
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.2 FEBRUARY 2016
313

PAPER

Distributed and Scalable Directory Service in a Parallel File System

Lixin WANG†a), Yutong LU†, Wei ZHANG†, Nonmembers, and Yan LEI†, Student Member

SUMMARY One of the patterns that the design of parallel file systems
has to solve stems from the difficulty of handling the metadata-intensive
I/O generated by parallel applications accessing a single large directory.
We demonstrate a middleware design called SFS to support existing par-
allel file systems for distributed and scalable directory service. SFS dis-
tributes directory entries over data servers instead of metadata servers to of-
fer increased scalability and performance. Firstly, SFS exploits an adaptive
directory partitioning based on extendible hashing to support concurrent
and unsynchronized partition splitting. Secondly, SFS describes an opti-
mization based on recursive split-ordering that emphasizes speeding up the
splitting process. Thirdly, SFS applies a write-optimized index structure
to convert slow, small, random metadata updates into fast, large, sequen-
tial writes. Finally, SFS gracefully tolerates stale mapping at the clients
while maintaining the correctness and consistency of the system. Our per-
formance results on a cluster of 32-servers show our implementation can
deliver more than 250,000 file creations per second on average.
key words: parallel file system, distributed and scalable directory service,
concurrent and unsynchronized splitting, recursive split-ordering, write-
optimized index structure

1. Introduction

As computing breaches petascale and approaches exascale
limits both in processor performance and storage capacity,
the computing revolution has created growing storage chal-
lenges as traditional storage methods struggle to keep pace
with the speed and parallel access demands of scalable com-
pute environments. To reply to these challenges, a variety
of parallel file systems are being employed to extract the
highest possible performance from underlying storage hard-
wares.

File system designers have long sought to look for new
architectures to improve and scale the performance. Over
the last two decades, the predominant focus of current file
system research, which is driven by application workloads,
emphasizes access to large files and tends to be in the realm
of access bandwidth and data redundancy. While providing
scalable file I/O bandwidth to large files, most parallel file
systems can not scale well to support efficient concurrent
access to a single shared directory that stores millions to
billions of files.

In this thesis, we present a prototype middleware file
system called Strawberry File System (SFS) to support ef-
ficient concurrent access to large directories. An adaptive

Manuscript received January 15, 2015.
Manuscript revised July 11, 2015.
Manuscript publicized October 26, 2015.
†The authors are with the National University of Defense Tech-

nology (NUDT), China.
a) E-mail: wanglixin08@nudt.edu.cn

DOI: 10.1587/transinf.2015EDP7009

directory partitioning scheme based on extendible hashing
is used to enable high concurrency for partition splitting
while eliminating system-wide serialization and synchro-
nization. To achieve higher concurrency and scalability, we
distribute directory entries over a cluster of data servers in-
stead of metadata servers. Directory partitions can dynam-
ically grow with usage. We also avoid the expensive split-
ting process by employing a recursive split-ordering mech-
anism. In order to accelerate metadata updates on data
servers, we use Log-Structured Merge (LSM) tree [1] to be
an ordered, persistent index structure for metadata storage.
Despite the stale copies of mappings in client caches, we
ensure that the client’s requests are forwarded to the correct
servers with minimal communication and synchronization
overheads. Finally, we verify the effectiveness of all these
mechanisms in SFS.

In the rest of the paper, we present the motivation,
background and related work in Sect. 2. Section 3 demon-
strates the design choices of our distributed and scalable
directory service, followed by evaluation results in Sect. 4.
Section 5 concludes the paper.

2. Motivation, Background and Related Work

This section summarizes the motivation calling for scalable
and high-performance directory service and shows how cur-
rent file systems are ill-suited to scale.

2.1 Motivation

Modern parallel file systems are designed to adapt to vari-
ous kinds of workloads. In addition to efficient operations
in general cases, the file systems should additionally han-
dle the extreme usage patterns which are common to scien-
tific computing and general purpose workloads. Recently,
many modern parallel file systems have adopted architec-
tures which are based on closely-related object-based stor-
age paradigm [2]. This compelling architecture diverges
traditional storage architectures from decoupling metadata
transactions from I/O operations and delegating low-level
block allocation decisions to object-based storage devices.
However, the best way to leverage this storage architecture
is to perform high-bandwidth access to large files, rather
than struggling with workloads involving access to large
numbers of files.

While some applications have applied this I/O best
practice and delivered scalable storage bandwidth, there are

Copyright c⃝ 2016 The Institute of Electronics, Information and Communication Engineers



314
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.2 FEBRUARY 2016

also a number of miscellaneous metadata-intensive applica-
tions, such as gene sequencing and photo storage [3], are
not well served at very large scale. These applications ap-
ply an I/O pattern that creates a file per thread/process in a
single shared directory that are accessed by large amounts
of clients simultaneously. Another notable I/O workload in
HPC clusters which creates similar directory access scenario
is checkpointing that applications insulate themselves from
inevitable system failures by periodically saving application
states to persistent storage. Unfortunately, applications that
adopt this per-process (or per-thread) checkpointing are sub-
ject to poor file create rates from the underlying file sys-
tem which is optimized for large, non-shared file. In the
impending exascale-era, applications running on computing
clusters with up to billions of CPU cores may impose sig-
nificant access challenges when checkpointing. As a result,
what really mattered is to build a scalable directory service
for parallel file systems to support efficient concurrent ac-
cess to even larger directories in the future.

2.2 Background

Parallel file system which is one of the most important lay-
ers in I/O stack of large computing systems is designed for
parallel applications that share data across many clients in
a coordinated manner. Parallel file systems which apply
the object-based storage architecture always consist of many
data servers that provide object-based data storage, one or
more metadata server(s) that manage namespace hierarchy
and files metadata, and many load generating clients, all of
which are connected by a shared network.

Modern parallel file systems are designed exploit par-
allelism for I/O operations. Files are always being striped
across multiple selected data servers to facilitate parallel ac-
cess. A file is made up of a metadata object and several
datafile objects each of which is a block of actual file con-
tents and stored in a separate data server. Metadata objects
store data about files or directories. In addition to the com-
mon file attributes like owner, group and permissions, meta-
data object also keeps file distribution information, such as
the location of datafile objects and its distribution layout.

