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Feature-Based On-Line Object Tracking Combining Both
Keypoints and Quasi-Keypoints Matching

Quan MIAO†a), Nonmember, Chun ZHANG††b), Student Member, and Long MENG†††c), Nonmember

SUMMARY This paper proposes a novel object tracking method via
online boosting. The on-line boosting technique is combined with local fea-
tures to treat tracking as a keypoint matching problem. First, We improve
matching reliability by exploiting the statistical repeatability of local fea-
tures. In addition, we propose 2D scale-rotation invariant quasi-keypoint
matching to further improve matching efficiency. Benefiting from SURF
feature’s statistical repeatability and the complementary quasi-keypoint
matching technique, we can easily find reliable matching pairs and thus
perform accurate and stable tracking. Experimental results show that the
proposed method achieves better performance compared with previously
reported trackers.
key words: object tracking, statistical repeatability, quasi-keypoint, on-
line boosting

1. Introduction

Object tracking has attracted much attention due to its wide
variety of applications, from visual surveillance to human-
computer interfaces. Robust tracking involves several chal-
lenging issues, including low image quality, appearance
variations, illumination changes, cluttered backgrounds and
occlusion.

Many different tracking methods have been proposed,
from global template-based trackers [1]–[3] to local feature-
based trackers [4]–[6]. The global trackers attempt to local-
ize the object region using a bounding box and distinguish it
from background. In contrast, feature-based trackers detect
local features from the object region and establish feature
correspondences using distinctive descriptions. Then the
motion parameters are estimated based on the set of match-
ing candidates.

One critical issue is the model degradation caused by
inaccurate identification of the object region. Current model
updating is built on previous object region [7], thus slight
target locating errors accumulated in long-term tracking
will cause the appearance model to be updated with a sub-
optimal positive sample. Over time this can cause drift and
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degrade performance.
To overcome the above problems, this paper proposes a

feature-based object tracking method by incorporating both
keypoints and quasi-keypoint matching. As for keypoint
matching, we exploit the statistical repeatability of local
features. When a new frame arrives, only high confident
classifiers will be used, which leads to adaptive tracking
to large appearance change. However, in some cases key-
points detected in one image are not detected in another cor-
respondingly, due to geometric or photometric transforma-
tions. Thus we propose 2D scale-rotation invariant quasi-
keypoint matching to improve matching efficiency. Exper-
imental results show the satisfying tracking performance
of the proposed algorithm on several challenging video se-
quences.

2. Motion Model

In the reference frame (i.e., the keyframe), we extract local
features within the object region and initialize object repre-
sentation. The object representation contains sparse set of
SURF points [9] {b1, b2, . . . , bM} and their topological struc-
ture in the image domain. When a new frame arrives, we
first detect its SURF points, and then perform keypoint and
quasi-keypoint matching with the object representation. As
for keypoint matching, we employ our previously proposed
scheme [6] using on-line classifiers. The classifying mech-
anism mainly uses the boosting technique in [4]. The al-
gorithm of quasi-keypoint matching is presented in Sect. 3.
We are able to obtain target’s new location after homogra-
phy estimation by RANSAC. Finally, we update the model
to make the tracker adaptive to subsequent changes.

3. Proposed Algorithm

3.1 Statistical Repeatability of Local Features

The SURF-based detector has been proven to outperform
most previous detectors in terms of robustness and detec-
tion repeatability [8]. However, in some cases the appear-
ance variation between the current object and the original
model is significant, causing a certain part of feature corre-
spondences to become a nonentity. If we still use the clas-
sifiers to find their matches, the incorrect matching candi-
dates would result in invalid motion estimation. To over-
come this problem, we exploit the statistical repeatability of
SURF features, which can be illustrated in Fig. 1. Generally,
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Fig. 1 Local features’ repeatability change under different transforma-
tions.

the SURF points with large gray contrast along horizontal
or vertical direction are robust to photometric transforma-
tions. If the circle has a sharp center with smooth surround-
ing area, geometric transformation affects little.

