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Penalized AdaBoost: Improving the Generalization Error of Gentle
AdaBoost through a Margin Distribution

Shugiong WU'®, Nonmember and Hiroshi NAGAHASHI'™, Member

SUMMARY  Gentle AdaBoost is widely used in object detection and
pattern recognition due to its efficiency and stability. To focus on instances
with small margins, Gentle AdaBoost assigns larger weights to these in-
stances during the training. However, misclassification of small-margin
instances can still occur, which will cause the weights of these instances
to become larger and larger. Eventually, several large-weight instances
might dominate the whole data distribution, encouraging Gentle AdaBoost
to choose weak hypotheses that fit only these instances in the late training
phase. This phenomenon, known as “classifier distortion”, degrades the
generalization error and can easily lead to overfitting since the deviation
of all selected weak hypotheses is increased by the late-selected ones. To
solve this problem, we propose a new variant which we call “Penalized
AdaBoost”. In each iteration, our approach not only penalizes the mis-
classification of instances with small margins but also restrains the weight
increase for instances with minimal margins. Our method performs bet-
ter than Gentle AdaBoost because it avoids the “classifier distortion” effec-
tively. Experiments show that our method achieves far lower generalization
errors and a similar training speed compared with Gentle AdaBoost.

key words: Gentle AdaBoost, generalization error, machine learning, mod-
est AdaBoost, training error

1. Introduction

AdaBoost was first introduced to machine learning re-
searchers by Freund and Schapire[1], and has achieved
considerable success in object detection[2]. It has been
shown that AdaBoost is effective at enlarging the classi-
fication margins during the training process [3]. With the
increased popularity of AdaBoost, a generalized version,
Real AdaBoost, was proposed by Schapire and Singer [4].
Real AdaBoost applies confidence-prediction and domain-
partitioning to the boosting process. In 2000, Friedman et
al. analyzed AdaBoost from the viewpoint of an additive
logistic model and devised Gentle AdaBoost, which opti-
mizes the training error by Newton steps. It has been shown
that Gentle AdaBoost is more robust and stable than Real
AdaBoost with respect to the generalization error [5]. Re-
cently, many AdaBoost variants were proposed for various
purposes. Some researchers aimed at speeding up the train-
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ing process. For example, AdaTree was proposed to im-
prove the training speed by combining its weak classifiers
non-linearly [6]. In addition, several approaches were also
introduced to speed up the training phase [7]-[9]. They trade
off the integrity of training data for faster training.

Some AdaBoost variants were devised to improve the
robustness against noise data. For instance, BrownBoost
was proposed to reduce the influence of outliers in train-
ing data[10]. The review work showed that BrownBoost
performs similarly to Gentle AdaBoost[11]. MadaBoost
and SmoothBoost were introduced to improve the robust-
ness against malicious noise [12], [13]. Nevertheless, Mad-
aBoost requires the error rates of its weak hypotheses to be
increased monotonically, and SmoothBoost requires noise
tolerant weak hypotheses [14]. Similarly, regularized Ad-
aBoost was developed to solve overfitting problems caused
by noise instances. Unfortunately, it needs validation sub-
sets to identify and regulate the overfitting iteratively [15],
[16]. For the same purpose, Freund has proposed Robust-
Boost which is an extension of BrownBoost [17].

Other AdaBoost variants were devised to improve
the generalization ability such as SemiBoost and Float-
Boost. SemiBoost combines supervised learning with semi-
supervised learning by utilizing both the labelled and unla-
belled training data [18]. Its purpose is to reduce the gen-
eralization error when the labelled training data are insuffi-
cient [19]. FloatBoost deletes the less effective weak clas-
sifiers during the training by a backtracking mechanism so
that it outperforms AdaBoost when it has the same num-
ber of weak classifiers as AdaBoost [20]. However, Float-
Boost requires far more training cycles than AdaBoost. Sim-
ilarly, LPBoost was introduced to suppress the generaliza-
tion error of AdaBoost[21]. It uses linear programming
to minimize the minimal margin directly [21]. However,
a comparison indicated that LPBoost generally performs
worse than AdaBoost[22]. Later, Vezhnevets and Vezhn-
evets proposed Modest AdaBoost to reduce the generaliza-
tion error of Gentle AdaBoost [23]. It occasionally performs
better than Gentle AdaBoost by strengthening the contribu-
tion of weak hypotheses which work well on instances with
small margins [24]. However, it is difficult to decrease the
training error of Modest AdaBoost. Moreover, its perfor-
mance is unstable since the accuracy drops in some data
sets. Interactive Boosting, ReweightBoost, and SoftBoost
were also devised to decrease the generalization error [25]—
[27]. Interactive Boosting not only assigns weights to train-
ing data but also gives weights to features [25]. Reweight-
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Boost reuses the selected weak classifiers in a tree struc-
ture, but it restricts its weak classifiers to stump decision
trees [26]. SoftBoost optimizes a soft margin instead of the
hard margin used in AdaBoost[27]. An extended research
of [27] combines SoftBoost with LPBoost[28]. All the
four AdaBoost variants have achieved better performance
than AdaBoost [29]. However, they introduced complicated
calculations which may lead to a longer training time. In
2014, another method called Margin-pruning Boost was
also created to decrease the generalization error of Gen-
tle AdaBoost[30]. It achieved lower generalization errors
than Gentle AdaBoost by correcting “classifier distortion”
in each loop. However, its performance drops as the number
of iterations increases.