Meanwhile, directories are used to manage the global
namespace and system hierarchy. Traditionally, each direc-
tory is a special file which contains a list of key/value pairs
called directory entries to identify all files within the direc-
tory. A key is the user-visible name of the file, while a value
could be a handle to a file, a sub-directory, or a symbolic link
to some other place in file system. Files with identical name
are not permitted to exist in a single directory. In the absence
of an explicit distributed directory implementation, parallel
creation of a large quantity of files from multiple clients in a
single shared directory may induce a system bottleneck and
low overall performance. File systems which do not dis-
tribute single large directory are limited by the speed of the
single metadata server that manages the entire directory.

Recently, many studies have applied an index struc-
ture called LSM tree to be the metadata’s storage backend.

LSM-tree is a data structure that is preferred for random
updates, inserts, and deletes. In a simple understanding of
LSM-trees, they are multi-component data structures com-
posed of several in-memory and on-disk tree-like compo-
nents. Incoming updates are completely sequentially stored
in an operation-log which is pushed to disk periodically and
asynchronously by default. When the log has the modifi-
cation saved, updates are applied to an active in-memory
component (called memtable) that holds the most recent in-
serts. Once the memtable is filled up, batched entries are
indexed and flushed to disk as a new on-disk component
(called SSTable). At this point, the updates in the log can be
thrown away, as all modifications have been persisted.

2.3 Related Work

Managing a large shared directory offers significant chal-
lenges both in terms of performance and scalability. This
section shows the related work.

Local file systems such as TableFS [4] and KVFS [5]
are developed to organize all metadata into a write-
optimized LSM-tree layout. TableFS represents metadata
in one all-encompassing table, and only writes large objects
to the local disk. They show that even an inefficient FUSE
based implementation of TableFS can perform compara-
bly to Ext4, XFS and Btrfs on data-intensive benchmarks
while providing substantial performance improvements on
metadata-intensive workloads. KVFS uses a transactional
variation of LSM-trees called VT-tree to organize metadata.
They use stitching to avoid always copying old SSTables
into new SSTables in the presence of LSM-tree compaction.
KVFS can offer concurrent access with transactional guar-
antees, and consequently provides efficient and scalable ac-
cess to both large and small data items regardless of the ac-
cess pattern.

Distributed file systems, including HDFS [6], GoogleFS
[7], Lustre [8], PVFS [9] use a single dedicated metadata
server to manage a globally shared namespace. While sim-
ple, this design limits scalability, resulting in the metadata
server becoming a bottleneck and a single point of failure.

File systems tend to distribute the directory tree over
different servers to increase the metadata concurrency.
However, for some of them, such as PanFS [10], parallel cre-
ations on a shared directory still have an important overhead
due to that all files in the directory are managed by a single
dedicated metadata server. Meanwhile, some file systems
and studies go a step further, eliminating this inefficiency by
distributing single large directory through several metadata
servers in order to scale.

GPFS [11] is a parallel, shared-disk file system that
support large directory with millions of files. GPFS uses
extendible hashing [12] to organize directory entries within
a directory. Unfortunately, the mechanism to coordinate
the global view and ensure consistency is complex and ex-
pensive. GPFS employs a distributed locking mechanism
that works well as long as different nodes operate on dif-
ferent pieces of metadata. In case of parallel creations, all



WANG et al.: DISTRIBUTED AND SCALABLE DIRECTORY SERVICE IN A PARALLEL FILE SYSTEM
315

the concurrent writes need to acquire write locks from the
lock manager before updating the directory blocks. As a
result, bouncing the directory lock between simultaneous
nodes leads to a far-from-optimal performance.

Patil and Gibson [13] propose GIGA+, a scalable di-
rectory design which uses hash-based indexing to incremen-
tally divide each directory into a growing number of parti-
tions that are distributed over multiple metadata servers. A
partition that is too full to insert any files will be spilt into
two by moving half of the partition to a new partition on an-
other server. Each server splits independently and preserves
its own split history to prevent a system-wide serialization
or synchronization. GIGA+ can achieve high concurrency
due to that manipulations on different partitions can be pro-
ceeded in parallel.

SkyeFS [14] implements Giga+ distributed directories
on top of PVFS. SkyeFS builds on the FUSE module and the
PVFS client library to provide file system services. To split a
partition, the split initiator locks the entire partition, moves
the entries and drops the lock until split is done. It shows
that Giga+ is capable of achieving near linear speedup once
a directory is at load balance.

Based on GIGA+, Xing [15] present a scalable direc-
tory scheme that aims to maintain billions of files in a di-
rectory. They employ an adaptive two-level partitioning
method to split directory into partitions when the size of
directory is small and enlarge partitions with more chunks
when the size of directory is large. These two levels of
splitting are done automatically and alternately to adapt to
different size of directories and the growth of directories.
Compared with GIGA+, this scheme reduces the amount of
partitions that need to be migrated among the servers when
directory grows and improves the performance.

Yang [16] demonstrates an implementation of a scal-
able distributed directory service based on extensible hash-
ing technique and the splitting strategy of GIGA+. When a
directory is created, an array of dirdata objects is allocated
with each dirdata object on each metadata server. Directory
entries are then spread across the dirdata objects. In con-
trast to GIGA+, the initial number of active dirdata objects
is configurable to enjoy better scalability from the begin-
ning, rather than starting from one partition. As a matter
of fact, the splitting process is found to be expensive when
increasing the number of partitions gradually [17].

IndexFS [18] also uses the GIGA+ binary splitting
technique to distribute directory entries. It embeds inode
attributes and small files into directory entries and stores
them into a single LSM tree. When the split target server
receive the migrated entries (in form of a SSTable), it adds
the SSTable as a file at level 0 of current LSM tree directly,
avoiding the overhead of write-ahead log and in-memory
cache. IndexFS also implements write back caching at the
client for creation of large directories. IndexFS clients can
complete creation locally and later bulk insert all file cre-
ation operations into IndexFS servers using a single SSTable
insertion, eliminating the one-RPC-per-file-create overhead
and enabling total throughput to scale linearly with the num-

ber of clients. However, their ultra high throughput bulk in-
sertion comes at the expense of weak file system semantics.
First, they suppose any created files are new to the file sys-
tem. Second, another client asks for access to the localized
files of current client will fail until the write lease period ex-
pires and the completion of its remaining bulk inserts. Third,
their lease-based client cache protocol increases the degree
of difficulty of failure tolerance.

