
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.3 MARCH 2016
747

LETTER

Hash Table with Expanded-Key for High-Speed Networking

Seon-Ho SHIN†, Jooyoung LEE††, Jong-Hyun KIM††, Ikkyun KIM††, Nonmembers,
and MyungKeun YOON†a), Member

SUMMARY We design a new hash table for high-speed networking
that reduces main memory accesses even when the ratio of inserted items
to the table size is high, at which point previous schemes no longer work.
This improvement comes from a new design of a summary, called expanded
keys, exploiting recent multiple hash functions and Bloom filter theories.
key words: hash table, Bloom filter, multiple hash functions

1. Introduction

Networking applications process packets at an extremely
fast line speed (40 Gbps for OC-768 and 16.4 Tbps in ex-
perimental systems) [1]. Since hash tables support INSERT,
SEARCH, and DELETE operations with O(1) time com-
plexity, they are widely used in networking applications, in-
cluding per-flow state measurement, traffic estimation, rout-
ing table lookup and packet classification [2].

In general, hash tables are maintained in main mem-
ory such as DRAM (also called off-chip memory). While
hash functions can be computed rapidly, accessing DRAM
is still relatively slow [1]–[3]. An additional DRAM access
is required whenever a hash collision happens, which dete-
riorates the performance. Moreover, a hash table of small
size causes a significant variation in the number of DRAM
accesses due to hash collisions. The cost varies by a factor
of four or more [2], which may not be acceptable for delay-
sensitive applications.

Previous work tackles this problem by introducing an
extra summary space in fast but small on-chip memory such
as SRAM. This summary is looked up first and gives a hint
on the optimal location in DRAM. For example, a fast hash
table (FHT) [2], the state-of-the-art scheme, keeps a sum-
mary that is implemented as a counting Bloom filter [4]. The
past research reduces the number of main memory accesses,
but it requires the number of hash table slots to be 6∼10
times larger than the number of items stored [2], [5]. We ob-
serve that this space waste is too much, which motivates us
to design a new summary structure for a hash table.

Our proposed scheme uses a counting Bloom filter as
a summary in SRAM, which has been adopted in previous

Manuscript received September 15, 2015.
Manuscript revised November 2, 2015.
Manuscript publicized December 11, 2015.
†The authors are with Kookmin University, Seoul, Korea.
††The authors are with Electronics and Telecommunications

Research Institute (ETRI), Daejeon, Korea.
a) E-mail: mkyoon@kookmin.ac.kr

DOI: 10.1587/transinf.2015EDL8201

work [2], [5]. The new contribution of our proposed scheme
is that hash collisions are resolved with multiple hash func-
tions and the design of summary space is not restricted by
the hash table size. Additionally, our proposed scheme does
not require any extra reorganization step by inserting a new
item optimally distributed over the hash table.

Although summary-based hash tables, including ours,
are invented for high-speed networking, we stress that they
can also be applied in any computing areas.

2. Related Work

Song et al. propose a fast hash table (FHT) that reduces a
number of DRAM accesses [2]. A summary is maintained
in fast on-chip memory as a counting Bloom filter. The
size of counting Bloom filter should equal that of hash ta-
ble. When a new item is inserted, FHT first looks up each
of the item’s hash index in the counting Bloom filter. The
item is inserted into the hash slot matching to the smallest
counter value of the counting Bloom filter. After the item
is inserted, the counter increases by one. For SEARCH, the
hash slot corresponding to the smallest counter is selected to
look up. Of course, the smallest counter of an item may later
becomes larger than the others. Then, any item not located
at the smallest counter should be moved into the smallest
counter position. This rearrangement process requires extra
DRAM accesses. Actually, INSERT and DELETE opera-
tions of FHT require multiple DRAM accesses. To miti-
gate this weakness, FHT requires a large number of extra
slots. According to the paper’s experiments [2], the number
of slots is ten times larger than the number of items.

Kirsch and Mitzenmacher provided another summary-
based hash table [5]. They use a multilevel hash table with
independent sub-tables. Each sub-table is associated with
a unique hash function. The construction of a table has
a strong skew property in that the first sub-table contains
most of the items, the second sub-table contains most of
the rest, and so on. The summary is located in SRAM,
which consists of Multiple counting Bloom Filters (MBF),
one per sub-table. This approach sequentially probes mul-
tilevel hash tables when a new item is inserted unlike FHT.
Therefore, the chance to find an empty slot is increased, but
the process requires extra delay time. But, this still requires
a lot of extra slots; the length of the hash table is config-
ured six times longer than the number of stored items [5].
Another serious problem with MBF is that an item may not

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers

748
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.3 MARCH 2016

be inserted into a hash table if all of the available slots are
already occupied, which is called a crisis. When a new IN-
SERT causes a crisis, the hash table fails to store that item.
The interested reader is referred to [5] for more information.