In this paper, we analyze the problem of Margin-
pruning Boost, and improve it by using an adaptive reset-
ting technique. Furthermore, we introduce a penalty policy
to restrain the reduction of small margins. Because the pro-
posed approach enlarges the margins more than Gentle Ad-
aBoost and Margin-pruning Boost, it can obtain better per-
formance than the two variants. Moreover, the calculation
of our method is simple, and it can be easily applied to other
variants such as regularized AdaBoost, Interactive Boosting,
ReweightBoost, FloatBoost, SemiBoost, RobustBoost, and
so on. The remainder of this paper is organized as follows.
Section 2 briefly introduces Gentle AdaBoost and Margin-
pruning Boost. Section 3 explains our proposed Penalized
AdaBoost, and then analyzes its generalization ability in
terms of the classification margins. Section 4 shows the ex-
perimental results, Sect. 5 discusses the proposed algorithm,
and Sect. 6 concludes our work.

2. Related Work

This section explains Gentle AdaBoost and our previous
work Margin-pruning Boost in details. Here let § =
{(x1,91), (x2,42), -+ s (X, Yi), - - -, (Xn, yn)} be a training set
that contains N training instances. For each instance x;, if it
is a positive instance, y; equals to 1; otherwise, y; equals to
—1. Here w;, is a weight assigned to the instance x; in the
t-th iteration. In this paper, we focus on binary classification
problems. There are many types of weak classifiers such as
SVM, CART, Decision tree, and so on. Nevertheless, we
use stump decision trees since they are the simplest clas-
sifiers which can effectively show the differences between
boosting algorithms [23].

2.1 Gentle AdaBoost

Gentle AdaBoost is a variant of AdaBoost, it calculates
one weak hypothesis in each iteration, and finally combines
these weak hypotheses in a linear manner. Gentle AdaBoost
calculates the weak hypothesis by optimizing the weighted
least square error in each run[5]. Being the same as Ad-
aBoost, Gentle AdaBoost increases weights for misclassi-
fied instances exponentially. Thus, it can easily focus on
the difficult-to-classify instances and try to correctly clas-
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sify them. However, these difficult-to-classify instances may
be noise or outliers. In this case, the weight of these in-
stances will be increased again and again. Finally several
large-weight instances force the late selected weak classi-
fiers to fit them only rather than fit the majority instances.
This phenomenon called “classifier distortion™ deteriorates
the generalization errors.

2.2 Classification Margin

The classification margin (also called margin) of a given in-
stance x; is defined as the difference between the prediction
confidence of weak hypotheses leading to correct classifi-
cation and that of weak hypotheses leading to misclassifi-
cation [3]. It is a real number in the range [—1, 1], and the
instance x; is correctly classified if and only if its margin is
positive [3]. Thus, the margin of an instance x; in AdaBoost
is defined as follows [3]:

Marging (o) =y Y. b)Y a. ()

Here we suppose AdaBoost combines 7' weak classifiers
after T iterations. Thereby, Zthl ah;(x;) in (1) means the
strong classifier [1], and /,(x;) denotes the weak classifier at
the #-th iteration which is also a function from the instance
space X to {-1,+1}.