In our design, despite that we employ the similar split-
ting strategy of GIGA+, it differs in several aspects. Firstly,
we have decided to distribute the directory entries over
a cluster of data servers rather than traditional metadata
servers, preventing us from being limited to the relative rare
number of metadata servers. Secondly, we provide an op-
timization to facilitate a fast splitting process. Thirdly, in-
spired by the TableFS and IndexFS, SFS employs LSM tree
to be our ordered and persistent metadata storage, leading to
fast metadata updates.

3. Distributed and Scalable Directory Design of SFS

This section describes designs to build distributed and scal-
able directory services for SFS to support efficient concur-
rent access to large directories and provides more detail on
the internal components that enable high-performance and
scalability.

3.1 Object Structure of Large Directory

Some studies have indicated that 99.99% of the directories
contain fewer than 8,000 files [19]. Most file system direc-
tories are small and remaining small. An empty or a small
directory in SFS is initially stored on one metadata server,
avoiding to degrade small directory performance. For di-
rectories that are known to be large before creation, we in-
troduce a new directory hint called large-dir, which can be
used to turn the directory optimizations on and off on a per-
directory basis. Since only a few directories grow to really
large, the hint will not be set in a default situation.

As illustrated in GIGA+, splitting to create more than
one partition per server significantly improves system load
balancing for non power-of-two numbers of servers. Mean-
while, more partitions per server takes longer for the system
to stop splitting and increases client addressing errors. SFS
decides to distribute large directory entries across a cluster
of data servers rather than metadata servers. This design has
several features that make it attractive. First, the total num-
ber of data servers is always several magnitudes of order of
metadata servers. With more servers, we can achieve more
concurrency. Second, for a really large directory, we can set
the number of servers that the directory is about to split to
as a power-of-two number to achieve server load balancing.
Now the number of servers can be chosen from a greater
scope than the initial number of metadata servers. Third, we
can set the partition per server to a small value to avoid too
much splitting. Each server in SFS owns only one partitions
of a large directory. Finally, we can exploit the usage of data



316
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.2 FEBRUARY 2016

servers to facilitate optimizations on file create operations.
For example, for each file in SFS, we currently allocate a file
in the local file system to store the actual data (described as
datafile object below).

SFS organizes large directories in terms of several stor-
age objects that are identified by handles, which are unique,
opaque, integer-like identifiers. Some important objects are

• Directory metadata objects include data about directo-
ries and are stored on metadata servers. Aside from the
usual file attributes like owner, group, etc., the meta-
data object of a large directory keeps an array of dirdata
handles and a dirdata bitmap (described below).
• Datafile objects contain contents of files. Each datafile

object is a byte-addressed sequence of bytes, plus a
set of attributes, accessed via a file-like interface (e.g.,
CREATE, READ, and so on). Datafile objects are
stored in the local file system on data servers.
• Dirdata objects store directory entries on the data

server (or can be stored in a shared distributed file sys-
tem). SFS oragnizes entries of sub-directories and sub-
files of current large directory in different ways. The
entry for a sub-directory is a pair of entry name and the
identifier to its directory metadata object. For a sub-
file, we store the metadata of the file directly with di-
rectory entry that link to it. On a per-directory basis,
SFS can also be configured to embed data of small files
into metadata (dirdata objects) or store them in datafile
objects. A dirdata object is also referred to as a parti-
tion.

The structures of these objects are visualized in Fig. 1.
For a directory that is expected to be large, we construct a
server list to record data servers that a directory splits to,
which is unique for each directory. The server list can be
expanded if new data servers are added to the system. When

Fig. 1 Diagram of object structures of large directories. A large directory
is split into a cluster of data servers with dirdata handles array and dirdata
bitmap are added to the directory metadata object.

a directory is created, an array of partitions is allocated with
each on a data server in the list and a partition bitmap and
an array of partition handles are initialized in the directory
metadata object. The bitmap keeps a one-to-one mapping
between the bit position and the index of the partition handle
array. A bit value of ‘1’ indicates an active partition while
‘0’ indicates an inactive partition. Each partition also keeps
a copy of bitmap and array of handles as shown in Fig. 1.
The bitmap on the directory metadata object is most up-to-
date to keep up with changes in every partition.

3.2 LSM Tree Based Metadata Storage

SFS uses an open-source key-value storage library called
LevelDB for on-disk metadata storage. As shown in Fig. 1,
SFS records keys that consist of two parts to support fast en-
try operations in the database: the recursive split-ordering-
bits (SOB) and the filename. SOB is devoted to speed up the
splitting process and will be introduced in later section. The
value part consists of metadata and may contain file data.

Every dirdata object in SFS is represented as one Lev-
elDB instance. This per-dirdata design prevents the Lev-
elDB database from growing too large, facilitating faster file
lookups and directory scans than storing all dirdata objects
of directories in a single LevelDB instance. On each data
server, we maintain an opened dirdata list with LRU evic-
tion policy. A dirdata that is not accessed for a threshold
time will be evicted from the list to reclaim memory. We
also have an option that control the maximum number of
opened dirdata objects. When reaching the maximum, the
least recently accessed dirdata object will be released to sat-
isfy the new incoming file operations on other dirdata.

LSM tree supports “upsert”, an efficient method for up-
dating a key-value pair in the tree. However, when creat-
ing a file, the POSIX semantics require the file system to
check that the file doesn’t already exist. As the entries in a
dirdata grow, the creation rate will slow down because the
non-exist test in each create is applied to ever larger on-disk
data structure. SFS provides an error-free solution that uses
per-dirdata bloom filter to eliminate most unnecessary disk
accesses. For a “possibly in set” test, SFS asks the LevelDB
to indicate whether the file really exists. When creating a
file, SFS first set the right position of bloom filter, no matter
whether the operation succeeds or not. For file renames and
deletions, SFS does not change the bloom filter to ensure
the correctness, although increasing the probability of false
positives. The size of each bloom filter is set to 4MiB by de-
fault, which can also be configured on a per-directory basis.
As the directory entries grow with usage, this filter changes
- and, at high insert rates it changes rapidly.

