
1678
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.6 JUNE 2016

LETTER

Dominant Fairness Fairness: Hierarchical Scheduling for Multiple
Resources in Heterogeneous Datacenters

Wenzhu WANG†a), Nonmember, Kun JIANG†, Student Member, Yusong TAN†, and Qingbo WU†, Nonmembers

SUMMARY Hierarchical scheduling for multiple resources is partially
responsible for the performance achievements in large scale datacenters.
However, the latest scheduling technique, Hierarchy Dominant Resource
Fairness (H-DRF) [1], has some shortcomings in heterogeneous environ-
ments, such as starving certain jobs or unfair resource allocation. This is
because a heterogeneous environment brings new challenges. In this pa-
per, we propose a novel scheduling algorithm called Dominant Fairness
Fairness (DFF). DFF tries to keep resource allocation fair, avoid job star-
vation, and improve system resource utilization. We implement DFF in the
YARN system, a most commonly used scheduler for large scale clusters.
The experimental results show that our proposed algorithm leads to higher
resource utilization and better throughput than H-DRF.
key words: hierarchical scheduling, heterogeneous datacenter, multiple
resources, H-DRF

1. Introduction

Datacenters are becoming increasingly popular in the big
data processing domain. One of its important features is
that it provides multiple types of resources, such as CPUs,
memory, and coprocessors [2]. Data processing tasks can
use several of them to process their data set. Therefore,
scheduling these resources efficiently is an important factor
for obtaining high performance. For this reason, there has
been much research on multiple resource scheduling [3]–
[6]. Among them, the most famous one is the Dominant Re-
source Fairness (DRF) [7] scheduling algorithm, which has
already been integrated into the Hadoop YARN [8] system,
the most commonly used scheduler for large scale clusters.

Because hierarchical scheduling can reflect organiza-
tional priorities, it has been supported by most schedul-
ing systems, such as the Capacity Scheduler [9] and Fair
Scheduler [10]. Taking Fig. 1 as an example, a leaf node
represents a demanding job, and a non-leaf node repre-
sents a department or job queue. Each node i has a weight
wi, which is a basis for obtaining resources, i.e., node n3

should get w3/
∑4

i=1 wi resources from its parent node nr,
and node n3,1 should get w3,1/

∑2
i=1 w3,i resources from n3.

Because DRF has some shortcomings with respect to hier-
archical scheduling, Arka et al. proposed Hierarchy DRF
(H-DRF) [1], which can deal with the issues in DRF such as
resources left unallocated or the starving of certain jobs.

It is noteworthy that heterogeneity is a newly emerg-

Manuscript received December 12, 2015.
Manuscript publicized March 3, 2016.
†The authors are with College of Computer, National Univer-

sity of Defense Technology, China.
a) E-mail: wenzhuw@gmail.com

DOI: 10.1587/transinf.2015EDL8253

Fig. 1 Example of organizational hierarchy.

ing feature for multiple resources, which means that there
are large differences in the number and performance of dif-
ferent resources [11]–[13]. For example, in our real data-
center, Tianhe-2 system [14], the ratio of the CPUs to co-
processors is as high as 16. In addition, the performance
between the CPUs and coprocessors also varies consider-
ably [15]. However, hierarchical scheduling in a heteroge-
neous environment brings new challenges. First, it is diffi-
cult to allocate asymmetrical multiple resources fairly based
on the dominant resource because the resources with lower
amounts have a low allocation priority. Second, unfair re-
source allocation may result in some resources saturating
quickly, so certain jobs, which are only allocated a few re-
sources, may be starved because of the lack of saturated re-
sources. Moreover, unfair resource allocation can also result
in low resource utilization. Unfortunately, neither DRF nor
H-DRF can handle these issues.