In Gentle AdaBoost, confidence-prediction is applied
to the boosting process by folding «; into the weak hypoth-
esis, i.e., for an instance x;, the weak hypothesis at the 7-th
iteration f;(x;) is equivalent to a,h,(x;) of AdaBoost [4], [5].
Here the sign of the weak hypothesis f;(x;) represents the
class of the weighted majority of training data classified into
the same partition and the absolute value |f;(x;)| shows the
prediction confidence [4], [5]. The larger the prediction con-
fidence is, the higher classification ability f(x;) has. Differ-
ently from the weak hypothesis 4;(x;) defined in AdaBoost,
here the weak hypothesis f;(x;) is a function from instance
space X to real numbers. The prediction confidence |f(x;)|
is equivalent to «; in (1). From (1), the margin in Gentle
AdaBoost can be defined as follows:

Marging(v) =y Y fG) | Y UGl (@)

In (2), fi(x;) refers to the weak hypothesis for instance x; at
the ¢-th iteration, where T is the number of iterations. Thus,
Z,T:I fi(x;) denotes the strong hypothesis after T iterations.
Since we apply confidence-prediction into Margin-pruning
Boost and our proposed Penalized AdaBoost, (2) is also suit-
able for Margin-pruning Boost and Penalized AdaBoost.

2.3 Margin-Pruning Boost
To avoid the classifier distortion of Gentle AdaBoost, we

proposed Margin-pruning Boost. Margin-pruning Boost is
explained as follows [30]:

Algorithm 1. Margin-pruning Boost
1. Set the initial weight w;; = 1/N, where i = 1,2,...,N.
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2. Fort=1,2,...,T, run the following steps:

(a) Train a stump tree that classifies all training data into a
positive set S| and a negative set S2. For each set S} where
j € {1,2}, calculate W/, and W, as follows:

Jo_ A
WH B Zi:xieS{/\yFl Wi 3)
j = .
(b) Compute weak hypotheses for j € {1, 2} as follows:
£ = Wi - whyjwl + w), 5

For each training instance x;, let its weak hypothesis f;(x;)
be f!(x) if it is classified as a positive instance by the stump
tree; otherwise set f,(x;) = f2(x).

(¢) Update all instance weights by

Wt = explyix ) frx). (©)

(d) For each instance x;, if w; 1 > Qy41, reset its weight and
the sum of weak hypotheses by

=1 Y ) =0. @

maxi{wi 1} — ming{w; 1}
B

Then let w; 41 = wis+1/Z;, where Z; equals to 3; w r41.

3. Set Fr(x) = 21T=1 fi(x), and output the strong classifier

H(x) = sign[Fr(x)].

®)

Orr1 = maxi{wi1} —

Compared with Gentle AdaBoost, Margin-pruning Boost
added Step 2(d). In Step 2(d), the parameter g is tuned
by experiments [30]. In Margin-pruning Boost, instances
whose weights exceed the threshold at the current loop are
regarded as noise-like data. Thus, the sum of the weak hy-
potheses for these instances is reset to be 0. This means
that the current strong hypothesis can not classify these in-
stances. Accordingly, the weights of these noise-like in-
stances are also reset to 1 to limit their increase. However,
instances exceed the threshold are not necessarily noise.
Thus, Margin-pruning Boost still computes weak hypothe-
ses for these instances after resetting because it still tries to
correctly classify them in future loops. The purpose of re-
setting is to keep the weights of noise-like instances small to
avoid classifier distortion. Nevertheless, the resetting works
at the early training phase but fails at the late training phase.
At the early training phase, the weights of instances filtered
by the thresholding are almost large than 1. Thereby, re-
setting the weights of these instances to be 1 can reduce the
importance of these instances. However, as the number of it-
erations increases, the weights of filtered instances are prob-
ably smaller than 1. In this case, the resetting fails to avoid
classifier distortion.

3. Proposed Algorithm
3.1 Penalized AdaBoost

To solve the problem of Margin-pruning Boost we discussed
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above, we propose a new method called “Penalized Ad-
aBoost” in this section. Differently from Margin-pruning
Boost, only the instances whose weights exceed the thresh-
old and margins are negative are reset. From (2) and (6), we
can see that instances whose margins are negative always
have a weight larger than 1. Therefore, resetting the weights
of these filtered instances by the thresholding to be 1 on the
premise that the margins of these instances are negative can
always reduces the importance of these instances even when
the number of iterations increases. We can see this point in
Step 2(e) of the following algorithm. In addition, compared
with Gentle AdaBoost and Margin-pruning Boost, we use
a margin distribution from the previous loop to restrict the
misclassification of instances with small margins in the cur-
rent loop in our proposed algorithm (shown in Step 2(b) and
2(c) of the following algorithm). This improvement reduces
the confidence prediction of weak hypotheses that misclas-
sify small-margin instances. Thus, it can enlarge the mar-
gins more than Gentle AdaBoost and Margin-pruning Boost.
We will explain this point in more detail in Sect. 3.2 by mar-
gin distributions. Next we describe the new method by the
following pseudocode :