In our scheme, we use detected keypoints {b1, b2, . . . ,
bM} as the representation of the object model. During
initialization of the object model, we build M classifiers
{C1,C2, . . . ,CM}, each corresponding to a keypoint bm of
the model. Given the keypoints set Υ = {γ1, γ2, . . . , γQ} de-
tected in the new frame, we employ the classifier Cm to com-
pute the confidence measure of each γq, and record point ϕm

by:

ϕm = arg max
γq∈Υ

Cm(γq). (1)

To further develop the statistical repeatability of SURF fea-
tures, we focus on those hat can best describe the current
object change with the object model, by on-line determin-
ing a ranking of their confidence measure. For each ϕm, we
compare its matching score Cm(ϕm) with a threshold λ. If
Cm(ϕm) exceeds λ, we consider the classifier Cm shows good
confidence of their adaption to current appearance varia-
tions and select ϕm as a reliable matching candidate. In case
Cm(ϕm) is below λ, we discard ϕm and convert to employ
quasi-keypoint matching, which is illustrated in Sect. 3.2.

3.2 Quasi-Keypoint Matching

For each object keypoint of the model, we employ a N × N
neighborhood from the reference image to capture its vari-
ation in the local appearance. Although the patch itself is
fixed, we improve its property using scale space representa-
tion. The scale space is divided into octaves. Image patches
in different octaves are centered around the corresponding
keypoint with the same size but describe scale changes us-
ing image interpolation and down-sampling. Each octave
represents a series of patches with rotation changes. The
whole space starts from the practical patch around the de-
tected object interest point. First we locate this patch in
the correct position of the space based on the correspond-
ing keypoint’s actual scale and dominant orientation infor-
mation (similar to the space representation in [9]), and then

Fig. 2 Construction of the general 2D scale-rotation space for object
keypoint of the model.

enrich its neighborhood. Figure 2 shows the process of the
general 2D scale-rotation space construction for a certain in-
terest point. The scaling factors for the four octaves are 1.0,
2.0, 4.0, 8.0 respectively. The degree intervals of dominant
orientation for each octaves are (0, π/2), (π/2, π), (π, 3π/2),
(3π/2, 2π), respectively.

In most practical situations, classifier-based matching
in Sect. 3.1 is reliable to generate a good matching candi-
date. However, sometimes even the maximum confidence
for a certain classifier is too small, especially when signif-
icant transformations occur. Thus it’s highly possible that
the point ϕm is a wrong correspondence and the true corre-
sponding point has not been detected at all, which will cause
false matching candidate. Right now we employ the corre-
sponding 2D space and switch to “quasi-keypoint match-
ing”. Specifically, we sequentially use each patch of the
space corresponding to point bm as the template to find its
most matched patch in the searching area of the current
frame. Among the patches of the general 2D space, we
record the one providing the best matching score and its po-
sition in the 2D space. The matched patch in the current
frame is the so-called quasi-keypoint (location is the cen-
ter of the patch), whose scale and dominant orientation can
be obtained based on the recorded 2D position. Then the
matching candidate ϕm changes into this quasi-keypoint and
the matching score is updated.

With the help of the proposed quasi-keypoint match-
ing, we are able to improve the detection repeatability and
obtain more correct matching pairs. However, the template-
based quasi-keypoint matching results in higher computa-
tion, compared to the classifier-based keypoint matching.
Thus we restrict the searching area to a local region around
the object region in the last frame. Also, sampling the lo-
cal region with a certain sampling step can further improve
computing efficiency without sacrificing the performance.

Similarly, the set of matching candidates Ψ =

{ϕ1, ϕ2, . . . , ϕM} is established by using the same operation
on Υ. Figure 3 shows an example of our combined match-
ing. The quasi-keypoints are represented by rectangles.
Such establishment of reliable matches is better suited for
accurate motion estimation.
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3.3 Model Updating

After identifying the current object region, we will update
all the components. First we use the estimated motion pa-
rameter to perform a verification procedure over the sug-
gested matches, obtaining a subset of correct matches (in-
liers). On the one hand, if the correct match comes from
keypoint matching, we update the corresponding classifier
and the 2D scale-rotation space representation, using the
matched keypoint as positive sample. More details can be
referred in [6]. On the other hand, we only update the 2D
space in case the correct match belongs to quasi-keypoint
matching. We apply no updates on false matching candi-
dates. Finally, we record the current object location. When
next frame arrives, we efficiently detect its keypoints within
a local neighborhood covering the current object region.

No matter whether keypoint matching or quasi-
keypoint matching each pair of correct match is from, we
apply our 2D space representation updating scheme. We
crop out the local patch Y around the positive sample in the
current frame and locate it in the corresponding position in
the 2D general space. For keypoint matching, the corre-
sponding position is determined by the scale and dominant
orientation of the matched keypoint. The corresponding po-
sition for quasi-keypoint matching is recorded by the patch
of the 2D space providing the best matching score. Assume
the id of the corresponding positive in the 2D space is i and
the patch Pi already has Li observations, we first update Pi

by:

Li = Li + 1, (2)

Pi = Pi +
1
Li

(Y − Pi). (3)

Equation (3) works out the weighted sum of the two patches,
which is visualized using Fig. 4. Similarly, the other patches
in this 2D space can be updated after a series of appropriate
scale and rotation transformations on the local patch around
the positive sample.