In this paper, we introduce Dominant Fairness Fairness
(DFF), a novel hierarchical scheduling algorithm for mul-
tiple resources allocation in both heterogeneous and non-
heterogeneous clusters. This algorithm attempts to satisfy
the resource demands fairly among all jobs and share the
unused resources among other nodes with demands. More-
over, DFF can also avoid the job starvation that results from
unfair resource allocation. Finally, we implement the DFF
algorithm in a Hadoop YARN system, the most commonly
used scheduler for large scale clusters, to schedule real di-
verse workloads.

To evaluate the performance of DFF, we ran five real
workloads in a CPU-MIC heterogeneous cluster and sched-
uled these workloads using both H-DRF and DFF. The ex-
perimental results show that DFF outperforms the H-DRF

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers

LETTER
1679

scheduling algorithm in terms of resource utilization and
system throughput.

2. H-DRF

Before introducing H-DRF, we present Fig. 1 as an example
to introduce some basic concepts. The parent of a node is
given by P(), i.e., P(n1) = nr, and the set of the children
of node ni is given by C(ni). Function A() tasks a set of
nodes and returns the subset of those nodes that are currently
demanding resources, and Aj() returns the subset that are
currently demanding resource j. For example, if node i is
demanding resource j, it should get a fraction of resource j
from its parent as follows.

wi
∑

k∈Aj(C(P(ni))) wk
(1)

In DRF scheduling, each job has a dominant resource,
which is the resource that has the highest share of the sys-
tem’s total resources. DRF seeks to equalize the dominant
shares across all jobs. However, using DRF in hierarchical
scheduling may starve certain jobs or leave resources unal-
located. Therefore, H-DRF generalizes the DRF algorithm
to support hierarchical scheduling by rescaling the resource
consumption vector of the non-leaf nodes. For example, as-
sume a non-leaf node N has several children demanding re-
sources and child i has the minimum dominant share Mi. For
each child j (j ∈ A(C(N))), the resource consumption vec-
tor is then multiplied by Mi/Mj. Finally, all the children’s
rescaled vectors are summed to obtain node N’s resource
consumption vector.

By doing this, the real shared resource vector of node N
is reduced to improve the resource allocation priority. How-
ever, this also harms the fairness between all nodes because
the real value of the dominant resource has been changed.

3. DFF Scheduling

The objectives of DFF are to keep resource allocation fair,
avoid job starvation, and improve system resource utiliza-
tion. Before introducing DFF, we first define some concepts:
Fair Resource and Fairness. We then propose the dynamic
DFF scheduling algorithm.

3.1 Definitions

We first define the concept of a Fair Resource, which is the
prerequisite for Fairness.

Definition 1: Fair Resource: The amount of resources
that a node should get in fairness.

Each node has a Fair Resource vector FR, as Formula 2
illustrates, and f ri, j represents the ideal amount of resource
j (1 ≤ j ≤ m) that node i should be allocated in fairness.

FRi =< f ri,1, f ri,2, . . . , f ri, j > (2)

We can compute each f ri, j as follows: If node i does

Algorithm 1 UpdateFR(ni) pseudo-code
1: if ni is a leaf node then
2: do nothing
3: else
4: for all nodes c (c ∈ C(ni)) and j (1 ≤ j ≤ m) do
5: if node c needs resource j then
6: f rc, j = (f ri, j ∗ weightc)/

∑

k∈A j(C(ni))
weightk

7: else
8: f rc, j = 0
9: end if

10: UpdateFR(nc)
11: end for
12: end if

not need resource j, then f ri, j = 0. However, if node i needs
resource j, f ri, j is calculated according to

f ri, j =
f rP(ni), j ∗ wi
∑

k∈Aj(C(P(ni))) wk
(3)

where f rP(ni), j is the f r j of node i’s parent P(ni), wi

is the weight of node i, and set Aj(C(P(ni))) comprises the
sibling nodes of node i that also demand resource j. Using
Formula 3, all of resource j belonging to the parent node can
be fairly allocated to its children according to their weights.
Taking Fig. 1 as an example, nr is the root node, so FRnr =

R, where R is the total system resource vector. Node n3

should get resource j from nr as (f rnr , j ∗ w3)/
∑

k∈Aj(C(nr)) wk.
The Fair Resource of each node should be updated, i.e.,

reallocated, when a new job is submitted or an old job has
been completed. Algorithm 1 illustrates the pseudo-code
for updating FR in a hierarchical structure. It is a recursive
function, and should be called as UpdateFR(nr).