Algorithm 2. Penalized AdaBoost

1. Set the initial weight w;; = 1/N, where i = 1,2,..., N.
2.Fort=1,2,...,T, run the following steps:

(a) Train a stump tree based on the weighted training in-
stances, and then calculate W;, and W. for each set S
(j € {1,2}) the same as in Step 2(a) of Algorithm 1.

(b) Calculate a margin feedback factor m;, as shown in (9)
fort>1,and setm;; = 1/N fort = 1.

m;; = exp(—Margin,_,(x;))/U;. )

In (9), U; equals to ) exp(—Margint_lA(x,‘)). Then compute
M/, and M/_ (j € {1,2}) for each set S as

M =Z O mi 10
+ i:x,-eS//\y,:l bt ( )

j = .
Mt_ N Zi:x,eS{Ayi:—l Miz- (11)

(c) Compute weak hypotheses for j € {1,2} as follows:
(W, = W= ML), if W, > W]

. ) ) 12
(Wtj+ - Wt]—)(l - Mtj+)’ ( )

£l = { .
otherwise

For each training instance x;, let its weak hypothesis f;(x;)

be f!(x) if it is classified as a positive instance by the stump

tree; otherwise set f,(x;) = f2(x).

(d) Update all instance weights by (6).

(e) For each instance x;, if w;;+1 > Q41 and Margin,(x;) < 0,

reset its weight and the sum of weak hypotheses by

wai =1 Y, flx) =0. (13)

Ot = maxiwis) - maxi{wi 1} ; mini{wj 141 }. (14)
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Then let w; 41 = wis+1/Z;, where Z; equals to 3; w r41.
3. Set Fr(x) = Z,T:I fi(x), and output the strong classifier
H(x) = sign[Fr(x)].

In (13), for an instance x;, if its weight exceeds the threshold
and its margin is negative, this means that instance x; may
be noise data since it is misclassified many times from Itera-
tion 1 to Iteration ¢. Thereby we reset the summed weak hy-
potheses Z;:] fp(x;) to be 0 since the current summed weak
hypotheses can not correctly classify instance x;. However,
instance x; is not necessarily noise. Thus Penalized Ad-
aBoost still calculates the weak hypotheses for instance x;
after its resetting. Although the summed weak hypotheses
are reset at the ¢-th iteration, there is still a chance to cor-
rectly classify instance x; after the #-th iteration. This kind
of policy restrains the weight increase for these noise-like
instances, but still tries to correctly classify these instances.

3.2 Statistical Analysis for Improvement

In this section, we analyze how Penalized AdaBoost re-
strains the misclassification of instances with small margins,
and how the improved resetting technique enlarges the mar-
gins more than Gentle AdaBoost and Margin-pruning Boost.

In Gentle AdaBoost, if an instance x; is misclassified
by the current weak hypothesis, its weight will be increased
exponentially no matter how large or small its margin is. Ac-
cordingly, its margin will be reduced due to this misclassifi-
cation. The goal of the weight adjustment policy in Gentle
AdaBoost is to make the future weak hypotheses focus more
on instances with small margins and try to correctly classify
them. However, misclassification of instances with small
margins can still occur during the training phase especially
when the data set contains some noise. In this case, the
margins of these instances will become smaller so that their
weights will become larger. Finally Gentle AdaBoost will
select weak hypotheses to classify these minimal-margin
instances because their weights are increased large suffi-
ciently. Nevertheless, these selected weak hypotheses in the
late training phase are more likely to fit the large-weight
instances only, so that the performance of the strong hy-
pothesis on other instances will be degraded. This kind of
classifier distortion deteriorates the generalization error of
the strong hypothesis since the deviation of all the selected
weak hypotheses is increased in the late training as Gentle
AdaBoost tries to fit instances with minimal margins. It has
been demonstrated that the minimal margin of training data
does not influence the generalization error [22]. However,
the whole margin distribution which can obtain a balance
between the training error and complexity is important to
the generalization error [22]. Therefore, enlarging the mar-
gins of the whole data set is more important than fitting the
minimal-margin instances.

