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LETTER

Middle-Frequency Based Refinement for Image Super-Resolution

Jae-Hee JUN†, Ji-Hoon CHOI†, Nonmembers, and Jong-Ok KIM†a), Member

SUMMARY This letter proposes a novel post-processing method for
self-similarity based super-resolution (SR). Existing back-projection (BP)
methods enhance SR images by refining the reconstructed coarse high-
frequency (HF) information. However, it causes artifacts due to inter-
polation and excessively smoothes small HF signals, particularly in tex-
ture regions. Motivated by these observations, we propose a novel post-
processing method referred to as middle-frequency (MF) based refinement.
The proposed method refines the reconstructed HF information in the MF
domain rather than in the spatial domain, as in BP. In addition, it does not
require an internal interpolation process, so it is free from the side-effects
of interpolation. Experimental results show that the proposed algorithm
provides superior performance in terms of both the quantity of reproduced
HF information and the visual quality.
key words: back-projection, middle-frequency, post processing, super-
resolution

1. Introduction

Super-resolution (SR) is a technique used to reconstruct
a high-resolution (HR) image from one or more low-
resolution (LR) images. As such, it attempts to recover the
lost high-frequency (HF) information from an LR image.

Recently, the learning-based SR approach has been a
popular focus of research [1]–[5]. It demonstrates better per-
formance as it accesses a larger volume of available prior
information. It establishes an image database that includes
LR and HR image pairs to infer HR information from cor-
responding LR input. In particular, an SR approach based
on self-similarity has exhibited superior reconstruction per-
formance with low complexity. It finds image prior exam-
ples within an image itself, without the need for an external
database.

In the self-similarity SR approach, an input image is
decomposed into low-frequency (LF) and high-frequency
(HF) components. The input image is also up-scaled to HR
using a simple interpolation method, and the resulting up-
scaled version is regarded as the LF component of an HR
image. For each patch in the up-scaled image, a similar one
is looked for in the low-resolution LF component. Once the
best LF match has been found, its associated HF patch is
combined with the query LF patch and an HR image is pro-
duced.

The existing self-similarity SR approach excels at re-
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covering lost HF information from an input LR image.
However, the HF information of an HR image is recovered
by simply copying the HF signals corresponding to a similar
patch found in the LR image. Therefore, some discrepan-
cies still exist between original and super-resolved images
due to inaccurate HF estimation. The inconsistency is par-
ticularly severe in the weak HF region (which is defined by
the lower half of the HF component, and will be referred
to as middle-frequency (MF) throughout the letter), which
commonly corresponds to texture in an image. In order to
refine the coarse HF signals reconstructed by self-similarity
SR, post-processing is required. Back-projection has been
widely used as a post-processing technique [6].

Back-projection projects an HR image as an LR one,
and works iteratively to minimize the errors between the in-
put LR and the projection of the HR image [7], [8]. It further
enhances the SR image by refining the reconstructed coarse
HF. However, it excessively smoothes HF signals and causes
blurring, especially in the texture regions in the HR image.
Small signal variations such as texture are easily affected
by back-projection because it is carried out on a large-scale
spatial domain.

Motivated by these observations, we propose a novel
post-processing method for self-similarity SR. The key
goal of SR is to recover the lost HF information; thus,
post-processing should specifically concentrate on HF sig-
nals. The proposed method aims to refine the reconstructed
middle-frequency (MF) of the HF domain, unlike the spa-
tial domain as in back-projection. In addition, it does not
include the process of up-scaling, which is the reason for
additional artifacts in back-projection. These two features
lead to fewer blurring artifacts than back-projection does,
while also improving the sharpness in the texture region of
the image.

The rest of this letter is organized as follows. Section 2
presents the self-similarity SR method with iterative back-
projection. The proposed MF-based refinement method is
presented in Sect. 3. Section 4 presents the experimental
results. Section 5 concludes the letter.

2. Self-Similarity Based SR with Back-Projection

In natural images, small patches tend to recur redundantly
across scale as well as in-scale. This phenomenon is referred
to as self-similarity, and has been exploited for learning-
based image SR in recent years [9], [10]. Self-similarity
based SR in the LF-HF domain is similar to learning-based

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers



LETTER
301

Fig. 1 The process of the self-similarity based SR algorithm.