Definition 2: Fairness: The fairness of node i is the max-
imum ratio of the resource that it has consumed to the re-
source that it should get in fairness.

We use fi, j to represent the fairness of resource j (1 ≤
j ≤ m) of node i. Formula 4 illustrates the vector of node i’s
fairness vector Fi:

Fi =< fi,1, fi,2, . . . , fi,m > (4)

According to the definition of fairness, we can calcu-
late the value of fi, j as Formula 5, where ui, j is the amount
of resource j that node i has consumed.

fi, j =
ui, j

f ri, j
(5)

Finally, the fairness of node i fi is calculated as follows:

fi = maxm
j=1{ui, j/ f ri, j} (6)

Therefore, when ui, j is equal to f ri, j, it means that node
i has consumed all of the resource j that it should get in
fairness.

Resource Sharing: Function Y() takes a set of nodes
and returns the subset of those nodes that can be scheduled,
i.e., for each node i in Y(), Di ≤ R − C, where Di is the

1680
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.6 JUNE 2016

Algorithm 2 UpdateF(ni) pseudo-code
1: if ni is a leaf node then
2: fi = maxm

j=1 {ui, j/ f ri, j}
3: else
4: for all nodes c (c ∈ A(C(ni))) do
5: UpdataF(c)
6: end for
7: Ui =

∑
Uk (k ∈ C(ni))

8: fi = maxm
j=1 {ui, j/ f ri, j}

9: if fi > 1 && f j < fi (f j = min f in Y(A(C(ni)))) then
10: fi = f j

11: end if
12: end if

Algorithm 3 Dynamic DFF pseudo-code
1: ni = nr

2: while ni is not a leaf node do
3: nj = the node with the lowest fi in Y(A(C(ni)))
4: ni = nj

5: end while
6: Di ← demand of node i’s next task
7: C = C + Di

8: Ui = Ui + Di

9: UpdateF(nr)
10: if there is a new submitted job or an old finished job then
11: UpdateFR(nr)
12: end if

demand of node i’s next task, and C are the resources that
the system has consumed in total. A node is blocked if any
of the resources it requires are saturated, i.e., Y(A(ni)) = ∅,
but A(ni) � ∅. When node i is blocked, resource f ri, j may
not be completely consumed by node i, so the rest of f ri, j

can be shared by the other sibling nodes. As a result, node
k (k ∈ Aj(C(P(ni)))) can obtain extra resource j beyond
f rk, j, i.e., fk may be larger than one. Note that if fi of a
non-leaf node i is larger than one, we should check whether
f j < fi, where f j = min f in Y(A(C(ni))). This is because
when fi > 1, child node j may be blocked, and other sibling
nodes of node j may have extra resources. Therefore, when
node j is unlocked and f j < fi, we should make fi = f j

to reflect any new demands from node j. Algorithm 2 illus-
trates the pseudo-code for updating F in a hierarchical struc-
ture. It is also a recursive function, and should be called as
UpdateF(nr).

3.2 DFF

In this section, we propose the dynamic DFF algorithm
based on the concept of fairness. Algorithm 3 shows the
pseudo-code for DFF.

First of all, we find the leaf node i with the lowest fair-
ness and Y(A(ni)) � ∅. By increasing the lowest fi, DFF can
equalize the fairness across all nodes in a cluster. DFF then
allocates the demanded resources Di to node i. Meanwhile,
some tasks may have finished and released their resources
accordingly. Because the system resource consumption has
changed, DFF needs to update the fairness of each node. Fi-

nally, if there a new node submitted or an old node finished,
the Fair Resource should be updated, because the hierarchi-
cal structure of the system has been changed.