In Margin-pruning Boost, we reset the weak hypothe-
ses and weights of instances whose weights are larger than
a threshold [30]. From (2) and (7), we can see that the mar-
gins of instances exceed the threshold are reset to be 0. In
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(a) Cumulative margin distribution at Iteration 10
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(b) Cumulative margin distribution at Iteration 100

Fig.1  Cumulative margin distributions at Iteration 10 and 100.

the early training phase, most of instances filtered by the
thresholding have negative margins. In this case, resetting
their margins to 0 can enlarge the whole margin distribu-
tion. This means the already selected weak hypotheses can
not correctly classify these filtered instances so that the al-
gorithm resets them to 0. After resetting, these instances
are more likely to be correctly classified in the future runs
since the influence of previous misclassification is removed.
Consequently, the weights of these instances are reset to be
smaller than their original weights to avoid “classifier dis-
tortion”. However, as the number of iterations increases,
instances filtered by the thresholding do not have negative
margins necessarily. This means they maybe have positive
margins, which indicate that they may be correctly classified
by the combination of the currently selected weak hypothe-
ses. Therefore, resetting these positive margins to be 0 will
decrease the margins and degrade the classification perfor-
mance. We can also see this point from the following margin
distributions. Here margin distribution describes the proba-
bility that a training instance has a margin less than or equals
to a given value X, the probability is described by Y-axis
and the value X is described by X-axis. Figures 1 (a) and
1 (b) show the margin distributions of a data set lonosphere
at Iteration 10 and Iteration 100 respectively. From Fig. 1,
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we can see that Margin-pruning Boost performs better than
Gentle AdaBoost in the early training phase. However, the
performance drops as the number of iterations increases.

Compared with Gentle AdaBoost and Margin-pruning
Boost, the new proposed Penalized AdaBoost has two ad-
vantages. Firstly it utilizes an improved thresholding by
adding the condition that the margin must be negative for the
reset instances. Compared with Margin-pruning Boost, only
instances whose margins are negative and whose weights
exceed the threshold are reset in Penalized AdaBoost. This
means that the algorithm exactly reduces the importance of
these filtered instances. On the other hand, it also removes
the influence of weak hypotheses which give wrong predic-
tions for these filtered instances. Thus, Penalized AdaBoost
outperforms Margin-pruning Boost.

Secondly, Penalized AdaBoost introduces a penalty
policy which uses the margins in the previous run to restrict
the reduction of small margins. Since the penalty policy re-
strains the decrease of small margins, it can enlarge the mar-
gins more than Gentle AdaBoost, as we will demonstrate be-
low. In Step 2(c) of Penalized AdaBoost, for a given set S7,
if W/, > W/ holds, we can see that the sign of the current
weak hypothesis f/(x) is +1. This means S is a positive set.
Thus, instances classified into Set S/ and whose class is —1

are misclassified by f/(x). From (12), we notice that M,
in the positive set is the sum of margin feedback factor m;,
of misclassified instances. Then from (9), we can see that
the smaller the margin of the misclassified instance is, the
larger m;; is. Then according to (11), we can deduce that the
larger m;, is, the larger M._ is, and the smaller (1 — M_) is.
This means that a misclassification of instances with small
margins will lead to a small (1 — MtJ_), or we can say that
(1- M) is proportional to the margins. The small (1 - M)
degrades the prediction confidence of the current weak hy-
pothesis f,’ (x) so that the misclassification of these instances
is easier to be corrected in future runs, compared with the
case without (1 — M/ ) in Gentle AdaBoost. Accordingly,
the margin reduction of instances with small margins is also
restricted by the small (I—M,]_). By contrast, a misclassifica-
tion of instances with large margins leads to a large (1-M.).
However, the influence of this misclassification is small, as
these instances already have large margins. Although their
weights are increased in the current iteration, they can not
contribute to the “classifier distortion” because they were
small in the previous run. If W/, < W/ holds, the misclassi-
fication of instances with small margins is also penalized by
reducing the prediction confidence of the weak hypothesis
f/(x). In general, the penalty policy tries to achieve a best
balance of the margin distribution.

