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Accelerating Multi-Label Feature Selection Based on Low-Rank
Approximation

Hyunki LIM†, Jaesung LEE†, Nonmembers, and Dae-Won KIM†a), Member

SUMMARY We propose a multi-label feature selection method that
considers feature dependencies. The proposed method circumvents the pro-
hibitive computations by using a low-rank approximation method. The em-
pirical results acquired by applying the proposed method to several multi-
label datasets demonstrate that its performance is comparable to those of
recent multi-label feature selection methods and that it reduces the compu-
tation time.
key words: multi-label feature selection, multivariate feature selection,
feature dependency, Nyström method

1. Introudction

Recently, with the advancement of multi-label data analy-
sis related to modern applications that involve multiple con-
cepts [1], knowledge-mining research has provided informa-
tion that is vital to achieve the distinct objectives of these
applications. Such applications include conventional text
categorization [2], image annotation, sentiment analysis for
brand and social network service such as Twitter [3].

Large numbers of features degrades the speeds of ma-
chine learning algorithms, the generality of knowledge, and
the interpretability of the explored models [4]. Multi-label
feature selection is considered a solution that can effectively
avoid the aforementioned problems [5], [6]. Conventional
multi-label feature selection methods evaluate the impor-
tance of each feature independently; therefore, the depen-
dencies among features are ignored [2]. As a result, a com-
pact multi-label feature subset cannot be obtained because
a selected feature subset will necessarily contain redundant
features, that is, features that are similar to one another [6].
To resolve this practical problem, a multi-label feature selec-
tion method must consider the feature dependencies during
its feature selection process. However, these methods typi-
cally require additional computation to evaluate the feature
dependencies.

Recently, multi-label quadratic programming feature
selection (MLQPFS) was introduced by Lim et al. [7]. It has
the advantage that it concurrently considers the dependen-
cies between the features and labels and among the features
by using a quadratic function without a special search algo-
rithm. However, although this method has this advantage, it
still requires additional computational time O(N2) (N is the
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number of features) to determine the feature dependencies.
In this paper, we propose a fast multi-label feature se-

lection method that considers the feature dependencies. To
develop this method, we extended the MLQPFS method and
endeavored to reduce the computational requirements in-
volved in determining the feature dependencies by using a
low-rank approximation. We decreased the time required for
feature dependency determination from O(N2) to O(Nk) (k
is the selected number from N features and is much smaller
than N) by using the MLQPFS method.

2. Proposed Method

Let W ⊂ RN denote an input space constructed from a set
of features F, where |F| = N, and let the patterns obtained
from W be assigned to a certain label subset λ ⊆ Y , where
Y = {y1, · · · , yM} is a finite set of labels with |Y | = M. The
feature selection problem involves obtaining the subset S
composed of n features from F(n � N) that is the most
dependent upon multiple labels Y .

We formulated an objective function that simultane-
ously considers the dependencies among features and be-
tween the features and labels [7]. In this section, the
MLQPFS objective function is introduced. The n features
with the highest weight values can be determined by min-
imizing the objective function of an N-dimensional vector.
Similar features should not be included in S because the
number of features selected is limited to n. Thus, the de-
pendencies among the selected features in S should be min-
imized, whereas the dependency between S and Y should
be maximized. This concept can be naturally represented
by a quadratic objective function. The objective function of
x ∈ RN can be written as

f (x) =
1
2

xT Qx − cT x, (1)

subject to x1, . . . , xN ≥ 0. In this study, Q ∈ RN×N was
computed as

Qi j = I( fi; f j), (2)

where Qi j represents the dependency between fi and f j and
I( fi; f j) means mutual information. Mutual information can
be calculated as

I( fi; f j) = H( fi) + H( f j) − H( fi, f j) (3)

where H(T ) = −∑
t∈T P(t) log P(t) is the joint entropy of T .
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Element ci of a non-negative vector c ∈ RN in Eq. (1) rep-
resents the dependency between feature fi and the multiple
labels in the set Y and can be computed as

ci =
∑
y j∈Y

I( fi, y j). (4)

Calculating all of the feature dependencies for the ma-
trix Q using Eq. (2) may require significant time because the
number of features is large. To avoid excessive computation
time, our strategy involves calculating some of the elements
of matrix Q by using Eq. (2) and approximating the rest of
elements by employing low-rank approximation using the
previously calculated elements.

The matrix Q can be represented as the block matrix
shown in Eq. (5) to separate the elements being calculated
and approximated.