4. Evaluation

In this section, we evaluate the performance of DFF com-
pared with H-DRF. We first implement DFF in the YARN
scheduler, then compared it with H-DRF in a CPU-MIC
heterogeneous cluster. Finally, we show the experimental
results.

4.1 Experimental Setup

We deployed a CPU-MIC heterogeneous cluster for diverse
workload scheduling. The cluster includes seven comput-
ing nodes equipped with 14 CPUs and 21 MICs. The MIC
coprocessor is an Intel Xeon Phi 3120P, and the CPU is an
Intel Xeon E5-2670. Because each CPU has 24 hardware
threads, the total CPU resource is 336 (14× 24). Other con-
figurations are as follows: the host memory of each node is
136 G, the hard drive is a 500 G SATA3 magnetic hard disk,
and 64-bit RedHat 6.2 was used as the operating system.

We used five real diverse jobs, which are described in
Table 1, to evaluate the performance. The hierarchical struc-
ture was set as shown in Fig. 1.

4.2 Experimental Results

First, we observe the resource utilization for different algo-
rithms. Figure 2 shows the utilization of CPU, Memory, and

Table 1 Description of the input jobs.

Job ID Job Node
Resource Demand Vector
<CPU, Memory, MIC>

Number of Tasks

1 n1,1 <4, 4, 0> 300
2 n2,1 <4, 3, 0> 370
3 n3,1 <2, 4, 0> 260
4 n3,2 <1, 4, 2> 180
5 n4,1 <1, 3, 2> 280

Fig. 2 CPU, Memory, and MIC utilization for H-DRF and DFF for a
trace of five diverse workloads.

LETTER
1681

Fig. 3 Completion times for a trace of five diverse jobs using H-DRF and
DFF.

MIC while the five jobs ran. We can see that the MIC utiliza-
tion is improved greatly between 0 and 2,000 s by the DFF
algorithm. This is because when using H-DRF, the CPU
resource is saturated quickly as a result of unfair resource
allocation. When certain jobs demand the MIC resource,
there is no CPU to satisfy the demand vector. As a result,
MIC resources cannot be allocated, and the jobs demanding
the MIC resource will be starved. These jobs can only ob-
tain resources when some CPU resources are released after
2,000 s. In contrast, DFF can maintain fairness among all
nodes and allocate resources fairly to avoid job starvation.
In addition, DFF only incurs a small amount of overhead be-
cause the CPU and Memory utilization do not change much.
Overall, DFF can greatly improve resource utilization.

Figure 3 shows the complete times of the five jobs us-
ing the H-DRF and DFF algorithm. We can see that the
complete times of the MIC-demanding jobs (Jobs 4 and 5)
have been reduced greatly. This is because DFF can elimi-
nate the starvation of MIC-demanding jobs by allocating re-
sources fairly and speeding up their processing. Meanwhile,
the complete times of the CPU-demanding jobs (Jobs 1, 2,
and 3) have not changed very much. This is because DFF
does not sacrifice other jobs’ performance when increasing
some certain jobs’ resources. Overall, the total complete
time of the five jobs has been reduced by about 11.9% using
the DFF algorithm. Therefore, we can see that DFF has a
better throughput than H-DRF in a heterogeneous environ-
ment.

5. Conclusion

In this paper, we proposed DFF, a hierarchical scheduler for
multiple resources in heterogeneous datacenters. We first
defined the concept of a Fair Resource and Fairness, which
can reflect the fairness among all nodes. DFF attempts to

maintain the fairness of resource allocation based on Fair-
ness. The experimental results show that DFF can achieve
higher resource utilization and better throughput than the H-
DRF sharing scheme in heterogeneous environments.