Figure 2 shows the margin distributions of the data set
Tonosphere, and Fig. 3 shows the generalization errors of the
same data set. From Fig. 2 (a), we noticed that the improved
thresholding (first advantage) of Penalized AdaBoost per-
forms the same as Margin-pruning Boost when the num-
ber of iterations is small. However, it outperforms Margin-
pruning Boost as the number of iterations increases (shown
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Fig.2  Cumulative margin distributions at Iteration 10 and 100.
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Fig.3  Generalization errors of Ionosphere.

in Fig. 2 (b)). This means the improved thresholding exactly
solves the problem of Margin-pruning Boost. This point
can be also seen in Fig. 3 where Improved thresholding has
better generalization errors than Margin-pruning Boost even
when the number of iterations increases. When we see the
curves of Penalized AdaBoost in Fig.2 and Fig. 3, we find
combining the improved thresholding and the penalty policy
(second advantage) improves the performance more than the
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case only using the improved thresholding. Therefore, Pe-
nalized AdaBoost enlarges the margins more than Gentle
AdaBoost and Margin-pruning Boost especially when the
number of iterations increases. From Fig. 3, we can see that
Penalized AdaBoost obtains a best generalization error as
the number of iterations increases.

With respect to the parameter y in (14) in Penal-
ized AdaBoost, we measured the classification performance
on 5 data sets (which are different from the tested data
sets in our experiments) with different values of y (y =
10, 30, 50, 70, 90), and evaluated the overall performance on
the 5 data sets. We found y = 50 has the best generaliza-
tion errors. So we use y = 50 in Penalized AdaBoost. We
used the same method to choose the parameter 8 in Margin-
pruning Boost, and 8 = 50 outperforms other four values
in Margin-pruning Boost. Thereby, we also set 8 = 50 in
Margin-pruning Boost [30].

4. Experiments

In this section, we compared our algorithm with Gentle
AdaBoost [5], Modest AdaBoost[23], and Margin-pruning
Boost [30] for 26 binary classification tasks from UCI repos-
itory [31]. These data sets can be downloaded from the
UCI web page’. For each data set, we used 3-fold cross-
validation to evaluate the training and generalization errors.
We utilized Matlab AdaBoost Toolbox which provides the
source code of many AdaBoost variants such as Gentle Ad-
aBoost, Modest AdaBoost and so on [32]. The Matlab Ad-
aBoost Toolbox (open-source) can be downloaded from the
homepage of Graphics and Media Lab'".

Figures 4 (a) and 4 (b) show the comparison of train-
ing and generalization errors for a data set Indian Diabetes.
From Fig. 4, we can see that our method outperforms other
three methods in terms of the generalization error, which
we estimate by the classification error on the test set. Dif-
ferently from Modest AdaBoost, the training error in our
method is decreased gradually. Table 1 summarizes the re-
sults from all data sets. The generalization errors were mea-
sured after 200 iterations. We also measured the general-
ization errors in different data sets after 500 iterations. Ta-
ble 2 shows the comparison results. In Table 1 and Table 2,
No.S and No.F mean the number of instances and number of
features, G-AB, M-AB, M-PB, and P-AB mean Gentle Ad-
aBoost, Modest AdaBoost, Margin-pruning Boost and Pe-
nalized AdaBoost; and the bold numbers indicates the best
performance. From Table 1 and Table 2, we noticed that Pe-
nalized AdaBoost overall outperforms other three methods.
It achieves the best performance on 10 data sets in Table 1,
and 16 data sets in Table 2. Comparing Table 1 with Table 2,
we can also conclude that Penalized and Modest AdaBoost
are more resistant to overfitting than Gentle AdaBoost and
Margin-pruning Boost.

Thttp://archive.ics.uci.edu/ml/datasets.html
TThttp://graphics.cs.msu.ru/en/science/research/machinelearning
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Fig.4 (a) Training errors, and (b) Generalization errors.

5. Discussion

Gentle AdaBoost emphasizes the difficult-to-classify in-
stances so that it can decrease the error rate rapidly in the
training. Focusing on difficult-to-classify instances actually
improves the classification performance. However, focus-
ing too much on these instances may lead to overfitting. LP-
Boost which directly optimizes the minimal margin is a typi-
cal example. It emphasizes the most difficult instances more
than Gentle AdaBoost. Thereby, the selected weak classi-
fiers are more likely to fit these most difficult instances in-
stead of the whole data set. So properly mitigating this kind
of emphasis may be good to the classification performance.
Margin-pruning Boost mitigates the emphasis on difficult-
to-classify instances in the early training phase. However,
it aggravates the emphasis late because the weights of some
instances filtered by the thresholding are increased in the
late training phase. Compared with Gentle AdaBoost and
Margin-pruning Boost, the new proposed Penalized Ad-
aBoost mitigates the emphasis on difficult-to-classify in-
stances from the beginning of the training. Furthermore, it
highlights more competent weak classifiers which can cor-
rectly classify difficult-to-classify instances in each itera-
tion. Thus, these difficult-to-classify instances are solved
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Table1  Comparison results of generalization errors on 26 data sets after 200 iterations.

