
1976
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.11 NOVEMBER 2015

PAPER

Performance of a Bayesian-Network-Model-Based BCI Using
Single-Trial EEGs

Maiko SAKAMOTO†, Hiromi YAMAGUCHI††, Nonmembers, Toshimasa YAMAZAKI†††a),
Ken-ichi KAMIJO††††, and Takahiro YAMANOI†††††, Members

SUMMARY We have proposed a new Bayesian network model (BNM)
framework for single-trial-EEG-based Brain-Computer Interface (BCI).
The BNM was constructed in the following. In order to discriminate be-
tween left and right hands to be imaged from single-trial EEGs measured
during the movement imagery tasks, the BNM has the following three
steps: (1) independent component analysis (ICA) for each of the single-
trial EEGs; (2) equivalent current dipole source localization (ECDL) for
projections of each IC on the scalp surface; (3) BNM construction using
the ECDL results. The BNMs were composed of nodes and edges which
correspond to the brain sites where ECDs are located, and their connec-
tions, respectively. The connections were quantified as node activities by
conditional probabilities calculated by probabilistic inference in each trial.
The BNM-based BCI is compared with the common spatial pattern (CSP)
method. For ten healthy subjects, there was no significant difference be-
tween the two methods. Our BNM might reflect each subject’s strategy for
task execution.
key words: BCI, Bayesian network, single-trial EEG, ICA, ECDL

1. Introduction

Over the last decade, the study of complex networks has
dramatically expanded across diverse scientific fields, rang-
ing from social science to physics and biology. Espe-
cially in neuroscience, brain functional connectivity net-
works (BFCNs) [1] have been increasingly constructed us-
ing multi-channel electroencephalograms (EEGs) [2] and
diffusion MRI [3]–[5]. However, in the former approach,
because the nodes are electrode positions, they have little
functional meaning. The graphical models for the latter one
required large-scale anatomical data [3] and huge quantities
of diffusion MRI data [4], [5].

Recently, some authors have been attempting to con-
struct BFCN models with not so many nodes [6], [7]. Ya-
mazaki et al. [6] introduced Bayesian networks (BNs) and
dynamic BNs as BFCN models using EEGs. This BN con-
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struction is characterized as follows: (1) the categorical
data obtained by equivalent current dipole source localiza-
tion (ECDL), after independent component analysis (ICA),
from single-trial EEGs [8]; (2) nodes that represent the brain
sites where ECDs are located, and edges between the nodes
which are weighted by the conditional probability as the
brain connectivity; (3) each single-trial EEG, which is per-
fectly quantified by the probabilistic inference. We applied
these BNs to Brain-Computer Interfaces (BCIs) with hand-
movement imagery tasks. In [6], the number of single trials
for the BN learning and a classification rule to discriminate
among the tasks that would have been executed by subjects
were determined. This study will compare the BN-model-
based BCI with the existing method with the best perfor-
mance [9], and investigate the characteristics of the present
BNM.

2. Materials and Methods

This study was afresh approved by the ethics committees for
Human Subject Researches, Faculty of Computer Science
and Systems Engineering, Kyusyu Institute of Technology,
and informed consent had been obtained from all subjects
prior to participation.

This chapter, concerning subjects, experimental de-
sign, EEG, EOG and EMG recordings, ICA, ECDL and BN
model construction, is the same as in [6]. The following is
briefly summarized.

Ten healthy right-handed subjects (two females and
eight males; mean age: 28.4 ± 4.27 years) participated in
this experiment. Any of three kinds of line drawings of
hands were presented on a monochromatic monitor of an AV
tachistoscope (IS-701B, IWATSU ISEL) 0.9 m away from
the subjects’ eyes (Fig. 1 (a)): (1) right-hand stimulus to
imagine being shaken with the subject’s right hand, (2) left-
hand one for the subject’s left hand imagery and (3) open-
right-hand one as control (Fig. 1 (b)). According to these
stimuli, the subject’s task is to imagine grasping the right-
hand stimulus with her or his own right hand (right-hand-
movement imagery: RH-MI), or to image grasping the left-
hand stimulus (left-hand-movement imagery: LH-MI).