Fig. 2 The middle-frequency domain.

methods such as [11], [12]. However, unlike the traditional
example-based approach, SR based on self-similarity does
not require a prior database. Thus, it can reduce computa-
tional complexity and memory consumption in comparison
to the conventional learning-based approach. The overall ar-
chitecture of the self-similarity based SR method is shown
in Fig. 1. In the first step, the input image is decomposed
into both LF and HF components, which are given by

ILR,LF = H(ILR) (1)

ILR,HF = ILR − ILR,LF (2)

where H is a blurring operator and ILR,LF is the LF compo-
nent of the input LR image. After frequency decomposition,
an initial estimation of the HR image is obtained by simply
interpolating the input image. This HR image can be consid-
ered the LF component of an HR image, denoted as IHR,LF .
SR to a target scale is conducted repeatedly by a small scale
factor (e.g., 1.25) until arriving at a target resolution. It has
been previously reported that an incremental coarse-grained
SR with a small scale factor produces a finer result [1].

Following this, for each image patch within the HR-
LF image, we find the most similar patch within the LR-LF
image, denoted as ILR,LF . Once the most similar patch has
been found, its HF pair is regarded as a potential estimate
of the HR-HF image, denoted as IHR,HF . By merging IHR,LF

and IHR,HF , we can reproduce a full HR image.
Finally, back-projection is carried out on the output HR

image to compensate for reconstruction errors caused by the
SR process. The super-resolved HR image is projected on
the LR grid, and the difference between the LR projection
of the HR and the original LR image is obtained by

Fig. 3 The proposed MF-based refinement algorithm.

er(I) = ILR − (IHR ∗ g) ↓ s (3)

where er(I) is reconstruction error, g is a blurring filter, ∗ is
the convolution operator, ↓ s is the down-sampling operator
with scaling factor s, and ILR and IHR are the low-resolution
and high-resolution images, respectively. Back-projection
iteratively updates the HR image to minimize the errors in
(3).

3. The Proposed Method

Back-projection is an efficient algorithm for strengthening
the consistency of the reconstructed HR image in compari-
son to the original LR image. Despite this efficiency, how-
ever, it suffers from some fundamental side-effects such
as smoothing, chessboard, and ringing artifacts, the latter
two of which are mainly caused by interpolation in back-
projection.

Back-projection hierarchically runs over the image
pyramid for specific resolutions, so it requires up-scaling.
It is the up-scaling process that induces the artifacts men-
tioned above, artifacts that are particularly severe in the MF
texture regions of images. This provides the motivation to
develop the proposed MF-based refinement method, whose
key feature doesn’t require the interpolation process. The
proposed MF-based refinement method seeks to specifically
improve the MF region. This is why more SR artifacts are
observed in the texture region.

An image is decomposed into LF and HF components
using typical loss pass filtering as in (1) and (2), and each
component is decomposed into LF and HF components
again. In other words, the original image is divided into
four components as follows.

ILL = IL ∗ g (4)

ILH = IL − ILL (5)

IHL = IH ∗ g (6)

IHH = IH − IHL (7)

Of the four components in (4)-(7), both ILH and IHL

overlap exactly between IL and IH , as illustrated in Fig. 2,



302
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.1 JANUARY 2016

Fig. 4 Comparisons of subjective image quality for the test image, workers.

and they are equal to each other at a signal level. This over-
lapping region between IL and IH is defined as MF in this
letter. This relationship can be proven as follows.

ILH = IL − ILL = Iori ∗ g − Iori ∗ g ∗ g (8)

IHL = IH ∗ g = Iori ∗ g − Iori ∗ g ∗ g (9)

It is assumed that the interpolated version of an LR im-
age is equal to the IL of an HR image. SR targets the re-
covery of IH . The lower frequency signals (corresponding
to IHL) in the newly reconstructed IH are refined using ILH ,
which is regarded as the ground truth of an HR image.

The overall MF-based refinement process is illustrated
in Fig. 3. The reconstruction errors produced by SR are de-
fined by the difference between ILH and IHL. The newly
estimated IH is recursively compensated for in such as way
that it should have a strong consistency with IL in the over-
lapping frequency regions. This process can be expressed
as

ε(Iori) = (ILH − IHL) ∗ p (10)

I(t+1)
H = I(t)

H + ε(I
(t)
ori) (11)

where p is a Gaussian kernel, the same as that used in back-
projection.