Data sets:26 (No.S, No.F) | G-AB M-AB M-PB P-AB
Australian (690, 14) 0.1435 0.1435 0.1391 0.1304
Banana (5000, 2) 0.2713 0.2804 0.2526 0.2809
Bankruptcy (175, 6) 0.0400 0.0344 0.0400 0.0286
Banknote (1372, 4) 0.0022 0.0372 0.0058 0.0080
Breast Cancer (569, 4) 0.0246 0.0422 0.0669 0.0281
Blood Transfusion (748, 4) 0.2312 0.2352 0.2218 0.2298
Climate model (540, 20) 0.0593 0.0963 0.0704 0.0630
German Numeric (1000, 24) 0.2580 0.2950 0.2470 0.2450
Glass (214, 10) 0.0560 0.0701 0.0886 0.0653
Gamma Telescope (19020,10) 0.1546 0.2297 0.1454 0.1548
Heart Disease (270, 13) 0.2333 0.1704 0.2000 0.1630
Hepatitis (155, 19) 0.2130 0.2515 0.2129 0.1869
Indian Diabetes (768, 8 0.2578 0.2383 0.2318 0.2253
Indian Liver (579, 9 0.3005 0.3230 0.2850 0.3126
Ionosphere (351, 34) 0.0969 0.0684 0.0997 0.0826
Parkinsons (195, 22) 0.0872 0.1692 0.0974 0.0923
Planning Relax (182, 12) 0.4012 0.3519 0.4175 0.3186
Ringnorm (7400, 20) 0.0268 0.0470 0.0277 0.0509
Spambase (4601, 57) 0.0546 0.0895 0.0528 0.0617
SPECTFHeart (267, 44) 0.2285 0.2472 0.2584 0.1985
Splice (2991, 60) 0.0675 0.0919 0.0612 0.0639
Steel Plates (1941, 27) 0.2324 0.2751 0.2318 0.2421
Twonorm (7400, 20) 0.0305 0.0315 0.0292 0.0304
Waveform (3304, 21) 0.0975 0.0962 0.0917 0.0853
Wine Quality (6497, 11) 0.0054 0.0240 0.0052 0.0054
Wisconsin Prognostic | (198, 34) 0.2727 0.3030 0.3081 0.2323
Sum 3.8465 4.2421 3.8880 3.5857
Comparison to G-AB 0.0000 improved | 0.3956 degraded | 0.0415 degraded | 0.2608 improved

Table2  Comparison results of generalization errors on 26 databases after 500 iterations.

Data sets:26 (No.S, No.F) | G-AB M-AB M-PB P-AB
Australian (690, 14) 0.1638 0.1435 0.1377 0.1333
Banana (5000, 2) 0.2725 0.2804 0.2547 0.2738
Bankruptcy (175, 6) 0.0400 0.0344 0.0400 0.0458
Banknote (1372, 4) 0.0036 0.0372 0.0058 0.0058
Breast Cancer (569, 4) 0.0246 0.0369 0.0756 0.0246
Blood Transfusion (748, 4) 0.2540 0.2352 0.2272 0.2258
Climate model (540, 20) 0.0648 0.0963 0.0722 0.0593
German Numeric (1000, 24) 0.2730 0.2950 0.2490 0.2430
Glass (214, 10) 0.0607 0.0748 0.1025 0.0606
Gamma Telescope (19020,10) 0.1519 0.2292 0.1424 0.1473
Heart Disease (270, 13) 0.2481 0.1704 0.2000 0.1852
Hepatitis (155, 19) 0.2130 0.2515 0.2129 0.2128
Indian Diabetes (768, 8) 0.2526 0.2383 0.2409 0.2266
Indian Liver (579, 9 0.3074 0.3558 0.2953 0.3057
Ionosphere (351, 34) 0.0940 0.0627 0.0997 0.0912
Parkinsons (195, 22) 0.0974 0.1641 0.0974 0.0872
Planning Relax (182, 12) 0.4397 0.3519 0.4175 0.3462
Ringnorm (7400, 20) 0.0249 0.0309 0.0251 0.0318
Spambase (4601, 57) 0.0574 0.0895 0.0517 0.0572
SPECTFHeart (267, 44) 0.2285 0.2584 0.2772 0.2022
Splice (2991, 60) 0.0746 0.0919 0.0622 0.0605
Steel Plates (1941, 27) 0.2293 0.2777 0.2267 0.2334
Twonorm (7400, 20) 0.0296 0.0286 0.0296 0.0276
Waveform (3304, 21) 0.0984 0.0962 0.095 0.0881
Wine Quality (6497, 11) 0.0054 0.0231 0.0060 0.0051
Wisconsin Prognostic | (198, 34) 0.2828 0.3030 0.3081 0.2374
Sum 3.9920 4.2569 3.9524 3.6175
Comparison to G-AB 0.0000 improved | 0.2649 degraded | 0.0396 improved | 0.3745 improved
Parallel comparison to Tab.1 0.1455 degraded | 0.0148 degraded | 0.0644 degraded | 0.0318 degraded
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Fig.5 Margin distributions of different data sets after 100 iterations.