A summary-based hash table includes a counting
Bloom filter that supports a DELETE operation [4]. When
a counter reaches its maximum value, for example 15 for
a 4-bit counter, additional INSERT would trigger an over-
flow and continuous DELETE operations may cause the fil-
ter to lose information. However, the authors of the counting
Bloom filter proved that 4-bit counters are generally large
enough to keep the overflow probability minuscule [4]. In-
cluding this paper, summary-based hash tables [2], [5] uti-
lizes a counting Bloom filter of 4-bit counters. The issues
around the optimal configuration of the counting Bloom fil-
ter is beyond the scope of these papers.

A Bloomier filter returns the value for a queried
item [6]. When the set of items and the corresponding val-
ues are static, there are linear space solutions. However, this
approach is not fit for networking applications or any others
where INSERT or DELETE is required during the operation
of the filter.

Broder and Mitzenmacher provided d-left scheme [7].
They use multiple hash functions and multiple-choice to
evenly distribute items into a hash table. Recently, Kanizo
et al. propose how to maximize the throughput of d-left hash
tables by using a bipartite graph model [8]. These schemes
require d lookups for DRAM in parallel to reduce the de-
lay time for memory accesses, but it imposes costs of other
resources, such as pin count in hardware [5].

3. Fast and Compact Hash Table (FCH)

3.1 Definitions and Architecture

Let E = {e1, e2, . . . , en} be the set of items to be stored in a
hash table. The key value of ei is denoted as yi, and therefore
yi = ei.key. Let m be the number of slots in the hash table.
The ith slot in the table is denoted as T [i], 1 ≤ i ≤ m. We
use multiple hash functions. Let k be the number of hash
functions, and this pool of hash functions is denoted as H =
{h1, h2, . . . , hk}. We term hi the ith hash function and i is
the id, or label of the hash function. We assume that the
hash functions are independent each other. Inserting ei into
the hash table, we compute k hash functions, from h1(yi) to
hk(yi), and one slot is chosen for INSERT.

Suppose that the jth hash function is chosen for insert-
ing ei. Then, we insert ei into the slot of T [h j(yi)]. We
term such an hj an assigned hash function (A-function) for
ei, and denote its label j as a(yi). We define an expanded
key for yi as ‘yi||a(yi)’ where ha(yi) is the A-function and ||
is a string concatenation operation. Note that each key and
A-function should be extended to a fixed length of digits.
For example, the length of the key and A-function is 32 and
4, respectively, the length of the expanded key is fixed at
36. We use x(yi) to denote yi’s expanded key, and therefore
x(yi) = yi||a(yi).

Fig. 1 Architecture of fast and compact hash table (FCH).

For collision resolution, we use a chaining scheme by
placing all the items that hash to the same slot into the same
linked list. Therefore, T [i] contains a pointer to the head of
the list of all stored items that hash to i. For simplicity, we
use T [i][j] to denote the jth item in T [i], 1 ≤ j ≤ n, although
T is not a real two-dimensional array. We define the length
of T [i] as the number of items in that linked list, and denote
it as T [i].length. If there is no item in T [i], we say T [i] is
empty. We define the load factor, α, for T as n/m where n is
the number of items stored in the hash table.

The architecture of FCH is shown in Fig. 1. It consists
of a hash table and a summary. The hash table, T [m], is built
in DRAM, and the summary is located in SRAM. Each slot
of the hash table has a pointer to a linked list. The summary
is implemented with two arrays, a counting Bloom filter of
size t, and a bit array of size m, denoted as B[t] and I[m],
each cell of which is initialized to zero. I is an indicator bit
array; if I[i] is zero, it means that T [i] is empty. B records
expanded keys. These arrays are compact and can be placed
in SRAM.