SFS currently does not support “hard links” in large di-
rectories. Despite multiple “hard links” to individual files
are relatively rare, and are used primarily for temporary
files [20], we are looking forward to solve this problem in
the future.



WANG et al.: DISTRIBUTED AND SCALABLE DIRECTORY SERVICE IN A PARALLEL FILE SYSTEM
317

Fig. 2 Concurrent and unsynchronized directory splitting in SFS.

3.3 Concurrent and Unsynchronized Splitting

Like GIGA+, SFS employs extendible hashing technique
to incrementally divide large directory into numerous par-
titions. A directory entry is hashed and then assigned to an
active partition handle based on its name. Our implemen-
tation uses a strong hash algorithm MD5 to encode the di-
rectory entry name to facilitate a random distribution. The
hashed value then serves as the key to partition selection.

Because each data server maintains only one partition
for a directory, the maximum number of partitions of a large
directory is fixed at the number of data servers in the corre-
sponding server list. In our case, the initial number of active
partitions is configurable and set to 1 as default. As new
entries get added and the number of entries in a partition ex-
ceeds a threshold value, the partition splits by moving about
half of its entries (including files data if exist) onto an in-
active partition on another data server if possible. Splitting
is no longer necessary when no inactive partitions can be
used to split to. In that case, the number of directory entries
stored in the partition is allowed to exceed the threshold,
regardless of potential slowdowns in performance.

Figure 2 shows the directory splitting process. In this
example, a directory is to be spread over five servers {S 0,
S 1, S 2, S 3, S 4} in five shades of gray color. Pi denotes the
hash-space range held by a partition with an unique index
i. Initially, at time T0, the partition on each server and the
handles that contain identifiers to these five partitions are
initialized. We suppose the initial number of active parti-
tions is set to two. Thus, the directory entries that the least
significant bit of hashed value of the name equals to ‘0’ will
be assigned to P0 and those equal to ‘1’ will be assigned to
P1. Meanwhile, the first two bits of partition bitmaps will
be set to ‘1’ and the depths of the corresponding partitions
(P0 and P1)will be calculated as one. As the directory grows
and the number of entries exceeds a threshold, the partitions
start to split. For example, at time T1, P0 is split into two
by moving the great half of its hash range to a new parti-
tion P2 on S 2. SFS calculates the identifier of a split’s target
partition using well-know radix-based techniques as GIGA+

does. Specifically, if a partition has an identifier i and depth
of r, the index of the new partition is i + 2r. Afterwards,
both partitions will be at depth r + 1. Note that the splitting
course can not proceed if partition handle with index i + 2r

does not exist.
The corresponding position of partition bitmap is also

updated to indicate an active partition. As each partition can
split independently without global coordination, no other
than the original and new target partition need to update their
bitmaps. The original partition is also responsible for updat-
ing the bitmap in the directory metadata object, thus keeping
it most up-to-date at all times.

3.4 Speeding Up the Splitting Process

There are several steps involved in the source server when
splitting: (i) the splitting process first locks the original di-
rectory partition, (ii) scans all entries in the partition to find
which entries to be moved to a new partition, (iii) then trans-
actionally migrates these entries (also including bitmap,
depth and files data if exist and needed) to the partition
hosted on another server, (iv) and updates the bitmap and
depth before releasing the local lock. For a partition with
depth of r, directory entries with a ‘1’ on the r + 1 bit po-
sition of their hash values will be moved to the new parti-
tion when splitting. The write lock acquired by the splitting
process is used to protect both the directory entries and the
bitmap. This implies that all other create threads would sus-
pend and wait for the competition of the splitting, and has
been found to be expensive [17].

However, if we sort the entries in a partition carefully,
our modulo-based extensible hashing will keep all the en-
tries destined for a given new partition together in the same
old partition. The core of this mechanism is recursive split-
ordering [21], a way of ordering elements to allow splitting
repeatedly without any reordering. It is achieved by simple
binary reversal so that the new key’s most significant bits are
those that are originally its least significant. As mentioned
before, we record directory entries in partition with key con-
sisting of two parts: the recursive split-ordering-bits (SOB)
and the name. The SOB is calculated by reversing the bits



318
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.2 FEBRUARY 2016

Fig. 3 Partition splitting with recursive split-ordering mechanism.

of the hash value of the filename (with the same MD5 hash
function). For instance, the split-ordering value of 5 is the
bit-reverse of its binary representation, which is 10100000
(in this example, we use 8-bit words). In SFS, we currently
use 32-bit words to represent the SOB part of a key.

LevelDB provides iterators, a way to combine the dif-
ferent data-sources to supply a global, unified, iterable, and
sorted view of the database. It simply merges iterators pro-
vides by the memtables (a maximum of 2), all SSTables in
level-0 (LevelDB tries to keep to a number no more than 4),
and level 1 to max-level (a maximum of max-levels minus
1), and returns the next value in order. A iterator will operate
on a “snapshot” of the database which is a consistent read-
only views over the entire state of the store, disregarding any
further new updates.

Figure 3 shows an example of the splitting process of
a partition P0 whose both index and depth equal to 0. Be-
cause our threshold to split is relative small (as default as
8,000), we only show the key-value pairs in memtables here
for simplicity. File entries are organized as a skip-list struc-
ture in memtable and are depicted by the combination of
split-ordering-bits and files name. In this example, we as-
sume that the hash value of “filex” modulo 256 is x (in 8-
bit words). As shown, file entries are sorted in a recursive
split and lexicographical ordering. When splitting, entries
are differentiated by the 1st binary digit of their keys: those
with ‘0’ will reside on the old partition, while those with
‘1’ to the new partition with index 1. The next splitting will
cause each partition to split again into two differentiated by
2nd bit, and so on. To summarize, when a partition with
index of i and depth of r is going to split, a simple prefix
lookup (using iterator) with a given prefix that equals to first
r + 1 bits of the split-ordering value of i + 2r will return all
records that need to be migrated to the new partition. We can
deduce from Fig. 3 that scanning of entries will not require
the protection of the overall write lock any longer, because
the clients are informed with the updated bitmap and the
position of any new incoming inserts would be in front of
“file1”.