Q =

(
A B

BT E

)
, (5)

where A ∈ Rk×k, B ∈ Rk×(N−k), and E ∈ R(N−k)×(N−k)

(Note that the matrix Q is symmetric). A = Q1:k,1:k and
B = Q1:k,k+1:N . Suppose we only know [AB] of matrix Q.
In other words, the elements of [AB] are exactly calculated
by Eq. (2) and the elements of E (unknown part) will be ap-
proximated by the low-rank approximation.

We used the Nyström method to approximate E of Q.
The Nyström method is one of the most widely used low-
rank approximation methods [8], and it was employed to
solve single-label feature selection problem [9]. By apply-
ing the Nyström method, the approximated block matrices
Ê and Q̂ can be represented as

E ≈ Ê = BT A+B (6)

and

Q̂ =

(
A B

BT BT A+B

)
, (7)

where A+ indicates the pseudo-inverse of A. An approxi-
mated Q̂ can be obtained only through O(Nk) in Eq. (7) in-
stead of O(N2). We defined k

N (p) as the selection ratio. If p
is 1, the approximation of Q is not calculated in this method.

Because the Nyström method approximates the ele-
ments of E by using the elements of [AB], the selection of
[AB] from Q is important. Features high selection proba-
bilities should be calculated exactly, while features low se-
lection probabilities need not. Because features with large
ci and small Qi j are considered to be selected features with
high selection probabilities, the Qi j of features with large ci

should be calculated preferentially. Therefore, we selected
the features of [AB] by ordering the values obtained Eq. (4),
that is, the dependencies of the features on labels. [AB] fea-
tures with larger label dependencies selected. We defined
this selection method as the label selection method. In the
proposed method, Q is approximated according to Eq. (7)
and then the feature weight vector x can be obtained after

Algorithm 1 Procedures of the proposed method
1: procedure Proposed method
2: input { fi}Ni=1, {yi}Mi=1, p, r � n is number of selected features
3: k := round(N × p) � p is selection ratio
4: initialize Q ∈ RN×N , c ∈ RN

5: for i = 1 → N do
6: compute ci by

∑
y j∈Y I( fi, y j)

7: end for
8: sort c in descending order of c
9: sort f in descending order of c

10: for i = 1 → k do
11: for j = i → N do
12: compute Qi j by I( fi, f j) � O(Nk)
13: end for
14: end for
15: Q := Q + QT

16: A := Q1:k,1:k

17: B := Q1:k,k+1:N

18: Qk+1:N,k+1:N := BT A+B � Nyström method
19: solve min { 12 xT Qx − cT x}
20: sort f according to x in descending order
21: output top n features in f
22: end procedure

Table 1 Data sets used in the experiments.

Datasets Patterns Features Labels Domain
Corel5k 5,000 499 374 Images

Delicious 16,105 500 983 Text
Medical 978 1,449 45 Text
Scene 2,407 294 6 Images
Yeast 2,417 103 14 Biology

solving QP. The proposed method is summarized in Algo-
rithm 1.

3. Experimental Results

To analyze the applicability of the proposed method, we
present a comparison of the results obtained by applying the
feautre selection methods to real-world data sets. Table 1
lists the data sets used in our experiments; these sets have
been widely used for comparative purposes in multi-label
classification [10]. To evaluate the performances of the fea-
ture selection methods, we compared their execution times
and classification accuracies. The feature subsets selected
by each multi-label feature selection method were evaluated
by using a multi-label naive Bayes (MLNB) classifier [5].
The performance was assessed by using multi-label accu-
racy and Hamming loss [1]. High multi-label accuracy and
low Hamming loss indicate good multi-label classification
performance respectively. We evaluated the performance of
the method using a 20% holdout set. The experiments were
repeated 30 times, and the average value was used to repre-
sent the classification performance.

We compared the execution time of the ELA+CHI [2],
MLQPFS [7] and pairwise multi-label utility (PMU) [6]
method with that of newly proposed method. The selec-
tion ratio for the feature dependency approximation of the
proposed method is set by 5%. Table 2 shows the execution
times (in seconds) and classification performance (n = 10)
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Table 2 Comparison of multi-label feature selection methods.

Datasets Methods Time M. Acc. H. Loss

Corel5k

ELA+CHI 54.0 0.006 0.010
PMU 65,423.5 0.000 0.009

MLQPFS 314.5 0.006 0.010
Proposed 202.1 0.006 0.010

Delicious

ELA+CHI 20,566.0 0.025 0.020
PMU ≥ 3 days - -

MLQPFS 1,828.1 0.065 0.021
Proposed 1,478.6 0.060 0.021

Medical

ELA+CHI 3.9 0.371 0.020
PMU 2,877.2 0.487 0.018

MLQPFS 383.6 0.463 0.022
Proposed 87.1 0.511 0.018

Scene

ELA+CHI 1.2 0.264 0.271
PMU 71.0 0.411 0.148

MLQPFS 19.3 0.335 0.201
Proposed 2.8 0.341 0.221

Yeast

ELA+CHI 3.2 0.469 0.227
PMU 49.6 0.457 0.226

MLQPFS 2.6 0.469 0.226
Proposed 0.8 0.459 0.232

for the proposed and conventional methods. The time con-
sumed by the proposed method is reasonable in compari-
son with conventional methods. In particular the proposed
method is always faster than the PMU and MLQPFS that
consider feature dependency. For the Delicious data set, we
could not obtain the execution time of the PMU because it
consumed more than 3 days.