gradually so that it can avoid the situation that the most dif-
ficult instances dominate the weight distribution to cause
“classifier distortion” in the late training phase. Figure 5
shows some examples of margin distributions. All these
margin distributions demonstrate that Penalized AdaBoost
is more effective at enlarging the margins of the whole data
set compared with Gentle AdaBoost and Margin-pruning
Boost. We noticed that the minimal margin of Penalized
AdaBoost may not be the best. However, its whole margin
distribution is better than those of other variants. These mar-
gin distributions demonstrated that Penalized AdaBoost fits
for the majority instances more than instances with minimal
margins.

On the other hand, for the noise-like instances whose
weights are large and whose margins are negative, Gentle
AdaBoost classifies them as positive or negative instances.
However, Penalized AdaBoost resets their summed weak
hypotheses to be 0. This means Penalized AdaBoost does
not predict the class of these noise-like instances because
their current summed weak hypotheses can not correctly
classify them. After resetting, Penalized AdaBoost contin-
ues to calculate weak hypotheses for these instances. If
these instances are actually noise, their weak hypotheses
will be reset to be 0 again in future runs. Therefore, their

weights will keep small to avoid “classifier distortion” dur-
ing the whole training. If these instances are not noise, their
weak hypotheses after the resetting will be kept. Thereby,
Penalized AdaBoost will predict the class of these instances.
Since Penalized AdaBoost predicts the class of noise-like in-
stances more carefully than Gentle AdaBoost, it can achieve
a better generalization error than Gentle AdaBoost.

6. Conclusion

This paper introduced a novel method Penalized AdaBoost,
which utilizes the margins to reduce the generalization er-
rors. The novel contributions of this paper are as follows:

(1) It improves Margin-pruning Boost by using an
adaptive resetting technique which is controlled by the cur-
rent margins. The resetting technique mitigates the empha-
sis on the most difficult instances.

(2) It introduces a penalty policy to restrain the deteri-
oration of small margins. Since the penalty policy corrects
the wrong prediction of instances with small margins from
the beginning of the boosting process, it is effective at re-
ducing the absolute error of the strong hypothesis.

Both contributions are efficient in avoiding the “clas-
sifier distortion” since they prevent the weights of the most
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Table3  Average time of one implementation.
Gentle AdaBoost | Penalized AdaBoost
0.001687 second | 0.001876 second

difficult instances from becoming too large. Moreover, un-
like SoftBoost and Regularized AdaBoost, the calculation in
Penalized AdaBoost is simple and the running time of each
cycle is similar to that of Gentle AdaBoost. We can see that
from Table 3. Here we compared our Penalized AdaBoost
with Gentle AdaBoost in terms of the running time per cycle
on a data set BreastCancer. The source code of Gentle and
Penalized AdaBoost is programmed by utilizing the Mat-
lab AdaBoost Toolbox mentioned in Sect. 4. The results in
Table 3 were gathered from a notebook whose CPU is In-
tel i5 2.5GHZ (dual core) and memory is 8 GB. This paper
only discussed binary classification tasks by Penalized Ad-
aBoost. In our future work, we will extend this method to
cope with multi-class problems.
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