Directory splitting in SFS is protected by a distributed
transaction protocol to preserve consistency. It is imple-
mented as a two-phase commit and failure protection with

write-ahead log:

• Phase 1: The split initiator locks the partition, updates
the bitmap and depth, releases the lock, performs a
range scan on its LevelDB instance and then sends the
bitmap, depth, and entries to the split receiver. The
split receiver then completes the bulk insert operation,
notifies the initiator and then blocks to wait for the con-
firmed message from the initiator.
• Phase 2: The initiator receives the notification from

the receiver, begins to clean up the migrated entries
and then responses to the receiver to inform that the
receiver now can start responding to clients.

The status of split initiator and receiver remains con-
sistency even if it releases the partition lock before the split-
ting completes. Our new splitting scheme based on recur-
sive split-ordering mechanism can prevent us from blocking
to scan and transfer the entries and benefit us from splitting
the partition much more quickly than the original scheme.

3.5 Locating Directory Entry with Inconsistent Mapping

When locating a directory entry, the SFS client contacts the
corresponding metadata server to fetch the relative directory
attributes, including the partition bitmap and handles array.
The client caches these mappings and uses them to find the
appropriate partition and the data server it maps to. A direc-
tory entry name is hashed and the hashed value is used as the
key to partition selection. The lower R bits (R =

⌈
log2(N)

⌉
,

where N is the size of handles array) server as the initial
matching index I. Given the index I, client checks the bit
position I in the bitmap. If the bit is set, the Ith partition
handle is picked and the later operations can be processed
on the corresponding partition. Otherwise, either the parti-
tion is inactive or the client bitmap is stale. In both cases,
the highest bit of I is taken off and the bitmap is checked
again with the new matching index. The bit position ‘0’ in
the bitmap is always set which guarantees an active partition
is selected in any circumstance.

In fact, the bitmap in the client cache may be out-of-
date because of splitting. Despite the inconsistent copies of
bitmap, SFS ensures that the client’s requests are forwarded



WANG et al.: DISTRIBUTED AND SCALABLE DIRECTORY SERVICE IN A PARALLEL FILE SYSTEM
319

to the correct server. To minimize communication and syn-
chronization overheads, SFS updates and synchronizes the
bitmaps in a lazy manner, without using a traditional, syn-
chronous cache consistency protocol. A client with stale
mappings sends its request to an “incorrect” server that no
longer holds the desired part of entries. However this “incor-
rect” server keeps a most up-to-date part of the bitmap and is
responsible for updating the client’s bitmap. The client uses
this updated bitmap to probe again. In the worst case, this
process could take O(log N) incorrect probes, where N is the
number of partitions. But the client updates its bitmap with
each probe, so the number of times of this action is bounded.
Thus, though each client may cache an inconsistent copies
of bitmap, the correctness and consistency of the system are
still maintained. In contrast to GIGA+, our design leads to
far less probes due to each data server maintains only one
partition for a large directory.

3.6 Handling Failures

SFS is designed as a middle-ware layer on top of an un-
derlying failure-tolerant and cluster file system. SFS does
not add major challenges when it is integrated into a clus-
ter file system that has already presented fault tolerance for
data and services. In fact, on the server side, SFS’s fault
tolerance strategy uses full data journaling to flush metadata
updates to the files (the SSTables) in the underlying file sys-
tem. The recent changes are firstly written into write-ahead
logs (WAL) which are rotated and committed to disk ev-
ery few seconds or when a memtable buffer overflows. The
SFS servers processes are monitored by scout server process
(such as Nagios). In case of a process failure, we can reboot
the process or use a standby server process to replace the
failed process. The disk failure tolerance is based on RAID
encoded and replications. Data files (such as SSTables and
logs) can also be configured to be stored in a underlying
shared distributed file systems, thus can be accessed by any
data server when we need to reconstruct the directory entries
in a standby server.

Each data server also maintains a separate write-ahead
log that record the mutation status such as the bitmap, depth,
migrated entries and which step we have reached when split-
ting. In case of a process failure when splitting, the reboot
or standby process can choose to rollback the status or con-
tinue the splitting, depends on which step the splitting has
reached and the time of process failure. For instance, if the
reboot or standby process found that all the migrated entries
have been sent but the target server has no response (it has
to response a success flag), the source server deems that the
migration fails and rollbacks to the status before splitting.
After a threshold time, it can start a new splitting request.
However, there is still a situation that may imply an incon-
sistency occurred in phase 2 described in Sect. 3.4. If the
split target dose not receive a notification from the initiator
in a threshold time, and it deems that the split fails. Now, the
status between initiator and target becomes inconsistency.
We plan to use a more robust consistency protocol in the

further to solve this problem.
Other issues, such as client-side reboots and network

partitions are relatively easy because SFS tolerate stale map-
pings in client’s cache. SFS does not cache directory entries
in client process. Directory-specific bitmap can be rebuild-
ing by contacting metadata server and further updated by
the data servers through incorrect addressing of partitions
during normal operations.

3.7 Handling Server Additions and Removals

When new data servers are added to an existing configura-
tion, overloaded partitions can resume splitting to partitions
on new servers. For a large directory, these new servers are
added to the server list and each of them allocates a partition
for later use. For every partition that wishes to but can not
split due to the target partition does not exist, it sends a split-
ting request to the directory metadata server (for one depth,
it sends only once). We uses a FIFO (First In First Out)
splitting request queue to record these requests. The new
added partition handle will be set to the relevant position in
the handles array which depends on the first request in the
FIFO queue. Thus the directory metadata server inform the
corresponding partition that the splitting operations can be
performed now. Thus new servers are made use of properly.

When deciding to remove a data server or directory ser-
vice in a data server, the situation is trickier. If the server to
be removed has not contains any directories entries, it can
be safely removed. All things we need do are updating the
server lists. However, if the server has entries of large di-
rectories, the administrator should first change the mode of
all affected directories to read-only (this can be done easily
because each server saves the list of large directories in this
server). Then we copy all the data files (including LevelDB
files and WALs) to the new server if needed. The new server
can be any server in our server configuration, including the
original servers that have been used. It starts a new direc-
tory service, loads all the data files and is ready to work.
Then the administrator updates the server lists and notifies
all other data servers the change of server configuration. At
last, the administrator can change the mode of all affected
directories to writable, and server removal is done.