References

[1] A.A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi, S. Shenker,
and I. Stoica, “Hierarchical scheduling for diverse datacenter work-
loads,” Proceedings of the 4th annual Symposium on Cloud Com-
puting, ACM, 2013.

[2] B. Sharma, R. Prabhakar, S.-H. Lim, M.T. Kandemir, and C.R. Das,
“MROrchestrator: A fine-grained resource orchestration framework
for MapReduce clusters,” 2012 IEEE 5th International Conference
on Cloud Computing (CLOUD), pp.1–8, 2012.

[3] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, “Multiresource
Allocation: Fairness–Efficiency Tradeoffs in a Unifying Frame-
work,” IEEE/ACM Transactions on Networking, vol.21, no.6,
pp.1785–1798, 2013.

[4] D.C. Parkes, A.D. Procaccia, and N. Shah, “Beyond dominant re-
source fairness: Extensions, limitations, and indivisibilities,” ACM
Transactions on Economics and Computation, vol.3, no.1, pp.1–22,
2015.

[5] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica, “Multi-resource fair
queueing for packet processing,” ACM SIGCOMM Computer Com-
munication Review., vol.42, no.4, pp.1–12, 2012.

[6] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: Flexible, scalable schedulers for large compute clusters,”
Proceedings of the 8th ACM European Conference on Computer
Systems, pp.351–364, 2013.

[7] A. Ghodsi, M. Zaharia, B. Hindman, et al., “Dominant Resource
Fairness: Fair Allocation of Multiple Resource Types,” NSDI, p.24,
2011.

[8] V.K. Vavilapalli, A.C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache
Hadoop YARN: Yet another resource negotiator,” Proceedings of the
4th annual Symposium on Cloud Computing, pp.1–16, 2013.

[9] Hadoop Capacity Scheduler. http://hadoop.apache.org/docs/current/
hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html

[10] Hadoop Fair Scheduler. http://hadoop.apache.org/docs/current/
hadoop-yarn/hadoop-yarn-site/FairScheduler.html

[11] R. Farivar, A. Verma, E.M. Chan, and R.H. Campbell, “Mithra:
Multiple data independent tasks on a heterogeneous resource archi-
tecture,” IEEE International Conference on Cluster Computing and
Workshops, 2009. CLUSTER ’09, pp.1–10, 2009.

[12] J.A. Stuart and J.D. Owens, “Multi-GPU MapReduce on GPU clus-
ters,” 2011 IEEE International Parallel & Distributed Processing
Symposium (IPDPS), pp.1068–1079, 2011.

[13] M. Lu, Y. Liang, H.P. Huynh, Z. Ong, B. He, and R.S.M. Goh, “Mr-
Phi: An optimized MapReduce framework on Intel Xeon Phi copro-
cessors,” IEEE Transactions on Parallel and Distributed Systems,
vol.26, no.11, pp.3066–3078, 2014.

[14] http://www.top500.org/lists/2015/06/
[15] G. Teodoro, T. Kurc, J. Kong, L. Cooper, and J. Saltz, “Compara-

tive Performance Analysis of Intel (R) Xeon Phi (TM), GPU, and
CPU: A Case Study from Microscopy Image Analysis,” 2014 IEEE
28th International Parallel and Distributed Processing Symposium,
pp.1063–1072, 2014.

http://dx.doi.org/10.1145/2523616.2523637
http://dx.doi.org/10.1109/cloud.2012.37
http://dx.doi.org/10.1109/tnet.2012.2233213
http://dx.doi.org/10.1145/2739040
http://dx.doi.org/10.1145/2377677.2377679
http://dx.doi.org/10.1145/2465351.2465386
http://dx.doi.org/10.1145/2523616.2523633
http://dx.doi.org/10.1109/clustr.2009.5289201
http://dx.doi.org/10.1109/ipdps.2011.102
http://dx.doi.org/10.1109/tpds.2014.2365784
http://dx.doi.org/10.1109/ipdps.2014.111