Figure 1 shows the classification accuracies of the pro-
posed and conventional methods. The vertical axis repre-
sents the multi-label accuracy, and the horizontal axis rep-
resents the number of selected features. In all data sets, the
performance of the proposed method and MLQPFS is simi-
lar. The results of Corel5k and Delicious data sets show that
the proposed method and MLQPFS are the best performance
regardless of the number of selected features. In the Medi-
cal data set, when the number of features is smaller than 15,
ELA+CHI shows the worst performance. When the number
of features is larger than 15, almost all methods shows simi-
lar performance. In the Scene data set, the PMU showed the
better performance than other methods. The PMU, which
calculates higher-order mutual information, is appropriate
for the Scene data set because it contains dense features and
labels. However, we see that the PMU is the slowest in the
Scene data set, while the proposed method and MLQPFS
show similar performance. In all experiments, the proposed
method is statistically the same as the MLQPFS method ac-
cording to the paired t-test. From Table 2 and Fig. 1, it can
be concluded that consumed time of the proposed method
is reasonable in comparison with the conventional methods
and its accuracy is similar to that of the MLQPFS method.

In previous Nyström method studies, various selection
methods (so-called sampling methods) were introduced for
the Nyström method. Different selection methods have dif-
ferent sensitivities to approximation error. The most widely
used are the random and diagonal techniques [8]. To ana-
lyze the effects of the selection method used for the Nyström
method and to demonstrate the superiority of the proposed

Fig. 1 Comparison of multi-label accuracies of proposed and
conventional methods.
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Table 3 Comparison of classification accuracies when n = 10.

Datasets
Sampling Selection ratio (%)
method 5 10 15 20

Corel5k
Random 0.0057 0.0057 0.0058 0.0056
Diagonal 0.0057 0.0057 0.0056 0.0056

Label 0.0068 0.0066 0.0067 0.0067

Medical
Random 0.4419 0.4400 0.4441 0.4470
Diagonal 0.4470 0.4470 0.4484 0.4477

Label 0.4967 0.4868 0.4888 0.4870

Table 4 Comparison of classification accuracies when n = 20.

Datasets
Sampling Selection ratio (%)
method 5 10 15 20

Corel5k
Random 0.0122 0.0118 0.0119 0.0119
Diagonal 0.0122 0.0120 0.0122 0.0121

Label 0.0138 0.0143 0.0145 0.0144

Medical
Random 0.4837 0.4853 0.4819 0.4921
Diagonal 0.4962 0.4982 0.5011 0.5008

Label 0.5289 0.5270 0.5280 0.5361

method, we compared the feature dependency approxima-
tion errors of the selection methods. Tables 3 and 4 present
the more detailed results of the approximation methods
when the number of selected feature was 10 and 20, respec-
tively. The bold text indicates the best performance. The
classification accuracies for each of the selection methods
are shown for selection ratios of 5%, 10%, 15%, and 20%.
For the Corel5k and Medical data sets, the proposed method
(denoted as “Label” in Tables 3 and 4) shows performance
better than those of the conventional methods in all of the
experimental settings. From Tables 3 and 4 we can conclude
that the approximation error affects the feature selection re-
sults and that when the error is low, better feature selection
performance is expected.

4. Conclusion

In this paper, we presented a low-rank approximation-based
multi-label feature selection method. To efficiently assess
the dependencies of the input features in multivariate situa-
tions, our proposed method uses the Nyström method to cal-
culate the feature dependencies. The results of the compar-
isons conducted on three real-world data sets from different
domains indicate that our proposed method consumes less
time than conventional methods and that it maintains accu-
racy. Because the proposed method accelerates the multi-
label feature selection process, it can be applied to several

modern applications that incur explosive features.
However, our proposed method still requires further in-

vestigation, as the c time is still excessive and no theoretical
analysis has been performed. Future studies should also in-
clude label dependency approximations. If we can approxi-
mate the label dependency for multi-label applications, then
the proposed method may be more useful for multi-label
feature selection. In future work, we will study these issues
further.
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