Currently, we provide a set of dedicated commands in
favor of server additions and removals, and our scalable di-
rectory service is carefully design so that it is aware of server
number changes and always adapts to them.

4. Experimental Evaluation

We have built a skeleton prototype file system to evaluate
our directory design under a range of workloads to demon-
strate its performance and scalability. Clients, data servers,
and metadata server are entirely implemented in user-space,
and communicated over TCP using socket.

All experiments are performed on a cluster of 65 ma-
chines connected with 10GigE switches. Each node has two
six-core 2.10GHz Intel Xeon processors, 16GB memory, a



320
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.2 FEBRUARY 2016

Seagate 7200rpm disk of 2TB, and a 10GigE NIC. All nodes
are running the 64-bit Linux 2.6.32 kernel with ext4 file sys-
tem. We assign 32 nodes as data servers, 1 node as metadata
server and the remaining 32 nodes as load generating clients.
The threshold for splitting a partition is configured to 8,000
entries as same as GIGA+ does. We use version 1.15 of Lev-
elDB, with asynchronous log commits and default snappy
compression on.

We generate a concurrent create workload that creates
a large number of files simultaneously in an empty direc-
tory. In all cases, operations on files are evenly distributed
among the clients and each client spawns eight processes to
concurrently create files in a shared directory. All results are
the average of, at least, five runs of each test.

4.1 Baseline Performance

We start with a baseline for the performance of various file
systems running the mdtest benchmark. We use the syn-
thetic mdtest benchmark to insert zero-byte files into a sin-
gle directory. In the beginning, we compare mdtest run-
ning on SFS to mdtest running on Linux ext4 and a sep-
arate client and single server instance of PVFS cluster file
system and a mature commercial NFSv4 filer (all on ext4).
The single client uses eight processes to create 320,000 files
in a common directory. LevelDB is configured with enough
memory to store all entries in memtable (100MiB).

We use three machines with ext4 on the server (one as
client, one as metadata server and on as data server) and a
direct library linking way to bind mdtest to SFS. We mod-
ify the codes of mdtest to allow it to use our non-POSIX
custom object create calls (such as sfs creat ()).

Table 1 plots the baseline performance. As shown, ext4
deliver the highest directory insert rate, which can sustain
about 45,095 file creates per second. Our SFS configura-
tion creates at about 80% of the rate of ext4 with local load
generating processes. Although the LevelDB is effectively
adapted to metadata insert-intensive workloads, the baseline
performance of SFS is subject to datafile creation in local
ext4 file system. This comparison also shows that the re-
mote RPC is not a huge penalty for SFS. We also compare
SFS with other network file systems, SFS generally outper-
forms all, probably for most network file systems perform
metadata operations in the same way all the time regardless
of the size of the directory.

Table 1 File create rate in a single directory on a single server and
320,000 files in total (with 1% standard deviation).

File creates/second
File System in one directory

Local
file system

Linux ext4 45,095

Networked
file systems

NFSv4 filer
PVFS

1,506
1,184

SFS
(layered on ext4)

Library API 35,848

4.2 Incremental Metadata Scalability

In this section, the experiment is a stress test to analyze the
scaling behavior of our directory service in SFS. We run
the mdtest benchmark to create a large number of zero-
byte files in an empty directory and measure the aggregate
throughput (file creates per second) continuously through-
out the benchmark. We answer two questions: (1) how does
our design scale with increasing number of clients and data
servers, (2) What are the tradeoffs of SFS’s design involving
memtable size and choice of embedding file data into meta-
data; and discuss about scale-out heuristics of SFS: (3) What
causes may limit the scalability?

For the first question, we create six test scenes with
each owning a distinct number of data servers which is 1, 2,
4, 8, 16, and 32. Within each test scene, we scale the num-
ber of clients from 1 to 32. The total number of files created
in every scene is proportional to the number of data servers
and clients. For instance, in the occasion of 1 data server,
a single client with 8 processes will create 10,000 unique
files, two clients with 16 processes will create 20,000 files
and up to 32 clients will create 320,000 files on one data
server. Likewise, with 2 data server, a single client will cre-
ate 20,000 files and up to 32 clients will create 640,000 files
on the two data servers. To test the on-disk performance,
memtable in LevelDB is configured with 8MiB, too small to
store all metadata in memtable (about 64MiB metadata for
the 32 clients test scene).

Figure 4 plots the result in terms of aggregate opera-
tion throughput. The curves for each test scene are similar.
As the directory gradually splits to more data servers, the
create rate grows. SFS demonstrates scalable performance
for the concurrent create workload delivering a maximum
throughput at the point of 20 clients. This is because when
creating with 20 clients, the directory entries will consume
about 40MiB space that generated about 4 SSTables in Lev-
elDB. As SSTables grow more than 4 (the default maximum
number of SSTables in level-0 in LevelDB), LevelDB begins
to merge a range of SSTables ,compact them to higher lev-
els and sequentially write back to disk. With our 32-server

Fig. 4 Scalability of SFS directories.



WANG et al.: DISTRIBUTED AND SCALABLE DIRECTORY SERVICE IN A PARALLEL FILE SYSTEM
321

configuration, SFS can sustain a peak throughput of about
330,000 file creates per second - this satisfies today’s most
rigorous scalability demands.

It is observed that with a larger number of clients,
which introduce higher creation request rate, the through-
put scales better and keeps to scale. With 22 and more
clients, the peak throughput degrades over time on account
of a bottleneck of LevelDB which induces more frequently
memtable flushes and SSTable compactions.

It is also noticeable that when the number of clients is
relatively small (⩽ 4), increasing the number of data servers
does not dramatically improve the throughput. This is be-
cause the arrival rate of request from the clients has not
achieve the overall service rate, the servers are “hungry” and
are not fully utilized.