4. Experimental Results

We evaluate the performance of the proposed method for
various test images and present representative results in this
section. The proposed MFR and BP methods are applied to
the self-similarity based SR method shown in Fig. 1. Other
common interpolation methods, such as Bicubic and Sinc
interpolation, are also tested to allow for performance com-
parisons. The magnification factor is configured at 2 for all
experiments. The test LR input image is obtained by apply-
ing a Gaussian blur kernel to the original HR image. Per-
formance is assessed in terms of two quality factors: (1) the
subjective and objective evaluation of the visual quality of
the SR image, and (2) the quantitative measurement of the
amount of reproduced HF information, because the ultimate
goal of SR is to reconstruct lost HF information.

Firstly, the visual quality of the SR images is com-
pared. Figures 4 and 5 show the resulting SR images of
the proposed MFR and conventional Bicubic, Sinc, and BP
methods. In Figs. 4 and 5, MFR and BP can reconstruct
more realistic image details. It is because MFR and BP
based on self-similarity can restore more accurate HF de-
tails than Bicubic and Sinc which are simple interpolation
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Fig. 5 Comparisons of subjective image quality for the test image, child.

Fig. 6 Comparisons of gradient magnitude distributions.

methods. Between MFR and BP, MFR achieves a higher de-
gree of sharpness (acutance) compared to BP. In particular,
it improves the visual quality of texture region. For instance,
Fig. 5 (e) is sharper than (d). Note that texture regions in the
image usually lie in the MF domain. It is thus to be expected
that the MF-based method is effective for texture regions. In
addition, ringing artifacts are much more prevalent in con-
ventional BP than in MFR (Figs. 4 and 5). MFR does not
include interpolation process. The experimental results in
Figs. 4 and 5 clearly confirm that the proposed MFR is ef-
fective in both improving texture quality and reducing the

side-effects of interpolation.
The visual quality is then measured numerically using

PSNR and SSIM; the values are listed in Table 1. In gen-
eral, the texture regions exhibit small, complex variations in
terms of signal. It should be noted that it is difficult to quan-
titatively measure the sharpness of texture regions. How-
ever, although the benefits of the proposed method are not
definitive in terms of PSNR, the SSIM values are superior
for all of the test images.

Finally, we quantitatively evaluate the ability of
the proposed middle-frequency refinement (MFR) post-
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Table 1 The comparison of PSNR and SSIM

workers church flower horse child
PSNR Bicubic 24.47 29.09 30.51 28.31 34.29

Sinc 24.60 29.31 30.77 28.66 34.54
BP 24.92 30.31 31.25 29.37 34.94

MFR 24.59 30.46 31.19 29.40 34.67
SSIM Bicubic 0.8359 0.9268 0.9088 0.8623 0.9315

Sinc 0.8418 0.9284 0.9148 0.8705 0.9351
BP 0.8586 0.9330 0.9271 0.8834 0.9416

MFR 0.8651 0.9345 0.9326 0.8883 0.9434

Table 2 Kullback-Leibler divergence values of gradient magnitude dis-
tributions

workers church flower horse child
Value Bicubic 0.8118 0.6974 0.3335 0.4673 0.1067

Sinc 0.6805 0.5267 0.2707 0.3787 0.0947
BP 0.0603 0.1297 0.0441 0.0673 0.0277

MFR 0.0209 0.0610 0.0160 0.0048 0.0037

processing method to reproduce HF information. Gradient
magnitude distributions are used to quantify the number of
reconstructed HF signals. Figure 6 compares the plots of the
gradient magnitude distributions for the test images of work-
ers and child. When compared with conventional methods,
the proposed method recovers more HF information, and is
thus closer to the original HR-HF image. This can lead to
improvement in SR image sharpness, as confirmed in the
subjective quality comparisons in Figs. 4 and 5. The sim-
ilarity between the gradient magnitude distributions is also
calculated using Kullback-Leibler divergence (Table 2). For
all test images, the K-L divergence of MFR is over 2 times
smaller than that of other methods, indicating that the gradi-
ent distribution of MFR is more similar to the ground truth
image.