Using an electro cap (ECI, Electrocap International),
EEG was recorded from 32 electrodes (FP1, FPz, FP2, F7,
F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T3, C3, Cz, C4, T4,
CP5, CP1, CPz, CP2, CP6, T5, P3, Pz, P4, T6, PO3, POz,
PO4, O1, Oz, O2) defined on the basis of the International
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Fig. 1 Experimental design. (a) EEG, EOG and EMG recordings, and
stimulus presentation. (b) Stimulus contents.

10-20 System [10] (Fig. 1 (a)). EOG was measured with two
electrodes placed directly above the nasion and the outer
canthus of the right eye. Additionally, surface EMG elec-
trodes were placed on the common digital extensor muscles
of each subject so that EEGs could be excluded when mis-
takenly actually grasping during the movement imagery.

The 32 signals of the EEGs were amplified by a Biotop
6R12-4 amplifier (GE Marquette Medical Systems Japan,
Ltd.), and filtered a frequency bandwidth of 0.01-100 Hz.
The amplified signals were sampled at a rate of 1 kHz dur-
ing an epoch of 100 ms preceding and 700 ms following
the stimulus onset. The inter-stimulus interval (ISI) was
1600 ms.

The 800 (=100+700)-ms epoch for the EEGs was set
as follows. Bereitschaftspotential (BP) consists of early BP
and the steeper negative slope (NS’), where the NS’ appears
about 400 ms before EMG onset [11]. Another finding [12]
was that, during oddball paradigm for obtaining P300, the
reaction time for button-pressing responses ranged from 357
to 505 ms after the stimulus onset. If the reaction time
could be equivalent to the EMG onset, the NS’ might ap-
pear −43 ms to 105 ms after the stimulus onset. Therefore,
the above epoch adequately covers this interval.

The data analytical procedure in our BCI involves three
steps: ICA, ECDL and BNM construction in the following.

2.1 ICA

Fast ICA [13] was applied to each of single-trial EEGs
recorded during these tasks, using ICALAB [14]. Xu et
al. [15] and Wang et al. [16] executed the data reduction by
PCA before ICA. Here, after ICA for each trial, among 32
ICs, we removed those associated with eye movement and
line noise, and having a broader high frequency (50-100 Hz)
spectrum that might be likely to be generated by scalp mus-
cles [17], according to the spectra of all the ICs for each
trial. Consequently, the following ECDL was applied to 15
ICs containing only neural activity.

2.2 ECDL

Independent EEG sources obtained by ICA are dipolar [18].
ECDL was applied to the reconstructed EEGs, namely the
projection of each of the rest ICs on the scalp surface by
the deflation procedure, using “SynaCenterPro” (PC-based

Fig. 2 An example for causal model of Bayesian network.

commercial software for multiple ECDL) (NEC Corpora-
tion). This software estimates unconstrained dipoles [19]
at any timepoint, using the three-layered concentric sphere
head model by the nonlinear optimization methods [20]. An
unconstrained dipole was estimated at any timepoint with
maximal peak or trough in the reconstructed EEGs for each
IC. Here, we searched for appropriate and reliable dipole
solutions, by selecting localization results only with good-
ness of fit (GOF) of more than 90% and with the simplified
confidence limits (CLs) of less than 1 mm, by restricting to
the results with no drastic change in the brain sites where
the unconstrained dipoles are located at least twenty succes-
sive instants including the peak or trough, and by excluding
the ECDL results localized to the cerebral ventricles and the
corpus callosum.

We carried out anatomical labeling of the brain where
ECDs were located, using the Japanese brain atlas for a sin-
gle subject. The atlas includes the correspondence between
three-dimensional coordinates in the brain and the anatom-
ical labeling of the brain region. The labeling was made
with reference to the textbook of neuroanatomy [21]. Each
subject’s MRI was transformed into the atlas, then the es-
timated ECDs were projected onto the atlas by this non-
linear transformation, and finally anatomical labels on the
atlas were determined [22]. The picked-up different labels
spread themselves over cortical and subcortical regions and
the cerebellum, such as the frontal (superior, middle and in-
ferior gyri except for Brodmann area 4 and 6), temporal,
occipital and cingulate gyri, the insula, parietal association,
primary motor, premotor and somatosensory cortices and
the hippocampus.