In the context of the second question, we run the
concurrent create benchmark with options that differenti-
ate from our previous settings. We create two test scenes.
First, we increase the memetable size that can gracefully
hold all entries in memory. Second, we use the inode stuff-
ing technique to ingest data of small files into dirdata object,
omitting the overhead of creating files in local file system.
Within each test, we set the number of data servers to 32 and
scale the number of clients from 2 to 32.

Figure 5 compares the effect of different policies for the
size of memtable and inode stuffing on the system through-
put. As shown, the gap between the new policy and our de-
fault setting enlarges as clients increase. The graph shows
a performance upgrades when adopting the larger memtable
and inode stuffing. However, the advantage comes at other
costs. For example, larger memtables increase the usage of
system memory, resulting in reduced capabilities of concur-
rent creates on different directories. The larger the memtable
is, the smaller number of dirdata objects in one server SFS
can manage concurrently. On the other side, inode stuffing
brings additional overhead during LSM Tree’s compactions
since embedding small files increase the data volume pro-
cessed by every compaction. Furthermore, the advantage
of reduced random disk seeks for lookup operations like
getattr and read for small files now diminishes, owing
to more SSTables in the underlying storage. SFS currently
presents these configurations optionally for the user, on a
per-directory basis.

Fig. 5 The effect of discrepant options in SFS.

SFS has demonstrated scalable performance for the
concurrent create workload, delivering a peak throughput of
more than 300,000 file creates per second for our 32 server
configurations. SFS is expected to continue to scale with
even larger number of servers. However, good metadata
scalability comes at the expense of degraded performance
for a single operation. There are still some factors that may
limit the scalability. First, as illustrated before, the local file
system and LevelDB can incur different kinds of overhead in
the separate server. For instance, the small datafile created
in local file system is the main cause that prevents SFS from
good single partition performance. We plan to use ReiserFS
(with -notail option), a file system that packs the data in-
side i-node for high small file performance usage. For Lev-
elDB, a new variation of LSM trees called RocksDB can be
employed to enable concurrent compactions and more op-
tions tuning. Second, Flash storage (like SSD) can also ben-
efit our scalable design of SFS. LSM-trees implementations,
such as LevelDB and RocksDB, are optimized for Flash
storage with extremely low latencies. We leave these feasi-
ble improvements in the near future, due to that our present
computing cluster configuration does not include any SSD
devices at all.

4.3 Efficiency of Recursive Split-Ordering Based Splitting

In this section, to better understand the impact of split-
ting scheme on our performance, we run create test to ver-
ify the efficiency between the original and our new split-
ting scheme. In order to evaluate the result on small I/O-
intensive workloads, we use a micro-write benchmark (writ-
ten by ourself) to create 10,240,000 500-byte files in a
shared directory, with 32 clients (256 processes) on 32 data
servers.

Figure 6 shows the first 20 seconds of the concurrent
workload. As shown, the throughput of both cases experi-
ences interim drops in the initial seconds when the servers
are busy splitting and both of them can make maximum use
of 32 servers at last. However, our new scheme encounters
much faster splitting course and uses much litter time to uti-
lize the remaining data servers. The original scheme uses
about 10 seconds to catch up with our new scheme. Our
new scheme outperforms the original one with the reduction
of approximate 10% of the total running time. This hap-

Fig. 6 Impact of splitting scheme on directory growth.



322
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.2 FEBRUARY 2016

Fig. 7 Cost of using inconsistent mapping at the clients.

pens because the partition can continue to serve the requests
without waiting for the competition of the splitting when
adopting our recursive split-ordering based scheme.

4.4 Cost of Inconsistent Mapping

In this section, we rerun the micro-write benchmark in pre-
vious section to measure the overhead of our weak consis-
tency mapping at the clients. First, we measure the per-
centage of all clients requests that are re-routed when using
32 clients to create different scale of files on different scale
of data servers. Figure 7(a) depicts the overhead incurred
by clients when their cached mappings become stale. As
shown, in absolute terms, fewer than 0.08% of the requests
are addressed incorrectly; this is only about 240 requests per
client when each client is doing 320,000 file creates.

We study further the worst case in Fig. 7(a), 32 servers
with 10,240,000 file creates, to learn when addressing er-
rors occur. Figure 7(b) shows when a process of a client
encounter the addressing errors when it creates 40,000 files
in the test. Figure 7(b) suggest two conclusions. First, each
process can find the correct server with at most 2 probes.
Second, the process makes no more than 30 addressing er-
rors total and make no more addressing errors after the 637th
request. This indicates that more than 98% of the work is
done without any addressing errors. Hence, using our weak
consistency mapping strategies has a very negligible over-
head on client performance.

5. Conclusion

Dedicated metadata servers limit the performance and scal-
ability of parallel file systems. In this paper we describe a
scalable and distributed directory service that distributes di-
rectory entries over data servers rather than metadata servers
to offer increased scalability and performance. The number
of partitions of a large directory increases as the directory
grows in a concurrent and asynchronous manner. Files are
assigned to a specific partition by hashing their names and
clients seeking a specific filename find the appropriate par-
tition by probing servers based on their cached mapping. To
accelerate metadata updates, we employ LSM tree to be an

ordered, persistent index structure for metadata storage. We
have also describe an optimization based on recursive split-
ordering to accelerate the splitting process.

We used these principles to prototype a distributed di-
rectory implementation that scales linearly on a 32-server
configuration. Our analysis also shows that SFS achieves
faster partition splitting than the traditional splitting strategy
and incurs a negligible performance penalty when allowing
to use weak consistent mappings at the clients.

Acknowledgments

This material is based upon work supported in part by
the National Natural Science Foundation of China under
grant 61120106005 and the National High Technology Re-
search and Development 863 Program of China under grant
2012AA01A301. We thank Guang Suo, Enqiang Zhou, Tao
Gao and Rongdong Hu for their helpful insight and improv-
ing in this paper. We are also grateful to anonymous review-
ers for their valuable comments and suggestions.

References

[1] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured
merge-tree,” Acta Informatica, vol.33, no.4, pp.351–385, 1996.

[2] S.A. Weil, S.A. Brandt, E.L. Miller, D.D.E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” Proc.
Symposium on Operating Systems Design and Implementation
(OSDI’06), Seattle, WA, USA, Nov. 2006.