5. Conclusion

This letter proposes a novel post-processing method for SR.
The goal of SR is to reconstruct lost HF information ac-
curately. In particular, it has been challenging to recover
complex MF texture information in the SR process. This
motivated the development of a refinement method for MF,
which is based on the fact that the LF and HF regions in im-
age decomposition partially overlap. The proposed method
does not contain an interpolation step, unlike conventional
BP, and thus does not suffer the side-effects of interpola-
tion. Even though the proposed method is applied to self-
similarity SR in this letter, it can be used for any SR method
on the frequency domain.

Acknowledgements

This research was supported by the MSIP (Ministry of Sci-
ence, ICT and Future Planning), Korea, under the ITRC
(Information Technology Research Center) support program
(IITP-2015-H8501-15-1017) supervised by the IITP (Insti-
tute for Information & communications Technology Promo-
tion).

This work was supported by the Brain Korea 21 Plus
Project in 2015.

References

[1] D. Glasner, S. Bagon, and M. Irani, “Super-resolution from a sin-
gle image,” 12th IEEE Int. Conf. on Computer Vision, pp.349–356,
Sept. 2009.

[2] Q. Ning, K. Chen, L. Yi, C. Fan, Y. Lu, and J. Wen, “Image su-
per-resolution via analysis sparse prior,” Signal Processing Letters,
IEEE, vol.20, no.4, pp.399–402, April 2013.

[3] C. Kim, K. Choi, and J.B. Ra, “Example-based super-resolution
via structure analysis of patches,” Signal Processing Letters, IEEE,
vol.20, no.4, pp.407–410, April 2013.

[4] L. Guo, Y. Li, J. Yang, and L. Lu, “Exploration into Single Im-
age Super-Resolution via Self Similarity by Sparse Representation,”
IEICE Trans. Inf. & Syst., vol.E93-D, no.11, pp.3144–3148, Nov.
2010.

[5] J.-P. He, G.-D. Su, and J.-S. Chen, “Super-Resolution for Facial Im-
ages Based on Local Similarity Preserving,” IEICE Trans. Inf. &
Syst., vol.E95-D, no.3, pp.892–896, March 2012.

[6] M. Irani and S. Peleg, “Motion analysis for image enhancement: res-
olution, occlusion and transparency,” J. Visual Comm. Image Rep-
resent., vol.4, no.4, pp.324–335, Dec. 1993.

[7] S. Dai, M. Han, Y. Wu, and Y. Gong, “Bilateral back-projection for
single image super resolution,” in Proc. Int. Conf. on Multimedia
and Expo 2007, pp.1039–1042, July 2007.

[8] W. Dong, L. Zhang, G. Shi, and X. Wu, “Nonlocal back-projection
for adaptive image enlargement,” in Proc. IEEE int. Conf. Image
Process., pp.349–352, Cairo, Egypt, Nov. 2009.

[9] G. Freeman and R. Fattal, “Image and video upscaling from local
self-examples,” ACM Trans. on Graphics, vol.30, Article No.12,
April 2011.

[10] N. Suetake, M. Sakano, and E. Uchino, “Image super-resolu-
tion based on local self-similarity,” Optical Review, vol.15, no.1,
pp.26–30, Jan. 2008.

[11] W.T. Freedman, T.R. Jones, and E.C. Pasztor, “Example-based su-
per-resolution,” IEEE Computer Graphics and Applications, vol.22,
no.2, pp.56–65, March 2002.

[12] S.-J. Park, O.-Y. Lee, and J.-O. Kim, “Self-similarity based image
super-resolution on frequency domain,” Proc. of APSIPA ASC 2014,
pp.1–4, Nov. 2013.

http://dx.doi.org/10.1109/iccv.2009.5459271
http://dx.doi.org/10.1109/lsp.2013.2242198
http://dx.doi.org/10.1109/lsp.2013.2249514
http://dx.doi.org/10.1587/transinf.e93.d.3144
http://dx.doi.org/10.1587/transinf.e95.d.892
http://dx.doi.org/10.1006/jvci.1993.1030
http://dx.doi.org/10.1109/icme.2007.4284831
http://dx.doi.org/10.1109/icip.2009.5414423
http://dx.doi.org/10.1145/1944846.1944852
http://dx.doi.org/10.1007/s10043-008-0005-0
http://dx.doi.org/10.1109/38.988747
http://dx.doi.org/10.1109/apsipa.2013.6694232

