

1 2 5
2 2 3
3 1 4
4 3 5

j\l 1 2
1 4 3
2 6 5
3 3 1
4 5 2

Fig. 1 A feasible schedule by the greedy method for Example 1.

Fig. 2 An optimal schedule for Example 1.

dates d j, and weights w j(l) as in Table 1.
We consider a greedy method, in which the total weight

value of just-in-time jobs is maximized in each time slot
from the first time slot onwards. Note that, when focusing
on only one time slot, a polynomial-time algorithm which
maximizes the total weight value of just-in-time jobs ex-
ists (see [8]). Figure 1 shows a feasible schedule obtained
from the greedy method. The value of R(S) is 16. On the
other hand, Fig. 2 shows an optimal schedule that achieves
the largest objective function value. The optimal value is 17.

3. NP-Hardness

In this section, we show that problem JITS is NP-hard. We
use, for the reduction, the μ-coloring problem over interval
graphs, which was proven to be NP-complete in [9].

An undirected graph G is called an interval graph if its
vertices can be put in a one-to-one correspondence with a
family of intervals on a real line such that two vertices are
adjacent in G if and only if the corresponding intervals in-
tersect [10]. In other words, an undirected graph G = (V, E)
is an interval graph if there exists a set {Iv|v ∈ V} of real
intervals such that Iu ∩ Iv � ∅ if and only if {u, v} ∈ E.

Given an interval graph, open intervals Iv = (αv, βv)
corresponding to every vertex v of the interval graph can be
computed in linear time by the algorithm presented in [11].
Therefore, given an interval graph, we can efficiently obtain
the corresponding intervals on a real line.

LETTER
527

A coloring of an undirected graph G = (V, E) is a
function f : V → N such that f (u) � f (v) whenever
{u, v} ∈ E. Given an undirected graph G = (V, E) and a
function μ : V → N, G is μ-colorable if a coloring f of G
exists such that f (v) ≤ μ(v) for every v ∈ V [12].

μ-coloring problem over interval graphs
Input: An interval graph G = (V, E), a function μ : V → N.
Question: Is G μ-colorable?

This problem is NP-complete [9]. In the following, we prove
the NP-hardness of problem JITS.

Given an input of the μ-coloring problem over inter-
val graphs, the corresponding intervals on a real line can be
translated effectively. Then, we construct an input of the
decision version of problem JITS, so that this input has a
solution if and only if the input of the μ-coloring problem
over interval graphs has a solution.

DECISION JITS
Input: m = 1, n = |V | (job Jv is identified with interval Iv =

(αv, βv) corresponding to each vertex v ∈ E), pv = βv −
αv for all v ∈ V , dv = βv for all v ∈ V , L = maxv∈V {βv},

wv(l) =

{
1 if l ≤ μ(v),
0 otherwise,

for all v ∈ V .

Question: Is there a feasible schedule S with an objective
function that is at least n, i.e. such that R(S) ≥ n?

Note that, from the way of constructing an input of DE-
CISION JITS, if two vertices in the interval graph are non-
adjacent, the two jobs corresponding to the two vertices are
compatible.

Lemma 1: An input of μ-coloring problem over interval
graphs has a solution if and only if the constructed input of
DECISION JITS has a solution.

Proof: If the μ-coloring problem over interval graphs has
a solution, then we can easily construct a solution of DE-
CISION JITS by scheduling each job Jv in the f (v)-th time
slot using the coloring function. For each v ∈ V , f (v) ≤ μ(v)
holds, and thus the value of the objective function for the
constructed schedule is exactly n.

On the other hand, if DECISION JITS has a solution
(in such a case, the value of the objective function is exactly
n because the weight of each job is, at most, one), then the
designated slot number for each job gives a coloring such
that the input graph is μ-colorable, since any two jobs, which
cannot be scheduled in the same time slot, must be, in such
a case, scheduled in different time slots. Thus the slot num-
bers associated with each job give a coloring in the input
graph. �

Since the above-stated reduction from the μ-coloring
problem over interval graphs to DECISION JITS is clearly
polynomial, we can obtain the following theorem.

Theorem 1: Problem JITS is NP-hard.

Remark 1: Since the number of machines is one in the re-
duction, problem JITS remains NP-hard even if m = 1.

Remark 2: In the reduction, since the weight function has
a 0/1 value and is non-increasing with increasing slot num-
ber for each job, problem JITS remains NP-hard even for
such a weight function case.