[3] D. Beaver, S. Kumar, H.C. Li, J. Sobel, and P. Vajgel, “Finding a
needle in haystack: Facebook’s photo storage,” Proc. Symposium
on Operating Systems Design and Implementation (OSDI’10), Van-
couver, BC, Canada, Oct. 4–6, 2010.

[4] K. Ren and G.A. Gibson, “Tablefs: Enhancing metadata efficiency in
the local file system,” Proc. USENIX Annual Technical Conference,
pp.145–156, 2013.

[5] P. Shetty, R.P. Spillane, R. Malpani, B. Andrews, J. Seyster,
and E. Zadok, “Building workload-independent storage with vt-
trees,” Proc. USENIX Conference on File and Storage Technologies
(FAST’13), pp.17–30, 2013.

[6] K. Shvachko, H. Huang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” Proc. IEEE Symposium on Mass Storage
Systems and Technologies (MSST’10), Incline Village, NV, pp.1–
10, May 3–7, 2010.

[7] S. Ghemawat, H. Gobioff, and S.T. Lueng, “Google file sys-
tem,” Proc. ACM Symposium on Operating Systems Principles
(SOSP’03), Bolton Landing, NY, Oct. 2003.

[8] P. Schwan, “Lustre: Building a file system for 1,000-node clusters,”
Proc. Linux Symposium, Ottawa, Canada, July 2003.

[9] I.F. Haddad, “Pvfs: A parallel virtual file system for linux clusters,”
Linux Journal, vol.2000, p.5, 2000.

[10] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small,
J. Zelenka, and B. Zhou, “Scalable performance of the panasas par-
allel file system,” Proc. USENIX Conference on File and Storage
Technologies (FAST’08), 2008.

[11] F. Schmuck and R. Haskin, “Gpfs: A shared-disk file system for
large computing clusters,” Proc. USENIX Conference on File and
Storage Technologies (FAST’02), Monterey, Canada, Jan. 2002.

[12] R. Fagin, J. Nievergelt, N. Pippenger, and H.R. Strong, “Extendible
hashing – a fast access method for dynamic files,” ACM Trans.
Database Syst., vol.4(3), Sept. 1979.

[13] S. Patil and G.A. Gibson, “Scale and concurrency of giga+: File
system directories with millions of files,” Proc. USENIX Conference

http://dx.doi.org/10.1007/s002360050048
http://dx.doi.org/10.1007/s002360050048
http://dx.doi.org/10.1109/msst.2010.5496972
http://dx.doi.org/10.1109/msst.2010.5496972
http://dx.doi.org/10.1109/msst.2010.5496972
http://dx.doi.org/10.1109/msst.2010.5496972
http://dx.doi.org/10.1145/945445.945450
http://dx.doi.org/10.1145/945445.945450
http://dx.doi.org/10.1145/945445.945450
http://dx.doi.org/10.1145/320083.320092
http://dx.doi.org/10.1145/320083.320092
http://dx.doi.org/10.1145/320083.320092


WANG et al.: DISTRIBUTED AND SCALABLE DIRECTORY SERVICE IN A PARALLEL FILE SYSTEM
323

on File and Storage Technologies (FAST’11), San Jose, USA, Feb.
2011.

[14] A. Chivetta, S. Patil, and G. Gibson, “Skyefs: Distributed directo-
ries using giga+ and pvfs,” Tech. Rep. CMU-PDL-12-104, Carnegie
Mellon University, 2012.

[15] J. Xing, J. Xiong, N. Sun, and J. Ma, “Adaptive and scalable meta-
data management to support a trillion files,” Proc. SC’09, 2009.

[16] S. Yang, W.B. Ligon III, and E.C. Quarles, “Scalable distributed
directory implementation on orange file system,” 7th IEEE Interna-
tional Workshop on Storage Network Architecture and Parallel I/O,
Citeseer, 2011.

[17] Y. Wu, A study for scalable directory in parallel file systems, Mas-
ter’s thesis, Clemson University, Clemson, SC, USA, 2009.

[18] K. Ren, Q. Zheng, S. Patil, and G. Gibson, “Indexfs: Scaling file
system metadata performance with stateless caching and bulk in-
sertion,” High Performance Computing, Networking, Storage and
Analysis, SC14: International Conference for, pp.237–248, IEEE,
2014.

[19] S. Dayal, “Characterizing hec storage systems at rest,” Tech. Rep.
CMU-PDL-08-109, Carnegie Mellon University, July 2008.

[20] S.A. Weil, Ceph: Reliable, Scalable, and High-performance Dis-
tributed Storage, Ph.D. thesis, Univ. of California, Dec. 2007.

[21] O. Shalev and N. Shavit, “Split-ordered lists: Lock-free extensible
hash tables,” J. ACM, vol.53, pp.379–405, May 2006.

Lixin Wang is currently a Ph.D candidate at
the College of Computer, National University of
Defense Technology, Changsha, Hunan, China.
His research interests include distributed meta-
data management and object-based storage sys-
tem.

Yutong Lu is the director of the Sys-
tem Software Laboratory, College of Com-
puter, National University of Defense Technol-
ogy, Changsha, Hunan, China. She is also a
professor in the State Key Laboratory of High
Performance Computing, China. Her research
interests include parallel operating system (OS),
high speed communications, global file systems,
and advanced programming environments with
MPI.

Wei Zhang is a Ph.D at the College of Com-
puter, National University of Defense Technol-
ogy, Changsha, Hunan, China. His research in-
terests include file and storage systems, manage-
ability and performance analysis.

Yan Lei is a Ph.D candidate at the College
of Computer, National University of Defense
Technology, Changsha, Hunan, China. His re-
search interests include software debugging and
system software.

http://dx.doi.org/10.1145/1654059.1654086
http://dx.doi.org/10.1145/1654059.1654086
http://dx.doi.org/10.1109/sc.2014.25
http://dx.doi.org/10.1109/sc.2014.25
http://dx.doi.org/10.1109/sc.2014.25
http://dx.doi.org/10.1109/sc.2014.25
http://dx.doi.org/10.1109/sc.2014.25
http://dx.doi.org/10.1145/1147954.1147958
http://dx.doi.org/10.1145/1147954.1147958