2.3 Bayesian Network Model (BNM) Construction

Figure 2 shows a typical BN, showing both the topology
and the conditional probability tables (CPTs), given the joint
probability distribution:

p(X1, . . . , X5|BS )

= p(X1)p(X2|X1)p(X3|X1)p(X4|X1, X3)p(X5|X3),

where Xi (i = 1, . . . , 5) (nodes) are random variables whose
values could be 0 or 1, and BS represents the BN topology,
and Table 1 depicts 20 sample data generated from the BN
model (BNM) [6] (originally quoted from [23]). The BN
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Table 1 Data example generated by the BN shown in Fig. 1.

construction refers to that the topology of BNMs is esti-
mated from such data in Table 1. The present BNM consists
of functionally distinct sites of the brain as nodes and di-
rected relationships among these sites as edges. The nodes
of the BNM are the brain sites where ECDs were located
by the ECDL method. The BNM topology was decided
by the conditional independency test [24]. For the brain re-
gions (nodes) where ECDs were located, 1.0 was assigned
to the conditional probability. Then, by the probabilistic
inference, the conditional probability was determined for
all the rest nodes. The probabilistic inference is made by
the belief propagation using the clique tree algorithm [25].
The free software, “MSBNx” (Microsoft Research) [26] en-
ables this inference, in addition to the BNM topology. The
initialization in the “MSBNx” is to fix the following six
items: “Forbidden links”, “Root & leaf nodes”, “Causes &
effects”, “Complete ordering”, “Partial ordering” and “Ad-
vanced setting”. The “Forbidden links” means no links be-
tween two specific nodes. The “Root & leaf nodes” refers
to setting of root and leaf nodes. The “Causes & effects”
indicates setting of nodes which are proved to affect each
other in advance. The rest items were assigned to “default”,
as recommended by the MSBNx. The BNMs obtained
for each subject had maximally fifteen nodes correspond-
ing to the brain sites such as the frontal, temporal, occip-
ital and cingulate gyri, hippocampus, insula, left and right
parietal cortices, left and right cerebellum, left and right so-
matosensory areas, left and right motor areas, and others
(see also Table 3). So, the “Forbidden links” were assigned
to “occipital↔frontal”, and the “Root and leaf nodes” to
“occipital” as root. The early Bereitschaftspotential (BP)
begins in the pre-supplementary motor area (preSMA) and
the SMA proper and then in the premotor cortex, and the
late BP (NS’) occurs in the primary motor and premo-
tor cortices [12]. Therefore, the “Causes & effects” were
assigned to “frontal”→“motor area”, “frontal”→“cingulate
gyrus” and “cingulate gyrus”→“motor area”.

Thus, each trial was characterized by the BNM as ex-
emplified in Table 1. Hereafter, node activities refer to the
summation of conditional probabilities at each node. Espe-
cially, by paying attention to “left and right motor areas”

Table 2 A summary for categorized ECDL results. “L” and “R” repre-
sent the LH- and RH-MI tasks, respectively, and “IC”s independent compo-
nents. “frontal”, “temporal”, . . . , “left motor area” and “right motor area”
depict the brain regions where ECDs were located for each IC. For exam-
ple, red “1” at (R1, “right motor area” of 4th IC) means that 4th IC after
deflation was localized to “right motor area” for the 1st trial of the RH-MI
task.

Table 3 Results on the accuracy (in %) for the present BNM and the
CSP in the validation phase. “-” means that conditional probability was not
able to be calculated due to many missing values. Parentheses in “CSP”
depict frequency bands used in the 1-CSP.

node activities, we proposed a rule to classify each trial into
left- and right-hand imageries [6].

2.4 Learning and Validation Phases

Our BNM-based BCI consisted of learning and validation
phases. In the learning phase, each about 30 trials was used
for the LH- and RH-MI tasks, while the next each 10 trials
in the validation phase. Especially, by paying attention to
“left and right motor areas” nodes, we predicted which hand
was imagined on the basis of a classification rule. This rule
is that if “the left motor areas” node activities are different
from “the right motor areas” ones, the trial was judged to be
a right hand imagery, while if both of the node activities are
the same, the trial a left hand imagery.