Fig. 3 Matching based on both keypoints and quasi-keypoints.

Fig. 4 The process of patch updating by weighted sum of the two
patches.

4. Experimental Results

We carry the proposed algorithm on various videos with the
size of 640 × 480 for experimental verification. These se-
quences are captured under complex appearance changes,
containing scale, rotation and viewpoint transformations.
For each keypoint, a classifier consists of 20 selectors se-
lected from a global weak classifier pool holding 250 weak
hypotheses. The general 2D scale-rotation space for each
point contains totally 4×4 patches for quasi-keypoint match-
ing and updating. The size of each patch is 40 × 40. After
combined keypoint matching, we choose the best 40 match-
ing candidates to perform RANSAC. If the number of in-
liers exceeds 10 (the percentage is above 25%), the object is
tracked based on the estimated homography. To accelerate
the whole tracking process, we implement the SURF-based
keypoint detection using CUDA [10]. The platforms used
are NVIDIA’s GTX480 card and Intel E8400 3.0GHz CPU.
The resulted CPU-GPU cooperative tracking system runs at
a real-time speed of 20fps. All parameters are kept fixed for
all the experiments.

For comparison, we implemented Grabner’s tracker [5].
Meanwhile, our previous feature-based tracker [6] is used.
Associated parameters and thresholds of these methods are
fixed to be the same as we use in this paper. Figure 5
shows the performance of tracking a bottle under rapid ap-
pearance change. Obviously, Grabner’s tracker fails once
complex appearance occurs (e.g., the 53th frame), because
the keypoints are detected using Harris corner very sen-
sitive to scale and rotation changes. As for the previ-
ous feature-based tracker, drifting has seriously influenced
the performance because tracking region is distorted (e.g.,
the 252th frame) as the tracking errors accumulated over
frames, which leads to tracking failure in the 351th frame. In
contrast, the proposed method successfully overcomes the
drifting problem. The reason is two-fold. First, we focus on
the relation between the reference frame and each incoming
frame instead of successive frames. Second, our making use
of statistical repeatability helps to improve local features’
repeatability.

Fig. 5 Tracking a bottle under scale and rotation changes. From left to
right column, the first, 53th, 252th and 351th frame.



LETTER
1267

Fig. 6 Tracking a notebook under rapid scale and rotation change. From
left to right column, the first, 63th, 158th and 348th frame.

Fig. 7 Number of correct matches of the proposed algorithm and the per-
centage of quasi-keypoint used.

Next, we validate the superiority of using quasi-
keypoints. For comparison, the proposed method without
quasi-keypoints is added. As is shown in Fig. 6, the pro-
posed method without quasi-keypoints fails once the object
change becomes complex (e.g., the158th and 348th frame).
In contrast, supplementing quasi-keypoints enhanced the to-
tal detection repeatability and thus ensured the matching ef-
ficiency, which is well suited for the affine changes.

To make a quantitative comparison, we consider the
number of correct matches certificated by RANSAC for
each frame using the proposed method. As the object
changes are relatively small in the first few frames, the num-
ber of matches keeps a high ratio. Thus the use of quasi-
keypoints is not necessary. However, when significant ob-
ject changes occur, correct matches of keypoints may not
be sufficient. Right now we turn to quasi-keypoints match-
ing. Figure 7 simultaneously shows a comparison between
the proposed method with quasi-keypoints and that with-
out quasi-keypoints. Take the 158th frame for example,

large appearance changes occur. Tracking will fail (the per-
centage of correct matches is below 25%) without quasi-
keypoints. More quasi-keypoints (38%) are employed for
matching and the formed matching candidates (77%) be-
come reliable again. Thus the keypoint matching and the
quasi-keypoint matching complement one another and the
tracking stability can be preserved.

5. Conclusion

This paper presents an on-line object tracking algorithm by
incorporating both keypoints and quasi-keypoint matching.
In contrast to existing approaches, we exploit the statistical
repeatability of local features and therefore the most reliable
matching candidates are selected using classifiers. In addi-
tion, the construction of 2D scale-rotation invariant quasi-
keypoint further complements matching. Experimental re-
sults verify that our approach outperforms the state-of-art
tracker to achieve stable and robust tracking.
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