The signatures of expanded keys are programmed into
B, the counting Bloom filter, which is a hash-based data
structure that stores a set of items compactly [4]. It is based
on a traditional Bloom filter, but can support the DELETE
operation the Bloom filter cannot provide. Here, an item is
an expanded key. The ith counter is denoted as B[i], and all
counters are initialized to zero. Each counter requires only
few bits, for example four bits per counter, the soundness of
which is proved in [4]. We use c to denote the number of
bits per counter. The counting Bloom filter computes r hash
functions on each item, and this pool of hash functions is
denoted as G = {g1, g2, . . . , gr}. Each hash function returns
an address of array B. Note that the hash function pools of
H and G are different, and they are used for hash table T and
counting Bloom filter B, respectively.

3.2 Operations

When inserting ei, multiple hash functions are computed
from h1(yi) to hk(yi) to find an empty slot. If multiple empty
slots are found, we choose the hash function of the smallest

LETTER
749

Fig. 2 INSERT for the fast and compact hash table (FCH).

Fig. 3 SEARCH for the fast and compact hash table (FCH).

label value for tie-breaking. Figure 2 shows the INSERT al-
gorithm for FCH. Note that ei is inserted into the linked list
of the last hash index, which can work the same as any fair
load balancing for appending a new item.

When ei is searched for, we first look up the summary
where the expanded key may have been inserted. If this
value is obtained, we know the A-function for yi. Then,
applying the A-function to yi leads us to the exact slot in
the hash table. Therefore, we can search for the item with
a small number of DRAM accesses. Figure 3 shows the
SEARCH algorithm of FCH.

When ei is deleted, we first perform SEARCH. Then, ei

is removed from the linked list, and the counters are decre-
mented in the summary as follows:

B[gs(x(yi))] := max(B[gs(x(yi)|| j)] − 1, 0), 1 ≤ s ≤ r.

Comparing our proposed scheme with previous work,
we summarize the reason why the number of DRAM ac-
cesses could be reduced with FCH. Note that extra DRAM
accesses are required whenever a collision happens in hash
tables. In the previous work, collisions are resolved by in-
creasing the size of hash table, and therefore this approach
does not work with a large load factor. The design of sum-
mary space is also restricted by that of hash table; for ex-
ample, the counting Bloom filter size should equal the hash
table size [2]. We stress that our proposed scheme resolves
the hash collision problem by mapping every inserted item
with one of multiple hash functions. This mapping is based
on the policy that every item is optimally distributed over
the hash table. Additionally, the design of summary space is

not restricted by the hash table size in FCH.

4. Experiments

We evaluate FCH through experiments using real Internet
traffic traces, collected from a campus network. In our ex-
periments, we compare FCH with two existing summary-
based hash tables, FHT [2] and MBF [5]. Our evaluation is
based on the number of DRAM accesses as in [2], [5]. For
a fair comparison, we allocate the same number of slots and
items to different hash tables in the experiments. The num-
ber of items is fixed, and α is changed from 0.1 to 1.0 while
the memory size is accordingly changed.

Instead of implementing FCH, FHT, and MBF in hard-
ware, we compare the number of DRAM accesses. This
experimental comparison has been adopted in previous
work [2], [5]. Hardware implementation is not always pos-
sible and the main cost is caused by DRAM accesses rather
than SRAM. During the experiments, we observe that FCH
requires less SRAM accesses, compared with FHT and
MBF. The reason is that extra SRAM accesses are required
when a hash table collision happens [5] or a new inserted
item triggers table reorganization [2]. Note that FCH causes
less collisions and no reorganization step is required.

The key value for hashing is defined as a combina-
tion of source and destination IP addresses from the traf-
fic traces. We set n to 10,000 as in [5] and [2]. For our
experiments, we use the first 10,000 distinct keys from the
traffic traces. We insert these 10,000 keys into three hash ta-
bles, FCH, FHT, and MBF, respectively, and count the num-
ber of DRAM accesses. Then, each count is divided by n,
which makes the average number of DRAM accesses per
INSERT. Next, we search these 10,000 keys from each ta-
ble, and compute the average number of DRAM accesses
per successful SEARCH. The same process is repeated for
DELETE. For unsuccessful SEARCH, we randomly gener-
ate 10,000 keys that the traffic traces do not include. We try
to search each table for these 10,000 keys.

We obtain interesting results from the experiments;
FCH saves more DRAM accesses than other hash tables
over any α. FHT requires DRAM accesses more than 8
times FCH, for INSERT and DELETE operations. For
SEARCH, FHT reduces the cost to the level of FCH only
when α becomes as small as 0.1. In contrast, FCH keeps the
costs close to an optimal point even with large α of 0.8∼1.0.
Figure 4 shows the average numbers of DRAM accesses for
INSERT, successful/unsuccessful SEARCH, and DELETE,
respectively, from left to right. Each plot compares FCH and
FHT as α changes. We use k = 4 for FHT, and k = 4, r = 4,
and 64 KB is allocated equally to both FHT and FCH for
fair comparison. We observe that FCH outperforms FHT at
any different parameter configuration and memory size.