The CSP to be compared with our method is an algo-
rithm for obtaining a spatial filter to transform multi-channel
EEG data with two conditions into the surrogate space en-
abling the optimal discrimination of the conditions. This
filtering is achieved by solving the generalized eigenvalue
problem for the estimates of the covariance matrices of the
band-pass filtered EEG signal. For each trial, 1-dimensional
feature is calculated after operating the spatial filter on the
single-trial EEG. From these features, the threshold is deter-
mined so that all the trials are optimally discriminated be-
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Fig. 3 BNMs for subjects 1 (A), 2 (B), 4 (C), 5 (D) and 6 (E).

tween the two conditions. Thus, for each of α, μ, β and γ fre-
quency bands, we prepared 1-feature CSP classifier which
was conducted by the same EEG data as used in the above
learning phase.

2.4.1 Learning Phases

The learning phase means the BNM construction. By the
30-trial EEGs, the BNM for each subject was constructed
by the ICA, the ECDL and then the probabilistic inference.
Table 2 exemplifies a summary of ECDL results for one sub-
ject.

2.4.2 Validation Phases

Using another ten trials during the motor imagery task, the
present BCI was validated and compared with the CSP. The

EEGs during the task were analyzed by ICA and ECDL, and
the ECDL results were inputted to the BNM obtained in the
learning phase. Then, the node activities for all the nodes
were calculated using the probabilistic inference.

3. Results

Table 3 shows the comparison of the present method and
the CSP in terms of accuracy. For example, “90” in “BNM”
means 18/20. There was no significant difference between
the two methods (t(16) = −0.6117, p > 0.10).

4. Discussion

There was no difference between the present BNM-based
BCI and the CSP-based one. Nevertheless, the BNM only
for subjects 1 and 2 yielded the higher accuracy than the



1980
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.11 NOVEMBER 2015

CSP. However, the subjects 1, 2, 4 and 5 satisfied with the
classification rule [6]. So, we attempted to attribute the dif-
ference between subjects 1 and 2 and 4 and 5 to their BN
structures.

Figures 3 A-E show their BN structures. The paths to
left and right “motor area” nodes go by way of “cerebel-
lum” and/or “parietal” for subjects 1 and 2, while those for
subjects 4 and 5 directly “frontal” and “cingulate gyrus”.
For subject 6, the path to left “motor area” goes via “lan-
guage area” (including Broca’s and Wernicke’s areas) and
“parietal”, and that to right “motor area” via “temporal” and
“cingulate gyrus”. By introspective report, it was found
that this subject silently spoke “gyu” to imagine squeez-
ing. On the other hand, the BNM for subject 2 contains a
path: “occipital”→“parietal”→“cerebellum”→“motor area”
via “hippocampus”. By the BN structure, one could easily
guess the tasks requiring to confirm the position of the line
drawing on the display, and to imagine grasping the stimu-
lus. Thus, our BNM for each subject might reflect her or his
strategy for task execution.

5. Conclusion

Motivated by the use of categorical data obtained by ECDL
for EEGs after ICA, we utilized BNMs for single-trial-EEG-
based BCIs, leading us to a new framework for BCIs. The
compact BNM presented herein enables us easily to un-
derstand the structural and functional perspectives of the
entire brain during task execution. The classification rule
derived from our BNM node activities was strongly sup-
ported both by Bai et al. [28] for actual movement and
Pfurtscheller et al. [29] for motor imagery. However, when
applying our BNMs to motor-imagery-based BCIs, its per-
formance would be largely determined by the classification
rule. Moreover, because only subjects 1 and 2 satisfying
the classification rule had the higher accuracy than the CSP,
the performance might be also determined by BN structures.
Thus, the BNM presented herein for each subject might re-
flect her or his strategy for task execution. Because this
study enabled us easily to use the network for presenting the
graphical models of the single-trial-EEG-based BCI data,
we believe that our compact BNM does have significant po-
tential as a BFCN.
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