If a job is processed in the next or later time slots, it
may be possible to consider that penalties for values of ob-
jective function increase proportionally with the length of
delay. The assumption that a weight (in other words, profit)
for each job is non-increasing with time was considered in
[13]. Although it was open as to whether the restricted prob-
lem is NP-hard or not in [13], from Remark 2, we can see
that the restricted problem is indeed NP-hard.

4. Conclusions

We presented the scheduling problem maximizing the to-
tal weight of just-in-time jobs under multi-slot conditions.
We proved that this problem is NP-hard. Moreover, even
if the weight function only takes a value of 0/1 and is non-
increasing, the problem is still NP-hard.

A study of solvable cases, in which problem JITS can
be solved in polynomial time, is one possible area of fu-
ture investigation. Developing good heuristics is another
area worthy of further research. In many practical situa-
tions, both the maximization of the total weight and the min-
imization of the number of necessary time slots might also
be considered; consequently, a study of schedules balancing
the total weight against the number of necessary time slots
is another potential area of future work.

References

[1] E. Chiba and S. Imahori, “Maximizing the total weight of just-in-
time jobs under multi-slot conditions is NP-hard,” Proc. Interna-
tional Symposium on Scheduling, pp.65–67, 2013.

[2] J. Józefowska, Just-in-Time Scheduling: Models and Algorithms for
Computer and Manufacturing Systems, Springer, 2007.

[3] K. Hiraishi, “Just-in-time scheduling of parallel identical machines
with multiple time slots,” Proc. 4th Czech-Japan Seminar on Data
Analysis and Decision Making under Uncertainty, pp.33–39, 2001.

[4] O. Čepek and S.C. Sung, “Just-in-time scheduling with periodic time
slots,” Scientiae Mathematicae Japonicae, vol.60, no.2, pp.295–301,
2004.

[5] E. Chiba and K. Hiraishi, “A heuristic algorithm for one-machine
just-in-time scheduling problem with periodic time slots,” IEICE
Trans. Fundamentals, vol.E88-A, no.5, pp.1192–1199, 2005.

[6] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to Algorithms, Second ed., MIT Press, 2001.

[7] O. Čepek and S.C. Sung, “A quadratic time algorithm to maxi-
mize the number of just-in-time jobs on identical parallel machines,”
Comput. Oper. Res., vol.32, no.12, pp.3265–3271, 2005.

[8] K. Hiraishi, E. Levner, and M. Vlach, “Scheduling of parallel identi-
cal machines to maximize the weighted number of just-in-time jobs,”
Comput. Oper. Res., vol.29, no.7, pp.841–848, 2002.

[9] F. Bonomo, G. Durán, and J. Marenco, “Exploring the complexity
boundary between coloring and list-coloring,” Annals of Operations
Research, vol.169, no.1, pp.3–16, 2009.

[10] S.R. Arikati and C.P. Rangan, “Linear algorithm for optimal path

http://dx.doi.org/10.1093/ietfec/e88-a.5.1192
http://dx.doi.org/10.1016/j.cor.2004.05.011
http://dx.doi.org/10.1016/s0305-0548(00)00086-1
http://dx.doi.org/10.1007/s10479-008-0391-5
http://dx.doi.org/10.1016/0020-0190(90)90064-5

528
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.2 FEBRUARY 2016

cover problem on interval graphs,” Inf. Process. Lett., vol.35, no.3,
pp.149–153, 1990.

[11] D.G. Corneil, S. Olariu, and L. Stewart, “The ultimate interval graph
recognition algorithm?,” Proc. Ninth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp.175–180, 1998.

[12] F. Bonomo and M. Cecowski, “Between coloring and list-color-
ing: μ-coloring,” Electronic Notes in Discrete Mathematics, vol.19,
pp.117–123, 2005.

[13] E. Chiba, T. Kageyama, Y. Karuno, and H. Goto, “Maximizing
the total weight value of just-in-time jobs in identical parallel ma-
chines with periodic time slots,” Proc. IEEE International Con-
ference on Industrial Engineering and Engineering Management,
pp.1349–1353, 2012.

http://dx.doi.org/10.1016/0020-0190(90)90064-5
http://dx.doi.org/10.1016/j.endm.2005.05.017
http://dx.doi.org/10.1109/ieem.2012.6837965