The plots reveal that FHT requires at least 8 DRAM
accesses for INSERT and DELETE while FCH keeps the
cost to the lowest point. For successful and unsuccessful
SEARCH, FCH always requires less DRAM accesses than
FHT. The difference becomes large as α increases. These

750
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.3 MARCH 2016

Fig. 4 FCH v.s. FHT. The plots show the average numbers of DRAM accesses for INSERT, successful
SEARCH, unsuccessful SEARCH, and DELETE, respectively, from left to right. Each plot compares
FCH and FHT as α changes.

Fig. 5 FCH v.s. MBF. The plots show the average numbers of DRAM accesses for INSERT, suc-
cessful SEARCH, unsuccessful SEARCH, and DELETE, respectively, from left to right. Each plot
compares FCH and MBF as α changes.

plots reveal that FHT reduces SEARCH costs alone only
when α is very small.

Figure 5 shows the average numbers of DRAM ac-
cesses for INSERT, successful SEARCH, unsuccessful
SEARCH, and DELETE, respectively, from left to right.
Each plot compares FCH and MBF as α changes. Both
schemes are assigned 99 KB for the summary space.
FCH performs better than MBF except for unsuccessful
SEARCH, but the difference is not significant. Actually,
both schemes keep the costs to optimal points. During the
experiments, a crisis happens with MBF when α > 0.2. We
observe that FCH outperforms MBF at any different param-
eter configuration and memory size.

5. Conclusions

This paper proposes a new hash table that is able to reduce
the number of DRAM accesses for all the dictionary op-
erations of INSERT, SEARCH, and DELETE, over a wide
range of load factor. The proposed scheme successfully re-
duces DRAM accesses while keeping the hash table com-
pact, which has not been achieved by previous work.

Acknowledgments

This work was supported by Institute for Information &
communications Technology Promotion (IITP) grant funded
by the Korea government (MSIP) (B0101-15-0300, The De-
velopment of Cyber Blackbox and Integrated Security Anal-
ysis Technology for Proactive and Reactive Cyber Incident
Response).

References

[1] T. Li, S. Chen, and Y. Ling, “Fast and compact per-flow traffic mea-
surement through randomized counter sharing,” Proc. IEEE INFO-
COM ’11, pp.1799–1807, April 2011.

[2] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast hash
table lookup using extended Bloom filter: An aid to network process-
ing,” Proc. ACM SIGCOMM, pp.181–192, Aug. 2005.

[3] A. Kumar, J. Xu, J. Wang, O. Spatschek, and L. Li, “Space-code
Bloom filter for efficient per-flow traffic measurement,” Proc. IEEE
INFOCOM 2004, pp.1762–1773, March 2004.

[4] L. Fan, P. Cao, J. Almeida, and A.Z. Broder, “Summary cache: A
scalable wide-area Web cache sharing protocol,” IEEE/ACM Trans.
Netw., vol.8, no.3, pp.281–293, June 2000.

[5] A. Kirsch and M. Mitzenmacher, “Simple summaries for hashing with
choices,” IEEE/ACM Trans. Netw., vol.16, no.1, pp.218–231, Feb.
2008.

[6] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The Bloomier fil-
ter: An efficient data structure for static support lookup tables,” Proc.
Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp.30–39, 2004.

[7] A. Broder and M. Mitzenmacher, “Using multiple hash functions
to improve IP lookups,” Proc. IEEE INFOCOM ’01, pp.1454–1463,
2001.

[8] Y. Kanizo, D. Hay, and I. Keslassy, “Maximizing the throughput of
hash tables in network devices with combined SRAM/DRAM mem-
ory,” IEEE Trans. Parallel Distrib. Syst., vol.26, no.3, pp.796–809,
2015.

http://dx.doi.org/10.1109/infcom.2011.5934979
http://dx.doi.org/10.1145/1090191.1080114
http://dx.doi.org/10.1109/infcom.2004.1354587
http://dx.doi.org/10.1109/90.851975
http://dx.doi.org/10.1109/tnet.2007.899058
http://dx.doi.org/10.1109/infcom.2001.916641
http://dx.doi.org/10.1109/tpds.2014.2314683

